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Abstract: Pepper is vulnerable to soil-borne fungal pathogens such as Rhizoctonia solani and Fusar-
ium oxysporum. The potential of beneficial rhizosphere microorganisms to control R. solani and
F. oxysporum f.sp. capsici was evaluated in pepper plants. Paenibacillus polymyxa and Trichoderma lon-
gibrachiatum were isolated from rhizospheric soil samples of healthy pepper plants. In vitro, both
isolates caused clear reductions in the radial growth of root rot and wilt pathogens. Scanning electron
microscopy displayed lysis and abnormal shape of the pathogens in dual cultures with P. polymyxa
and T. longibrachiatum. The incidence and severity of root rot and wilt diseases were significantly
reduced in pepper plants treated with the growth-promoting fungi (PGPF isolates; Fusarium equiseti
GF19-1, Fusarium equiseti GF18-3, and Phoma sp. GS8-3), P. polymyxa, or T. longibrachiatum in compari-
son to the control. Moreover, the induction treatments led to increased pepper growth compared with
their control. The defense related gene (CaPR4) expression was shown to be significantly higher in
the treated plants than in the control plants. In conclusion, the antagonistic isolates (P. polymyxa and
T. longibrachiatum) and PGPF isolates have a clear impact on the prevention of root rot and wilt dis-
eases in pepper plants incited by R. solani and F. oxysporum f.sp. capsici. The expression of the CaPR4
gene added to the evidence that PGPF isolates generate systemic resistance to pathogen infections.

Keywords: Fusarium oxysporum; Rhizoctonia solani; plant growth promoting fungi; pepper; Trichoderma
longibrachiatum; Paenibacillus polymyxa

1. Introduction

Pepper (Capsicum annuum L.) is a commonly cultivated crop, from the family Solanaceae,
in Egypt and all over the world. In agricultural production, soil-borne pathogens are the
main problems causing reductions in crop yield and quality. The most dreaded diseases
of vegetables are root rot, damping-off, charcoal rot, and wilt caused by Rhizoctonia solani,
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Alternaria solani, F. oxysporum f.sp. capsici, Sclerotium rolfsii, Macrophomina phaseolina, and
Pythium spp. [1]. Pepper is susceptible to several soil-borne pathogenic fungi, causing
severe plant death and large losses all over the world [2]. However, Fusarium wilt is known
to be one of the most important devastating and harmful diseases affecting pepper plants.
Pre- and post-emergence damping-off, root rot, wire stem, seed decay, and hypocotyl or tap
root with necrotic spots, all of these symptoms are caused by R. solani at multiple growth
stages [3]. F. oxysporum and R. solani were the most common isolates from root-rooted
and wilted pepper plants. Pathogenicity tests on the isolated pathogens from the infected
pepper plants demonstrated that plants were infected with F. oxysporum f.sp. capsici and R.
solani [4]. Likewise, plants infected with F. oxysporum f.sp. capsici showed damping-off and
vascular wilt symptoms [5].

Biological control could be a successful strategy for managing diseases and feasible
pepper production. Biocontrol agents (BCAs) control plant pathogens through several
mechanisms, such as fungistasis, antibiosis, hyperparasitism, induced systemic resistance,
and modification of the rhizosphere [6]. Plant growth-promoting fungi (PGPF) are a
group of non-pathogenic soil-inhabiting fungi that improve several growth characters after
treatments in numerous plants [6,7]. Typically, PGPF are useful for the management of
soil-borne fungi [5]. Beneficial bacterial and fungal isolates (Pseudomonas fluorescens, Bacillus
subtilis, Fusarium equiseti, Penicillium simplicissmum, Trichoderma viride, and T. harzianum)
were effective in soil-borne disease control and enhancement of plant growth [2,5,6]. The
non-pathogenic isolates of F. moniliforme, F. oxysporum, F. solani, and F. merismoides reduced
wilt incidence in tomato [8].

Pathogen infection is associated with induced genes encoding pathogenesis-related
(PR) proteins. Plants have evolved a variety of defensive mechanisms to restrict pathogen
attack, including biochemical, physiological, molecular, and cellular processes and barriers,
as well as inducible defense response [5–7,9]. In PGPF treated onion plants, accumulation of
peroxidase and polyphenol oxidase were stimulated in comparison to the control infected
with Sclerotium cepivorum. Additionally, exalted expressions of defense-related genes, PR1
and PR2, have been described in plants treated with PGPF [9]. Various defense mechanisms
against pathogen infection were explored in chili plants [10]. The CaChi2 gene was involved
in resistance to F. oxysporum f.sp. capsici in chili plants. The objective of this research was to
test the efficiency of certain bioagents in controlling pepper root rot and wilt diseases under
greenhouse conditions. Additionally, the activities of defense enzymes and expression of
defense genes were evaluated.

2. Materials and Methods
2.1. Isolation of the Causal Pathogens and the Rhizosphere Microorganisms

Root samples of diseased pepper plants were isolated and identified in our previous
study [4]. Samples of pepper plants infected with the pathogens were gathered from
several Egyptian governorates, cleaned with tap water, and sterilized by soaking them in
5% sodium hypochlorite for 2 min before being rinsed with sterile water. Potato dextrose
agar medium (PDA) was used for the incubation of thin slices in Petri plates for five days
at 26 ◦C. The hyphal tips of each of the newly emerging fungus were transferred to PDA
plates where they were purified based on morphological and molecular characteristics. The
isolates Fusarium equiseti GF19-1, F. equiseti GF18-3, and Phoma sp. GS8-3 were used against
Bean yellow mosaic virus [11]. The suppression effects of these isolates were tested and
compared with the efficiency of new and novel bioagents against R. solani and F. oxysporum
f.sp. capsici.

Several bioagents, isolated from the rhizosphere of healthy pepper roots, were gath-
ered from different locations, i.e., Kafr El-Sheikh, El-Behira, North Sinai, and Alexandria
governorates. The serial dilution method was utilized for isolation. Identification of bac-
terial isolates was carried out depending on cultural, morphological, and biochemical
properties [12], while fungal isolates were identified following the methods stated by Melo
and Faull [13]. Moreover, 16S rRNA and internal transcribed spacer (ITS) sequencing were
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utilized for molecular identification. DNA was extracted by using the protocol of GeneJet
genomic DNA purification Kit (Thermo K0721) as described by Elsharkawy and El-Sawy
(2019). PCR was performed using the primer F: AGA GTT TGA TCC TGG CTC AG, R:
GGT TAC CTT GTT ACG ACT T, Maxima Hot Start PCR Master Mix (Thermo Fisher Scien-
tific, Waltham, MA USA) (Thermo K1051) and GeneJET™ PCR Purification Kit (Thermo
Fisher Scientific, Waltham, MA USA) (Thermo K0701) following manufacturer protocol.
Sequencing was done using ABI 3730xl DNA sequencer as described by Elsharkawy and
El-Sawy [12].

2.2. Effect of Bacterial and Fungal Antagonists on Root Rot and Wilt Pathogens In Vitro

For antagonistic bacterial isolates, PDA plates were inoculated in the center with agar
discs (5 mm) bearing mycelium of 7-days old cultures of R. solani (R) and F. oxysporum
f.sp. capsici (F). Plates were concurrently inoculated by bacteria (four isolates per dish).
Non-inoculated plates served as control. Plates were kept at 19–22 ◦C until the control
treatment was fully covered with PDA. The diameter of inhibition zone was measured, and
the relative power of antibiosis (RPA) was determined using the formula: RPA = Z/C [14].
Z: The diameter of the inhibition zone. C: The diameter of spotted antagonistic isolate.

For fungal antagonists, the dual culture technique was used for testing the antagonistic
activity of fungal isolates. PDA plates were inoculated with discs (5 mm) of the pathogenic
fungi (one-week old cultures), and on the opposite side, the discs of the antagonistic fungi
were placed. Plates containing the pathogens alone have been considered as control. Plates
were kept at 18–20 ◦C until the full growth in control plates. The degree of antagonisms
was determined as elucidated by Bell et al. [15,16].

2.3. Microscopic Examination

Scanning electron microscopy (SEM) has been utilized to evaluate the effects of Paeni-
bacillus polymyxa and Trichoderma longibrachiatum (the most effective bio-agents in the exper-
iments compared with other bioagents in vitro) on the growth of F. oxysporum f.sp. capsici
and R. solani [12]. The samples were immersed for fixation in a modified Karnovsky [17]
solution (2.5% buffered glutaraldehyde +2% paraformaldehyde in 0.1 M sodium phosphate
buffer pH 7.4). The tissues have been incubated overnight at 4 ◦C followed by washing
three times in 0.1 M sodium phosphate buffer and 0.1 M sucrose. The tissues were post-
fixed in 2% sodium phosphate with osmium tetroxide pH 7.4 for 90 min. Sodium phosphate
buffer pH 7.4 (0.1 M) was used for washing the samples for three times. Serial dilutions of
ethanol were utilized for the dehydration of samples. The samples were put in a critical
point drying and specimens were coated with gold-palladium membranes and observed in
a Jeol JSM-6510L.V SEM. The microscope was operated at 30 KV in EM Unit, Mansoura
University, Egypt.

2.4. Effect of Fungal and Bacterial Isolates on Wilt and Root Rot Diseases under Greenhouse Conditions
2.4.1. Preparation of Bacterial Inoculum

Inoculum of the antagonistic isolate was prepared by growing on nutrient broth media
in conical flasks (500 mL) at 28 ◦C for 5 days using shaking incubator (100 rpm). Cell
suspension was diluted and adjusted to 108 cfu/mL of P. polymyxa.

2.4.2. Preparation of Fungal Inoculum

Inocula of the isolates T. longibrachiatum, F. equiseti GF19-1, F. equiseti GF18-3, and
Phoma sp. GS8-3 were prepared by growing them on potato dextrose broth medium (PDB)
and incubated at 28–30 ◦C for 10 days. Spore suspensions of the isolates were counted and
adjusted to 2 × 106 spore mL−1 [18].

2.4.3. Plant Growth Conditions

Pot experiments were carried out during two consecutive seasons for studying the
effect of the five isolates on root-rot and wilt diseases of pepper. Plastic pots (24 cm in



Life 2022, 12, 587 4 of 15

diameter) were filled with autoclave sterilized sandy loam soil infested with one of the two
pathogens, F. oxysporum f.sp. capsici or R. solani, at the rate of 2% (w/w, inoculum/soil).
Inoculum of each pathogen was mixed separately with soil. Infested pots were irrigated
and kept for 5 days before transplanting [4]. Pots were planted with pepper seedlings
(3 seedlings per pot).

2.4.4. Induction Treatments

a-Seed treatment

Pepper seeds were treated by soaking in 10 mL of the bacterial suspension (108 cfu/mL)
or fungal spore suspension (2 × 106 spore/mL) for 2 h before planting in seedling trays [19].
Seeds were air-dried in sterile petri plates. Three seeds were sown in each well of the tray.
Untreated pepper seeds were utilized as a control.

b-Seedling treatment

A seedling tray was filled with potting soil and sown with sterilized pepper seeds
(using 5% sodium hypochlorite). The 19-d-old seedlings, raised in the tray, were soaked in
the suspension of each isolate for 2 h and transferred to small pots (5 cm in diameter) filled
with the potting soil. Twenty days later, the seedlings were transplanted in pots artificially
infested with the pathogen (2% w/w). As a control treatment, autoclaved PDB was used
instead of bioagent suspensions.

2.4.5. Disease Assessment

Survived seedlings were removed, washed, and scored for R. solani as described
by O’Sullivan and Kavanagh [20]. For the assessment of Fusarium wilt disease severity,
foliar symptoms were evaluated as explained by Horinouchi et al. [5]. Discoloration
severity of vascular tissues was assessed as described by Horinouchi et al. [5]. Plant growth
parameters such as plant height, number of leaves, and shoot (fresh and dry) weight were
determined [6].

2.4.6. Assessment of Defense Enzymes and Total Phenol Contents

Using a liquid nitrogen-cooled mortar and pestle, 1 g of freshly inoculated pepper
leaves (3 days after inoculation) were crushed into powder. Subsequently, the obtained
powder was macerated for 30 s and homogenized with sodium phosphate buffer (3 mL,
pH 6.8, 0.01 M). The filtrates were centrifuged (15 min, 6000 rpm, 4 ◦C) after filtering the
triturated tissues through four layers of cheese cloth. A sample of the clear supernatant
was collected for enzyme extraction.

Peroxidase and polyphenol oxidase activities in the collected samples were estimated
(min−1 g−1) by spectrophotometric analysis [9]. Estimation of total phenol contents (ex-
pressed as milligram per gram of sample) was determined [21].

2.4.7. Molecular Investigation of Pathogenesis-Related Genes Expression

Leaves were harvested at 2 days after pathogen inoculation. RNA Purification Kit
(Thermo Fisher Scientific, Waltham, MA USA) was used to extract RNA. The extracted
RNA was converted to complementary DNA (cDNA) using revert Aid H minus reverse
transcriptase. Real-time PCR with SYBR Green was used to measure the expression of
mRNAs of the target gene (CaPR4, a gene associated with defense response and cell death),
with CaActin as an internal reference as described by Elsharkawy and El-Khateeb [9].

2.4.8. Re-Isolation Frequency

At 7 weeks after planting, root colonization of pepper plants with PGPF isolates was
assessed for both PGPF and control treatments. The roots were picked from random plants
and cleaned three times using sterile-distilled water before drying with a paper towel.
Afterwards, they were sliced into 1-cm pieces and placed onto PDA. The frequency of PGPF
was assessed as described by Elsharkawy et al. [6].
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2.5. Statistical Analysis

The experimental data from trials were combined for analysis of variance. The ex-
periments had been done three times. Means were separated by Fisher’s LSD test using
XLSTAT Software (Addinosoft).

3. Results
3.1. Isolation and Screening of Fungal and Bacterial Antagonists In Vitro

Five fungal isolates of Trichoderma spp. (T1, T2, T3, T4, and T5) as well as 32 bacterial
isolates were isolated from different rhizosphere samples of healthy pepper plants. The iso-
late T. longibrachiatum (T1) proved to have the highest antagonistic effect on the pathogens
(Figure 1A,B and Table 1). Among 32 bacterial isolates, six bacterial isolates had significant
antagonistic effects on the linear growth of F. oxysporum f.sp. capsici in Petri dish (Table 2).
The highest inhibitory spectrum between the isolates was P. polymyxa (B25) (Figure 1C). Six
bacterial isolates had significant antagonistic effects on the linear growth of R. solani. The
highest inhibitory spectrum of the isolates was P. polymyxa (B25) (Figure 1D).
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Figure 1. Degree of antagonism of Trichoderma and bacteria isolates against Fusarium oxysporum
f.sp. capsici (A,C) and Rhizoctonia solani (B,D). Trichoderma longibrachiatum is T1, T. aureoviride is
T2, T. hamatum is T3, T. harzianum 1 is T4, T. harzianum 2 is T5, B. subtilis is B17, B. subtilis is B9,
B. thuringiensis is B11, B. subtilis is B12, B. subtilis is B31, and Paenibacillus polymyxa is B25.
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Table 1. Degree of antagonism of Trichoderma isolates against the linear growth of the pathogens
Fusarium oxysporum f.sp. capsici and Rhizoctonia solani.

Antagonistic Isolates Relative Power of Antibiosis
(RPA) against F. oxysporum RPA against R. solani

Control 0.000 g * 0.000 h
Paenibacillus polymyxa (B25) 1.663 a 1.260 a

Bacillus subtilis (B17) 0.933 c 0.780 c
Bacillus subtilis (B9) 0.960 b 0.098 g

Bacillus thuringiensis (B11) 0.910 d 0.860 b
Bacillus subtilis (B12) 0.886 e 0.150 f
Bacillus subtilis (B31) 0.216 f 0.390 e

* According to Fisher’s LSD, different letters denote significant differences.

Table 2. Effect of different bacterial antagonists on radial growth of the pathogens Fusarium oxysporum
f.sp. capsici and Rhizoctonia solani.

Trichoderma Isolate Code No. Values of Antibiosis against
F. oxysporum

Values of Antibiosis against
R. solani

Trichoderma longibrachiatum (T1) 1 1
Trichoderma aureoviride (T2) 2 2
Trichoderma hamatum (T3) 2 2

Trichoderma harzianum 1 (T4) 3 2
Trichoderma harzianum 2 (T5) 3 3

3.2. Identification of the Most Efficient Fungal and Bacterial Isolates

The phylogenetic tree exhibited that the Trichoderma isolate T1 was strongly related
to the species longibrachiatum. It showed the highest sequence similarities with T. longi-
brachiatum (GenBank accession number OM666052) (Figure 2). On the other hand, the
phylogenetic tree showed the relation between Paenibacillus isolate and the related bacterial
species (Figure 3). It can be clearly seen that the Paenibacillus isolate B25 was highly related
to the species polymyxa. It showed the highest sequence similarities with P. polymyxa strain
B25 (GenBank accession number OM666057).
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3.3. Scanning Electron Microscopy (SEM)

The SEM examination showed a complete fungal growth of F. oxysporum f.sp. capsici
(Figure 4A,B). Full coalescence was developed from the mycelia in their ideal form in
control. However, the dual culture with T. longibrachiatum showed morphological anomaly
and coiling of F. oxysporum f.sp. capsici (Figure 4C,D). At the same time, P. polymyxa
demonstrated morphological abnormality such as degradation and lysis in the fungal
mycelia (Figure 4E,F).
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Figure 4. Scanning electron microscopy (SEM) for Fusarium oxysporum f.sp. capsici. The growth of
wilt pathogen in control (A,B), dual culture with Trichoderma longibrachiatum (C,D), and dual culture
with Paenibacillus polymyxa (E,F).

Typical morphological characteristics of R. solani was observed using SEM
(Figure 5A,B). In contrast, overgrowth and lysis were observed in dual cultures of R.
solani and T. longibrachiatum (Figure 5C,D), while lysis and atrophy were observed in dual
cultures of R. solani and P. polymyxa (Figure 5E,F).
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Figure 5. Scanning electron microscopy (SEM) for R. solani. The growth characters of root rot
pathogen in control (A,B), dual culture with Trichoderma longibrachiatum (C,D), and dual culture with
Paenibacillus polymyxa (E,F).

3.4. Effect of Antagonistic and PGPF Isolates on F. oxysporum f.sp. capsici and R. solani under
Greenhouse Conditions

Table 3 showed that all the examined bioagents significantly reduced disease incidence
and severity of wilt and root rot in comparison to their control as a result of seed and
seedlings treatments. The most successful treatment for Fusarium wilt severity was GF19-1
as a seedling treatment, which gave disease severity 27.8% and 25.0% in the first and
second seasons, respectively. The most helpful treatments for disease incidence caused by
F. oxysporum f.sp. capsici were GF19-1 and GF18-3 as seedling treatments, which gave the
same disease incidence in both seasons (27.8%). However, the most successful treatment
on R. solani was GF18-3 as seedling treatment, which gave a disease severity percentage
of 27.77% in both seasons. Likewise, the most useful treatment for disease incidence of
Rhizoctonia root rot was GF18-3 as seedling treatment, which gave a disease incidence of
27.8%. Discoloration severity was estimated at the end of the experiment. Discoloration
severity was reduced in the treatments with GF19-1 and GF18-3 as seedling treatments
recording 14.8% in the second season (Table 4).



Life 2022, 12, 587 10 of 15

Table 3. Effect of the tested bioagents on the severity (%) of wilt/root rot of pepper plants caused by
Fusarium oxysporum f.sp. capsici and R. solani under greenhouse conditions.

Treatment F. oxysporum f.sp. capsici R. solani

Season1 (S1) Season2 (S2) Season1 Season2

Control 90.27 a * 83.32 a 92.58 a 87.02 a
GF 19-1 (SS) 31.94 bcd 29.16 bcde 35.18 bc 35.18 bc
GF 18-3 (SS) 31.94 bcd 29.16 bcde 33.33 c 33.33 bc
GS 8-3 (SS) 34.71 b 33.33 b 35.18 bc 35.18 bc

GF 19-1 (SL) 27.77 e 25.00 e 33.33 c 31.47 cd
GF 18-3 (SL) 29.16 de 26.38 de 27.77 d 27.77 d
GS 8-3 (SL) 33.33 bc 30.55 bcd 33.33 c 33.33 bc

P. polymyxa (SS) 33.33 bc 30.55 bcd 38.88 b 37.03 b
T. longibrachiatum (SS) 31.94 bcd 31.94 bc 33.33 c 35.18 bc

P. polymyxa (SL) 29.16 de 27.77 cde 33.33 c 33.33 bc
T. longibrachiatum (SL) 30.55 cde 29.16 bcde 31.47 cd 35.17 bc

(SS) = seed soaking, (SL) = seedling treatment, GF19-1 = Fusarium equiseti GF19-1, GF18-3 = Fusarium equiseti
GF18-3, GS8-3 = Phoma sp. GS8-3, P. polymyxa = Paenibacillus polymyxa, T. longibrachiatum = Trichoderma
longibrachiatum. * According to Fisher’s LSD, different letters denote significant differences.

Table 4. Effect of different bioagent on discoloration severity (%) of vascular bundles in roots
of pepper plants infected with the fungus Fusarium oxysporum f.sp. capsici as an indicator of the
disease severity.

Treatment Discoloration Severity %

Season1 Season2

Control 74.06 a * 77.77 a
GF19-1 (SS) 22.22 bc 18.51 b

GF-3 (SS) 22.21 bc 18.51 b
GS 8-3 (SS) 22.22 bc 22.22 b
GF19-1 (SL) 14.81 c 14.81 b
GF18-3 (SL) 14.81 c 18.51 b
GS 8-3 (SL) 22.22 bc 18.51 b

P. polymyxa (SS) 22.22 bc 22.22 b
T. longibrachiatum (SS) 25.92 b 22.22 b

P. polymyxa (SL) 18.51 bc 18.51 b
T. longibrachiatum (SL) 22.22 bc 18.51 b

(SS) = seed soaking, (SL) = seedling treatment, GF19-1 = Fusarium equiseti GF19-1, GF18-3 = Fusarium equiseti GF18-3,
GS8-3 = Phoma sp. GS8-3, P. polymyxa = Paenibacillus polymyxa, T. longibrachiatum = Trichoderma longibrachiatum.
* According to Fisher’s LSD, different letters denote significant differences.

3.4.1. Effect of Different Bioagents on Some Plant Growth Parameters

A significant increase in plant height, number of leaves, fresh and dry weights
(g)/plant was verified due to biotic inducers. All treatments significantly improved growth
parameters in plants infected with F. oxysporum (Table 5). The most successful treatment
was GF19-1 (SL, seedling treatment) in the plant height and the number of leaves in both
seasons. The treatment with GF18-3 (SL, seedling treatment) was the best for increasing
fresh and dry weights/plant in comparison to their control in both seasons. However, in
the case of R. solani infection, the most useful treatment was GF18-3 as seedling treatment
in increasing plant height, the number of leaves, fresh and dry weights/plant compared
with untreated control in both seasons (Table 6).
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Table 5. Effect of different bioagent on some plant growth parameters of pepper plants infected with
Fusarium oxysporum f.sp. capsici under greenhouse conditions.

Treatment Plant Height (cm) No. Leaves/Plant
Shoot Weight (g)

Fresh Dry

S1 S2 S1 S2 S1 S2 S1 S2

Control 17.33 f * 15.83 e 8.66 d 8.00 d 6.10 g 6.16 g 2.03 d 2.24 f
GF 19-1 (SS) 31.33 ab 30.33 b 15.66 b 15.33 abc 9.13 c 9.16 cd 3.83 b 4.13 b
GF18-3 (SS) 30.53 bcd 29.86 bc 16.66 a 15.66 ab 10.16 b 10.36 b 4.70 a 4.83 a
GS 8-3 (SS) 28.33 cde 26.70 d 15.33 b 14.66 bc 8.90 d 8.95 d 3.86 b 4.10 b

GF 19-1 (SL) 33.33 a 32.50 a 16.66 a 16.33 a 10.33 b 10.44 b 4.83 a 4.66 a
GF 18-3 (SL) 31.00 abc 31.16 ab 15.66 b 15.33 abc 11.10 a 11.16 a 4.93 a 4.86 a
GS 8-3 (SL) 29.66 bcde 28.50 c 15.66 b 15.33 abc 9.16 c 9.22 c 3.66 b 3.74 c

P. polymyxa (SS) 28.16 de 26.16 d 14.33 c 14.33 c 7.03 ef 7.23 ef 2.93 c 3.13 e
T. longibrachiatum (SS) 27.66 e 26.00 d 15.66 b 15.33 abc 6.90 f 7.14 f 2.90 c 3.05 e

P. polymyxa (SL) 28.33 cde 25.83 d 15.33 b 14.66 bc 7.03 ef 7.27 ef 3.03 c 3.36 d
T. longibrachiatum (SL) 30.83 abcd 26.60 d 16.00 ab 15.66 ab 7.23 e 7.46 e 3.13 c 3.41 d

(SS) = seed soaking, (SL) = seedling treatment, GF19-1 = Fusarium equiseti GF19-1, GF18-3 = Fusarium equiseti GF18-
3, GS8-3 = Phoma sp. GS8-3, P. polymyxa = Paenibacillus polymyxa, T. longibrachiatum = Trichoderma longibrachiatum.
* According to Fisher’s LSD, different letters denote significant differences.

Table 6. Effect of different bioagents on some plant growth parameters of pepper plants infected with
R. solani under greenhouse conditions.

Treatment Plant Height (cm) No. Leaves/Plant
Shoot Weight (g)

Fresh Dry

S1 S2 S1 S2 S1 S2 S1 S2

Control 16.83 g * 17.33 g 8.66 e 9.00 c 5.83 g 6.16 g 1.66 f 1.80 f
GF 19-1 (SS) 28.50 c 29.00 c 14.00 bcd 15.00 b 9.66 c 9.83 cd 3.13 cd 3.43 c
GF 18-3 (SS) 28.83 c 29.33 c 15.66 ab 16.00 ab 10.66 b 10.93 b 4.16 ab 4.36 b
GS. 8-3 (SS) 26.50 de 27.83 d 13.66 cd 14.66 b 8.83 d 9.16 d 3.20 c 3.50 c
GF 19-1 (SL) 29.83 b 30.33 b 14.66 bcd 16.00 ab 10.73 b 10.90 b 4.00 b 4.33 b
GF 18-3 (SL) 32.00 a 33.00 a 16.66 a 17.33 a 11.73 a 11.80 a 4.33 a 4.76 a
GS. 8-3 (SL) 26.66 d 27.66 d 15.33 abc 15.66 ab 9.80 d 9.96 c 3.13 cd 3.26 cd

P. polymyxa (SS) 25.66 e 26.66 e 13.33 d 14.33 b 6.66 f 7.16 f 2.80 e 2.90 e
T. longibrachiatum (SS) 24.70 f 25.33 f 14.66 bcd 15.33 b 6.26f g 6.60 fg 2.76 e 2.86 e

P. polymyxa (SL) 25.66 e 27.16 de 14.66 bcd 15.66 ab 6.76 f 6.86 fg 2.83 e 2.90 e
T. longibrachiatum (SL) 26.66 d 27.33 de 15.66 ab 16.00 ab 7.80 e 8.06 e 2.90 de 3.06 de

(SS) = seed soaking, (SL) =seedling treatment, GF19-1 = Fusarium equiseti GF19-1, GF18-3 = Fusarium equiseti GF18-3,
GS8-3 = Phoma sp. GS8-3, P. polymyxa = Paenibacillus polymyxa, T. longibrachiatum = Trichoderma longibrachiatum.
* According to Fisher’s LSD, different letters denote significant differences.

3.4.2. Effect of the Biological Inducers on the Activation of Defense Enzymes

Significant differences were found in phenol, peroxidase and polyphenol oxidase
(Table 7). Application of GF19-1 as seedling treatment produced the highest enzyme values
(peroxidase and polyphenol oxidase) and total phenols in case of F. oxysporum. However,
in case of R. solani, the highest activities of peroxidase, polyphenol oxidase and total
phenols were achieved by the treatments GF19-1 and GF18-3 as seedling treatment. Control
treatment (pathogen only) showed the lowest values.



Life 2022, 12, 587 12 of 15

Table 7. Effect of different bioagents on enzyme activities and phenol contents in plants infected with
Fusarium oxysporum f.sp. capsici and Rhizoctonia solani.

Treatment Fusarium Rhizoctonia

Phenol POX PPO Phenol POX PPO

Control 0.327 i * 0.420 j 0.156 j 0.376 f 0.483 g 0.156 i
GF 19-1 (SS) 0.624 e 0.840 b 0.420 d 0.636 c 0.776 bc 0.366 e
GF 18-3 (SS) 0.683 cd 0.790 d 0.402 e 0.650 c 0.786 b 0.370 e
GS 8-3 (SS) 0.516 h 0.763 e 0.320 h 0.566 d 0.767 cd 0.346 f

GF 19-1 (SL) 0.756 a 0.860 a 0.484 a 0.696 ab 0.826 a 0.440 b
GF 18-3(SL) 0.713 b 0.826 c 0.423 c 0.713 a 0.836 a 0.460 a
GS 8-3 (SL) 0.673 d 0.743 f 0.397 f 0.516 e 0.746 d 0.383 d

P. polymyxa (SS) 0.541 g 0.544 i 0.283 i 0.576 d 0.626 f 0.313 h
T. longibrachiatum (SS) 0.673 d 0.700 h 0.373 g 0.656 c 0.753 d 0.406 c

P. polymyxa (SL) 0.584 f 0.721 g 0.420 d 0.563 d 0.656 e 0.336 g
T. longibrachiatum (SL) 0.690 c 0.822 c 0.441 b 0.686 b 0.746 d 0.403 c

(SS) = seed soaking, (SL) = seedling treatment, GF19-1 = Fusarium equiseti GF19-1, GF18-3 = Fusarium equiseti GF18-3,
GS8-3 = Phoma sp. GS8-3, P. polymyxa = Paenibacillus polymyxa, T. longibrachiatum = Trichoderma longibrachiatum.
* According to Fisher’s LSD, different letters denote significant differences.

3.4.3. Effect of Induction Treatments on the Relative Expression of PR4 Gene

Our results revealed a significant (p ≤ 0.05) increase of CaPR4 gene expression level
in treated pepper plants compared to the control. Plants treated with GS8-3 showed the
highest expression levels in the case of F. oxysporum and R. solani. In addition, plants
infected with F. oxysporum and treated with GF18-3 resulted in the lowest up-regulation of
CaPR4. However, under the infection with R. solani, treatment with GF19-1 presented the
lowest gene expression (Figure 6).
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4. Discussion

Pepper (Capsicum annuum L.) is a major commercial crop all over the world, with a
huge societal and economic impact. It is one of Egypt’s most popular vegetable crops,
cultivated either in open fields or in plastic greenhouses under a protected farming system.
Pepper plants may be infected with various pathogens, including soil-borne pathogens [22].
In the greenhouse and fields of pepper plants, many fungal isolates from the genera
Fusarium, Macrophomina, Rhizoctonia, Verticilium, Pythium, and Sclerotinia frequently cause
damping-off, root rot, and wilt diseases [23,24]. Many researchers have observed that
Fusarium wilt of pepper, caused by Fusarium spp., has resulted in significant reductions
in pepper production in many countries around the world [22]. The use of a sustainable
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disease management strategy is necessary to reduce the impact of these diseases. Biological
control is a long-term approach for disease management and healthy pepper production.
P. polymyxa and T. longibrachiatum were isolated and identified by morphological and
molecular biology techniques. Similarly, P. putida strain F1 was successfully identified
based on the sequence of 16S rDNA comparing the sequence similarities with the related
bacterial species in Gene bank [12]. In terms of antagonistic ability, the obtained findings
showed that all of the tested bio-agents could significantly decrease the linear growth
of F. oxysporum f.sp. capsici and R. solani. The results are in agreement with Sahii and
Khalid [25], who found that the mycelial growth of F. oxysporum was hampered as a
response to the antagonistic effect of Trichoderma sp. The R. solani mycelial diameter, as
well as infection with root rot and damping-off diseases, were substantially decreased by
T. harzianum isolate [26].

Many researchers have been interested in biological control mechanisms in recent
decades. Pathogens are directly challenged by bioagents via hyperparasitism, antibiotic
synthesis, and lytic enzyme production, as well as indirectly through competition for space
and nutrients, developing systemic resistance, and encouraging plant development [27].
Using a scanning electron microscope, we discovered overgrowth and lysis of F. oxysporum
f.sp. capsici and R. solani in dual cultures with T. longibrachiatum, as well as morphological
anomalies such as atrophy and lysis using P. polymyxa in both fungal mycelia. Parasitism
of pathogen fungi was reported by Trichoderma species in other studies [13]. Scanning
electron microscopic analysis revealed that T. harzianum strains antagonist with R. solani [13].
T. harzianum Th-9 isolate overgrew and coiled around the R. solani cells, invading and
damaging the host hypha. Through the mechanical activity, the host cells are penetrated.
Secretion of antifungal compounds has been found to prevent the growth of different plant
pathogens [7].

Plant growth promoting fungi (PGPF) is a kind of saprophyte that lives in the soil and
promotes plant development. As a consequence of seed and seedling treatments, all of
the evaluated biocontrol agents substantially decreased the severity of Fusarium wilt and
root rot caused by F. oxysporum f.sp. capsici and R. solani compared to the control treatment.
In several plants–PGPF combinations, colonization of roots with PGPF leads to a state
of resistance in the whole plant known as induced systemic resistance. ISR in different
plant species was introduced such as Arabidopsis thaliana, cucumber, and tobacco by PGPF
application [6]. Curiously, PGPF isolates of Penicillium simplicissmum GP17-2, Trichoderma
asperellum SKT-1, Phoma sp. GS 8-3, F. equiseti GF18-3, and Phoma sp. GS8-1 were highly
effective in reducing the disease severity of white rot disease of onions [9]. In this study, the
protective method of both types of biocontrol agents as individual treatments resulted in a
substantial decrease in the disease. Cucua et al. [28] evaluated the efficacy of two biological
control agents (BCAs) in suppressing F. oxysporum f.sp. lycopersici (Bacillus subtilis QST 713
and Trichoderma spp. TW2). Additionally, P. polymyxa NSY50 application on cucumber
plants infected with F. oxysporum successfully decreased the incidence of Fusarium wilt [29].
In this study, the increase of phenolics and PR-Proteins such as peroxidase (PO), and
polyphenoloxidase (PPO) inside pepper roots may have helped to limit F. oxyporum and R.
solani infections. The accumulation levels of defense enzymes and the transcription levels of
PR1 and PR5 genes were increased in cucumber plants treated with T. atroviride (TRS25) and
led to better resistance against R. solani [30]. The fact that induction treatments substantially
increased CaPR4 gene expression suggests that this gene is involved in systemic resistance
to F. oxysporum and R. solani. JA and ET activated PR4, PR5, and PDF1.2 in a synergistic
manner [6]. Induced systemic resistance mediated by P. simplicisimum GP17-2 in Arabidopsis
and tobacco enhanced the expression of different pathogenesis-related genes [6].

All treatments significantly enhanced growth characters in plants relative to the control
infected with F. oxysporum and R. solani. PGPF has been shown to improve plant growth and
disease control [6]. Several studies showed that Trichoderma isolates were considered proper
biofertilizers, since they could improve the capacity of nutrients uptake in plants and the
resistance toward plant pathogen [9]. Furthermore, P. polymyxa NMA1017 promoted plant
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growth through nitrogen fixation and siderophore synthesis, which led to increased crop
production [31].

5. Conclusions

There is a growing request for safe biocontrol agents to improve management strategies
of soil-borne diseases to reduce the poisonous effects of pesticides. The results indicated
that the antagonistic isolates from healthy pepper plants and PGPF isolates can effectively
control the pathogens, F. oxysporum f.sp. capsici and R. solani, as well as increasing growth
parameters in pepper plants. The activities of oxidative enzymes (Peroxidase and polyphe-
nol oxidase), phenol contents, and the expression levels of CaPR4 were stimulated in the
treated pepper plants, leading to induced resistance against F. oxysporum f.sp. capsici or R.
solani. The ability to use these treatments to manage root rot and wilt diseases of pepper
was already improved as a result of increased pepper growth.
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