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A balance between self-focusing and diffraction of light
in two transverse dimensions is known to support the
formation of optical spatial solitons [1], such as the bell-
shaped (fundamental) solitons [2], which undergo cata-
strophic collapse in bulk Kerr media [3–5]. Different sug-
gestions have been made on how to arrest the collapse, e.g.,
by introducing alternating focusing-defocusing layers [6],
nonlocal response [7], optical gain [8], or magneto-optic
response [9]. The problem remains unsolved for pure Kerr
media, however, although nonparaxial coupling of polar-
ization components was shown to provide stabilization to
circularly polarized beams [10].

The fundamental optical soliton can be stable in other
Kerr-type media, e.g., in saturable photorefractive crystals
[11], where inherent anisotropy can elliptically deform an
otherwise radially symmetric transverse profile [12]. Ellip-
tic self-trapping was also achieved by introducing anisot-
ropy either into diffraction, using spatial anisotropy of the
correlation function [13] of partially coherent elliptic sol-
itons [14], or into nonlocal thermal response, controlled by
rectangular boundaries, for coherent elliptic solitons [15].
In isotropic bulk nonlinear media, elliptically shaped co-
herent beams experience quasiperiodic oscillations around
the radially symmetric soliton profile [16,17], and it is
generally believed that elliptic solitons do not exist [14].

In this Letter we approach this long-standing problem
from a completely different perspective and reveal that
elliptic solitons can exist as spiraling beams being sup-
ported by the optical orbital angular momentum (OAM)
[18]. Spiraling solitons [19] carrying OAM are usually
associated with optical vortices [20,21] and related ring-
shaped self-trapped beams [22]. At the same time, the
vortex-free beams with nonzero OAM are well known in
linear media, such as an elliptically shaped beam focused
by a tilted cylindrical lens [23]. We demonstrate that the
contribution of OAM to the dynamics of elliptic beams in
nonlinear self-focusing media is twofold. First, it strength-
ens effectively the diffraction against self-focusing and can
suppress collapse in Kerr media. Second, it preserves the
elliptic profile of stably rotating solitons in optical media
with collapse-free nonlinearities.

We start with a variational approach [24] of oscillating
elliptic self-trapped beams [16] and consider the nonlinear
Schrödinger equation with the Lagrangian L¼ i

2

RfE�Ez�
EE�

zgdr�H, and Hamiltonian

H ¼
Z
ðjrEj2 � 1

2
jEj4Þdr: (1)

We introduce a trial function,

Eðx; y; zÞ ¼ AðzÞG½X=bðzÞ�G½Y=cðzÞ� expði�Þ; (2)

with the Gaussian envelope GðtÞ ¼ expð�t2=2Þ and phase
� ¼ BðzÞX2 þ�ðzÞXY þ CðzÞY2 þ ’ðzÞ. The main nov-
elty here with respect to previously considered nonrotating
elliptic beams [16] is the asymmetric phase factor �ðzÞ,
conjugated with the angle �ðzÞ of the rotating frame, X ¼
x cos�þ y sin� and Y ¼ �x sin�þ y cos�.
Below, we consider beams focused at z ¼ 0 by a cylin-

drical lens upon entry into the nonlinear media, and thus
our boundary conditions for phase read fB0; C0; ’0g ¼ 0,
where subscript 0 indicates initial value, e.g., B0 ¼ Bð0Þ.
The value �0 � ð�=2fÞ sin2� depends on the angle �
between the major axis of the elliptically shaped beam
with wave number � and the cylindrical lens of focal length
f, and is independent of the other beam parameters [23].
Deriving variational equations, we obtain first integrals

of motion: the power, P ¼ �A2bc, and the OAM, M ¼
P�ðb2 � c2Þ=2, as well as equations for the conjugated

variables, _b ¼ 4bB, _c ¼ 4cC, and _� ¼ 2�ðb2 þ
c2Þ=ðb2 � c2Þ. Dots indicate derivatives with respect to
the evolution variable z, so f _P; _M; _Hg ¼ 0. In the following
it is convenient to introduce the spatial scale aðzÞ, a2 ¼
ðb2 þ c2Þ=2, and the ellipticity parameter �ðzÞ ¼
tan�1ðc=bÞ, then b ¼ ffiffiffi

2
p

a cos� and c ¼ ffiffiffi
2

p
a sin�. The

system can be cast in the Hamiltonian form,

H ¼ P

2

�
_a2

2
þ �

a2

�
; _� ¼ 0; (3)

� ¼ a4 _�2

2
þ 4� p sin2�

2sin22�
þ 2�2

cos22�
; (4)

with p � P=� ¼ A2a2 sin2� and � � M=P ¼
a2� cos2�. For a beam with waist at z ¼ 0, f _a0; _�0g ¼ 0,
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from Eq. (3) we obtain a2ðzÞ ¼ a20ð1þ z2=z20Þ, here z0 ¼
a20=

ffiffiffiffiffiffiffi
2�

p
. Note the non-negative contribution of OAM to

diffraction, ��2, counteracting self-focusing, ��p.
Collapse of circular beams in Kerr media.—Before ana-

lyzing spiraling solitons, we recall the details of the col-
lapse of circular beams with b ¼ c ¼ a (� � �=4) and
zero OAM, � ¼ 0. The variational Eqs. (3) and (4) predict
that the integral of motion � is a critical parameter of self-
focusing, namely, for �> 0 the beam diffracts, for �< 0
the beam collapses at the distance jz0j, and for � ¼ 0 the
stationary (soliton) solution exists with P ¼ 4� ’ 12:6; cf.
the critical power of self-focusing Pc ¼ 11:7 [25].

Variational solutions are obtained by choosing an arbi-
trary spatial scale a0 because in Kerr media Eq. (1) the gen-
eral solution is defined up to the arbitrary scale factor; i.e.,
if Eðx; y; zÞ is a solution then a�1

0 Eðx=a0; y=a0; z=a20Þ is

another solution. It follows that for the Gaussian ansatz
Eq. (2) the only parameter which defines the evolution of
circular beams is the power P. As an example we consider
supercritical power p ¼ 28 and choose a0 ¼ 5 for conve-
nience of numerical simulations of Eq. (1). Corresponding
parameter� ¼ �12 and variational approach predicts that
the beam will collapse at the distance jz0j ¼ 5:1.

Although predicting the event of collapse, the varia-
tional solution does not describe actual dynamics ade-
quately, as seen from comparison in Fig. 1. The reason is
that, as shown in Fig. 1(c), the collapsing beam develops a
transverse profile very different from a Gaussian, namely, a
sharp-peaked collapsing Townes soliton on a wide strongly
diffracting background [4]. As a result, the actual Townes
spike collapses at the distance z * 2:3. Nevertheless, the
variationally obtained parameters have the direct meaning
of averaged parameters of the actual profile. To demon-
strate this numerically we monitor the mean radius of the
beam, a2 ¼ Rðx2 þ y2ÞjEj2dr=P, and its amplitude, A2 ¼
p=a2, the results shown by dots in Fig. 1(a) and 1(b) and
they follow the variational predictions (thin lines) with
remarkable accuracy.

Spiraling elliptic beams in Kerr media.—In addition to a
circular soliton with � ¼ 0, the variational Eqs. (3) and (4)
predict the existence of a novel kind of solution, a
spiraling elliptic soliton with � � 0, obtained for
f _a; _�;H;�; @�=@�g ¼ 0. Because the predicted envelope

is stationary in the rotating frame, the rotation velocity is
constant, ! � _�s ¼ 2�s=a

2
0cos

22�s, here the subscript s
denotes soliton solutions. Solitons are conveniently repre-
sented by parametrizing with �s, namely, the soliton
power, ps ¼ 16= sin2�sð3� cos4�sÞ, the OAM, �2

s ¼
2cos42�s=sin

22�sð3� cos4�sÞ, and the propagation con-
stant, ks � _’s ¼ ð5þ cos4�sÞ=a20sin22�sð3� cos4�sÞ.
The following analysis exploits the fact that the OAM is

an additional, physically independent parameter of the
elliptic soliton, defined by the tilt � of a given cylindrical
lens; i.e., the parameters �0 and � can be set in an
experiment independent of the beam envelope p and �0.
Therefore, for a given soliton solution f�s; ps; �sg, we can
introduce an additional tilt factor � and compare beams
with the same power ps and envelope �s but different
values of OAM, �0 ¼ ��s and � ¼ ��s. In particular,
the variational soliton solution is recovered for � ¼ 1, and
for � ¼ 0 we observe the collapse of elliptic beams with
zero OAM studied earlier [26]. An example for ps ¼ 20
(P ¼ 5:37Pc, �s ¼ 0:18, �s ¼ 2:32, �s ¼ 0:1), shown in
Figs. 2–4, uncovers a physical effect of the nonzero OAM
and spiraling, �> 0, on the dynamics of collapse.
Increasing the OAM of an elliptic beam with a given

initial envelope slows down the collapse, as seen from the
dynamics of the peak intensity Im in Fig. 2(a) and two half-
widths in Fig. 2(b), defined at the level Im=e in the hori-
zontal, wx, and vertical, wy, directions. When the twist of

an elliptic beam �0, and the OAM �, exceeds some
threshold value �> �c, the collapse is completely elimi-
nated and the beam diffracts slowly. For our representative
example in Figs. 2(a) and 2(b) the separatrix value is found
to be 3<�c < 3:5, in contrast to variational solutions
predicting �c ¼ 1. We performed simulations similar to
Figs. 2(a) and 2(b) but with different values of beam power
and we approximate the soliton existence curve as a bound-
ary separating domains of diffraction and collapse; see the
solid line in Fig. 2(c). The actual value of OAM required to
suppress collapse is found to be much larger than that pre-
dicted by variational approach (dashed line). Nevertheless,
as pointed out in Ref. [23], the very high OAM can be
achieved in experiment, �� 104, although the relatively
low values of � ¼ 6–12 are required to eliminate the col-
lapse of the beams with supercritical powers P ¼ ð5–8ÞPc;
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FIG. 1 (color online). Collapse of a circular beam with power
P ¼ 28� ¼ 7:52Pc; the variational solution (thin lines) is com-
pared to numerical data (thick lines and dots). Collapse is
evident in (a) from the diverging peak intensity, Im ¼
maxjEj2, and in (b) from collapsing radii, w2 (at Im=2) and we

(at Im=e). (c) Spatial profile of intensity at z ¼ 2:3.
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FIG. 2 (color online). (a),(b) Dynamics of spiraling elliptic
beams in Kerr media, P ¼ 20� ¼ 5:37Pc. (c) Optical angular
momentum versus power showing the domains of diffraction and
collapse. Solid line: Approximate boundary between numerical
solutions with and without collapse (dots and circles). Dashed
line: Variational solution for the soliton family, �s.
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see Fig. 2(c). As a realistic example we consider experi-
ments in BK7 glass [4] with the beam of power p ¼ 3:5,
wavelength 	 ¼ 800 nm, transverse scale a0 ’ 0:5 mm,
and ellipticity �0 ’ 1:25. In accordance with Fig. 2(c) the
collapse will be suppressed for � ¼ 4, which requires a
cylindrical lens with the focal length f ’ 20 cm tilted by
� ¼ 45� with respect to elliptic beam profile.

A more detailed analysis of the process of collapse
suppression is presented in Fig. 3, where we compare
two beams from different domains � _ �c close to the
separatrix. To stress their differences, we plot the low-level
contours in Figs. 3(a), 3(b), 3(d), and 3(e) and use loga-
rithmic scale in Figs. 3(c) and 3(f). As seen in Fig. 3(c) at
z ¼ 3, before the collapse of supercritical beam, both
beams have similar envelopes. We use the term ‘‘super-
critical’’ here for the beam with power exceeding the
diffraction-collapse threshold for a given value of OAM,
� ¼ ��s. With further propagation at z ¼ 4:7, both beams
rotate in the anticlockwise direction because the OAM is
positive, �> 0. The supercritical beam with � ¼ 3 devel-
ops characteristic spike of circularly symmetric Townes
profile [4], see Fig. 3(d) and 3(f), while the subcritical
beam with � ¼ 3:5 in 3(e) and 3(f) only diffracts without
strong reshaping. Remarkably, as shown in Fig. 3(f), the
background of the supercritical beam still diffracts very
fast, despite the larger OAM of the subcritical beam. We
conclude that the subcritical spiraling improves the balance
between diffraction and self-focusing which leads to the
trapping of the beam as a whole, in contrast to the super-
critical beam with the central part collapsing and the
background strongly diffracting.

Further dynamics of the diffracting beam with �> �c is
shown in Fig. 4. The slow rotation and spreading of the
beam is evident, and we also notice almost self-similar
profiles with characteristic ‘‘propellerlike’’ transverse
shape in their tails as a result of spatial twist. This obser-
vation strongly suggests that the beam is close to the
soliton solution. However, as with the circular beams in

Kerr media, such solitons require exact balance between
self-focusing and diffraction which is unstable to small
perturbations.
Spiraling elliptic solitons in saturable media.—In

collapse-free Kerr-type media stable solitons survive small
perturbations by compensating them with internal oscilla-
tions [16,17]. Here we choose saturable medium as a
representative example to establish existence and stability
of spiraling elliptic solitons. Rather than by Eq. (1), the
Hamiltonian of this model is described byH ¼ RfjrEj2 �
jEj2 þ logð1þ jEj2Þgdr. Using the variational approach
with the ansatz Eq. (2), we derive the following
effective-particle representation:

4

�
H

P
þ 1

�
¼ 1

2
_b2 þ 1

2
_c2 þ�ðb; cÞ; (5)

�ðb;cÞ¼ 2

b2
þ 2

c2
þ8�2ðb2þc2Þ

ðb2�c2Þ2 �4bc

p
Li2

�
� p

bc

�
; (6)

with two independent parameters, � and p.
An important difference from the Kerr model is the

absence of the arbitrary scaling a0; i.e., the spiraling soli-
tons belong to a two-parameter family [27]. In addition to
the usual soliton constant k (or the power p), the spiraling
solitons are parametrized by the angular velocity ! (or the
OAM �). Solitons can be found as the minima of the
potential �ðb; cÞ; one example is shown in Fig. 5 for � ¼
0:35 and p ¼ 127:32 (other parameters are bs ¼ 4:26,
cs ¼ 2:13, �s ¼ 0:052, and !s ¼ 0:17). The isosurface
of intensity of spiraling soliton shows homogeneous rota-
tion free from oscillations. We also compare two half-
widths, wx and wy, with corresponding variational solu-

tion, wx ! ðb�2
s cos2!szþ c�2

s sin2!szÞ�1=2 and wy !
wxðbs $ csÞ, and find an excellent agreement.
We should mention that closer to the Kerr limit, i.e., for

low powers, we observe the development of low-intensity
oscillating tails which indicate the appearance of disper-
sive waves radiated by the soliton (not shown). This picture
is consistent with the linear stability analysis [17], namely,
the absence of oscillatory modes of the fundamental sol-
itons with ks & 0:5. The radiative tails take a negligible
portion of power from the soliton while the amount of
radiated OAM can be more significant. The reduction of
OAM in the main soliton leads to the slow reduction of
ellipticity of the transverse rotating profile. Nevertheless,
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this process is practically eliminated in the regime of
noticeable saturation, as in the example in Fig. 5.

In experiment, the soliton spiraling is observed in the
samples of limited length [27], because the conservation of
OAM requires isotropic media, and it is violated by an-
isotropy of photorefractive crystals or absorption in vapors
of two-level atoms. The stable elliptic solitons can be
generated, for typical conditions of fundamental solitons,
as an output elliptic beam rotating as a function of the tilt �
of the input cylindrical lens, which changes the OAM �
and the rate of spiraling ! from zero (for � ¼ 0) to a
maximal value (for � ¼ �=4).

Similar to optics, collapse of matter waves can be con-
trolled by changing nonlinearity: manipulating the contact
atom-atom interactions via a Feshbach resonance [28] or
long-range dipole-dipole interactions via the trap geometry
[29]. At the same time, the asymmetric traps were em-
ployed to rotate repulsive condensates and achieve vortex
generation [30]. Our results suggest to combine these two
well-established techniques and explore, theoretically and
experimentally, the possibility to suppress the collapse of
the attractive Bose-Einstein condensates in rotating traps.

In conclusion, we have revealed that spiraling of self-
trapped beams is an efficient mechanism for suppressing
catastrophic collapse in Kerr media and supporting stable
elliptic solitons. Our concept can be extended to other
nonlinearities such as nonlocal and quadratic. For spatio-
temporal problems, our approach allows us to introduce the
‘‘twisted pulses’’ [31] as stable light bullets in collapse-
free media [32]. In Kerr media, however, light bullets are
always unstable [25], because the contribution to the
Hamiltonian from the self-focusing term, �� pa�2
�1,
dominates both the diffraction, �a�2, and the dispersion,
�
�2; here, 
 is the duration of the pulse with energy p.
The transverse spatial rotation with OAM� contributes the
term similar to diffraction, ��2a�2, and thus it cannot
counterbalance the simultaneous spatiotemporal collapse.
Nevertheless, the effect of the OAM on the collapse dy-
namics is expected to be rather significant.
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