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ABSTRACT 

- 
We show that all the nonrenormalizable terms in the effective superpotential 

---.- . 
L 

for any Abelian symmetric orbifold with at least (0,2) worldsheet supersymmetry 

as well as any blown-up (2,2) orbifold are exponentially suppressed by the size 

R of the compactified space, i.e. 0: exp(-R2/o!). 
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Orbifold compactifications ‘-’ of the superstring theories are especially at- 

i ,;‘ tractive because interactions on orbifolds can be calculated exactly at the string 

. tree-level.6’7 Thus all the parameters of the tree-level effective superpotential can 

be determined exactly, i.e. including contributions which are perturbative as well 

as nonperturbative in the ratio a/R, where Q’ is the string tension and R is 

the radius of the orbifold. (F or example, the effects of worldsheet instantons are 

automatically incorporated.) 

The left-right ((2,2)) y s mmetric orbifolds, i.e. those with spin and gauge 

connections identified, can also be blown-up 
6-11 

into the corresponding Calabi- 

Yau manifolds. This is achieved by giving nonzero vacuum expectation values 

(VEV’s) to the massless scalar fields associated with the orbifold singularities, 

i.e. the so-called blowing-up modes, whose potential is flat. 

Scattering amplitudes in the repaired Calabi-Yau background - and hence 

also parameters of the effective superpotential - can be calculated by inserting 

successively larger numbers of background blowing-up modes into orbifold ampli- 

---.- . 
L tudes. Although perturbative in the blowing-up VEV’s, the method enables one 

to obtain explicit values for parameters of the blown-up orbifolds, thus giving 

exact results at the string tree-level. 

- 
Calculations lo for the mass spectrum and Yukawa couplings, i.e. the terms 

of dimension 5 4, for the blown-up orbifolds agree with the general results of the 

worldsheet instanton calculations.* In particular, all the matter singlets acquire 

masses which are proportional to exp(-R2/o’) while 27 and % of & do not 

. _Y. 

- i* 

pair-up. Also all the “moduli” remain massless as expected. On the other hand, 

Yukawa couplings of the form h -- ija27i%ila for any pair (i, j) are nonvanishing 

for some a as well as Yukawa couplings of the type hijk27iZVjZVk are nonzero 

- 

c 
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in general. Some of these Yukawa couplings are nonzero already in the field 

A ,;‘ theory limit, i.e. d/R2 + 0, while some become nonzero due to nonperturbative 

. effects. The nonrenormahzable terms (27%7)K (with K 2 2) in the effective 

superpotential for ZN orbifolds and their blown-up versions have been studied 

in Ref. 11. It was observed that for a large class of orbifolds and their blown- 

up versions all such terms are absent, thus questioning the mechanism l2 for 

generating an intermediate scale for such compactifications. 

---.- . 
- 

In this note we show that for all Abelian symmetric orbifolds with at least 

(0,2) worldsheet supersymmetry as well as blown-up (2,2) orbifolds, all the non- 

renormalizable terms in the effective potential are at most exponentially damped 

by the size of the compactified space, i.e. cx exp(-R2/a’). Here R is the radius 

of the compactified space and Q’ is the string tension. 

All such orbifolds possess the local conformal invariance 13-15 in the right- 

moving (r) sector. One can thus use the picture-changing formalism, with vertices 

having different ghost numbers for the bosonized right-moving superconformal 

ghost in different r5’16 “pictures”. Tree-level amplitudes involve collections of ver- 

tices such that the total ghost number, 4, equals -2.15 The simplest form of the 

vertex operator for a space-time fermion is the -l/2 picture, while that for a 

space-time boson is the -1 picture. The picture-changing formalism enables one 

to obtain vertices in other pictures. For example, the vertex for a space-time 

boson in the 0 picture is obtained in the following way15 

- 

(b(z))0 = ~~~exp(~)TF(w)(vB(z))-l. _ (1) 

. _T_ 

- - ---Here (VB(~))- r is the corresponding vertex operator in the -1 picture and 

- i* 
TF I TFt(Xi, xi, #, $‘) + dX’L@‘ (2) 

3 
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is the worldsheet supersymmetry generator l5 - the stress-energy tensor. Here X 

,;‘ and + are the string bosonic and fermionic coordinates, respectively; the indices 

. (i,;) = (1,2,3) d - ( an p - 1,2,3,4) denote the three complex internal and the four 

space-time dimensions, respectively. Partial derivatives are with respect to the 

right-moving worldsheet coordinate z. It is crucial that for an orbifold model, 

Tpt takes the explicit form: 

-.-.- . 
c 

Ti$t = axi$S + axT+i. 
(3) 

The right-moving N = 2 superalgebra of (0,2) as well as (2,2) models incor- 

porates a U(l), current algebra, generated by Jr = -ifii?H,. H,(z) is a free 

right-moving scalar field. Actually for orbifolds, U(l),. worldsheet symmetry of 

the r-sector is enlarged to [U(l) x U(1) x U(l)],.. Thus instead of one conserved 

charge H, G Cf=,(Hi),, th ere are three conserved charges, (HI),, (Hz),., and 

(Hs),. which are classified1 for all the ZN orbifolds and are related to the matrix 

of the discrete rotation 0 acting on the three compactified coordinates. (Hi), 

charges, along with the explicit form of the TF (see eq. (2,3)), in turn uniquely 

determine the r-sector of the vertex operator for emission of massless states at 

-__ 
the string tree-level. For example in the -1 and -l/2 pictures (emission of a 
- 
massless boson and massless fermion, respectively and belonging to the space 

time chiral superfield with positive chirality) the r-sector of the vertex operators 

are the following: 

. _T_ 
(VB)-I = exp(-+)$j exp(ilc,Xp) 

;. 

untwistedsector (4.4 

(VB)-~ = exp(-4) n oisi exp(ikrX’l) twisted sector (44 
i 
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i 

(vF)-l/2 = exP(-d/2)U neXp(-(fii),/2)@ exp(ikPXP) untwisted sector 

i 
,;‘ 

(5.4 

. 

(vF)-l/2m= exp(-$/2)u n oi eXp(--(gi)r/Z)Si eXp(ikpXp) twisted sector 
i 

(5-b) 

with /..L, i, 2 defined as before and u referring to the spinor of the four uncompact- 

ified dimensions. The bosonic twist fields 0; and fermionic twist fields si take 

care of the emission of the massless state from the propagating string with the 

twisted boundary conditions for,the bosonic Xi and the fermionic tii coordinates, 

respectivelyP Fermionic fields are presented in terms of the three bosonic U(l),. 

charges: 
- 

- 

$J =exp [i(iij)l] 

sj =exp [ikj/N(fij)r] . 

(6-a) 

(64 

---.- . 
- 

The three separate charges (Hi),. should satisfy the constraint that H, = Cj (Hj)+[ 

= Cj kj/N = 1. 

The calculation of parameters of the effective superpotential in a particular 

theory reduces to the study of the corresponding amplitude of the massless states 
- 

emitted from the string propagating in this particular background. It is most 

convenient to calculate ““’ the following Yukawa-type n-point function in the 

orbifold background: 

A = (VFJCFJB~ . . . VB,,,-,,) . - (7) ; 

--- L. 

Here VF; and Vg; denote the vertices for the emission of the massless fermionic 
- /* 

and bosonic modes, respectively (see eqs. (4-6)). This amplitude enables one 
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to probe the parameters of the superpotential directly, unlike the amplitude for 

17 
,c- n-kosons. 

. 
With the explicit form of the vertices (4,5,1), one can then evaluate the 

a-mplitudes in the particular background which must obey selection rules that 

the total 4 charge equals -2 and (Hi), charges should be separately conserved. 

It has been shownlO’ll that in the amplitudes (7) which probe the terms of 

the superpotential, only the terms of (V B o with H, = 0 contribute, i.e. only ) 

terms proportional to dXi@ survive in such amplitudes in order to conserve the 

total H, charge.‘* Note that for V- 1/2, V-1; H, = -l/2,1, respectively. Then A 

assumes the following form: 

A = (V-1/2V4/2V-~V~. . . Vo) 0; @Xi,. . .),+ . . . . . . . (8) 

For the nonrenormalizable terms, i.e. n 2 4, the amplitude (8) has n - 3 1 1 

vertices in the O-picture and it is thus proportional to at least one power of d,X 

evaluated in the presence of the twist fields lg uJ. This part of the amplitude can 

be evaluated7 by separating the classical and the quantum part of the solution 

for ~X’S. Namely: 
- 

(&Z.. .)aJl...oJn = zqu C &-&~. . . e-S”‘, 
~*&I 

(9) 

_ _P_ 

where a,X,l denotes the classical solution for d,X in the presence of.the twist 

fields oJ, SC1 = s d2z (a,Xc$~~,~ + c~~X~$,X~~) and Z,, is the quantum part 
L. 

of the twist correlation function independent of the size of the compactified space. 

Note that in (9) th ere are no factors proportional to a,X,,, since (a,X,,) = 0. 
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The form of aX,l’s is determined7 as follows?o 

.-- 
L-M-l M-l 

. a,X,l(z) = C aiwk(z) &X,,(Z) = 1 lAdjN-K(z) 

i=l j=l 

L-M-l M-l (10) 

aEX&) = c a%&(z) &X&) = c bh&-K(z). 

i=l j=l 

Here L is the number of twist fields oJ, UK and ~JJN--K are determined by 

the operator product expansion 7 of dX with the twist fields. E.g. w;(z) = 

ziml l-JjL_l(~ - zj)-(l-k”N) with Cf=, kj/N = A4 and M = 1,. . . , L - 1, and 

similarly for w~V-~ (z). The condition on 5’s arises from the point group se- 

lection rules, i.e. ZN symmetry of interactions. The coefficients ai (ai) and bj 

(pi) are a particular linear combination of the coset vectors v (ti) which belong 
N N 

to a class of lattice vectors. They are determined by the global monodromy 

- 

7,21 
conditions; i.e. by choosing L - 2 independent “closed loops” 21 ri around 

which X (X) q ac uires no phase,’ but it may be translated by particular coset 

---.- . 
c 

vectors which depend on the type of twist fields which are encircled by the in- 

dependent closed loops ri. Note that for the symmetric orbifold, i.e. when the 

right- and the left-moving internal coordinates are rotated in the same way, one 

-__ 
sees. that U& (wLeK) = ~2% (O$-,) as well as ai (ti) = ii* (bi*). So S,l as- 

sumes the form, Cii, ainz$&’ + Cjj, bing’,@’ where n$ G s d2zWki;r$ and 

n ii’ N-K = $d2zWjN-K&-K are entries of strictly positive definite matrices R 
“K 

and R 
“N-K’ 

respectively.22 This in turn implies: 

_ _z. 

--- S,l = 0 _ ai E 0 and bi E 0. L. (11) - 

In this case also all aX,r’s are identically equal to zero (see eq. (10)). 
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Using (10) one sees that in the amplitude (9) the only terms that survive are 

exponentially damped, i.e. o( I~ll’+‘e 
-Ivl”O(l) 

N .-- 5 (R/&?)“-3e-R2/“‘o(1) with 

. n > 3. 

For this ezact string tree level result we needed only the (0,2) worldsheet 

supersymmetry, thus the result is valid not only for all the (0,2) Abelian as 

well as (2,2) Abelian orbifolds but also for the Calabi-Yau manifolds obtained 

by blowing-up the (2,2) Abelian orbifolds. However, the above conclusion need 

not apply to the asymmetric orbifolds.3’5 In this case the global monodromy 

condition may be different for the l- and the r-moving sectors. Therefore one 

can in principle satisfy the constraint S,l = 0, but a,X,l # 0 thus making the 

amplitude (9) for the nonrenormalizable terms not to be exponentially damped. 

- 

- 
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