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Suppression of spin rectification 
effects in spin pumping 
experiments
Sergi Martin‑Rio, Carlos Frontera, Alberto Pomar, Lluis Balcells & Benjamin Martinez*

Spin pumping (SP) is a well‑established method to generate pure spin currents allowing efficient spin 
injection into metals and semiconductors avoiding the problem of impedance mismatch. However, 
to disentangle pure spin currents from parasitic effects due to spin rectification effects (SRE) is a 
difficult task that is seriously hampering further developments. Here we propose a simple method 
that allows suppressing SRE contribution to inverse spin Hall effect (ISHE) voltage signal avoiding long 
and tedious angle‑dependent measurements. We show an experimental study in the well‑known Py/
Pt system by using a coplanar waveguide (CPW). Results obtained demonstrate that the sign and size 
of the measured transverse voltage signal depends on the width of the sample along the CPW active 
line. A progressive reduction of this width evidences that SRE contribution to the measured transverse 
voltage signal becomes negligibly small for sample width below 200 μm. A numerical solution of the 
Maxwell equations in the CPW‑sample setup, by using the Landau‑Lifshitz equation with the Gilbert 
damping term (LLG) as the constitutive equation of the media, and with the proper set of boundary 
conditions, confirms the obtained experimental results.

Spin pumping (SP) is a well-established method to generate pure spin currents i.e., a pure spin current is emitted 
at the interface between a ferromagnet (FM) with a precessing magnetization and a normal-metal (NM)1–3. SP 
allows efficient spin injection into metals and semiconductors avoiding the problem of impedance  mismatch4. 
Since SP implies the opening of a new way for dissipating angular momentum it is easily detectable by the 
increase of the magnetic damping, α, i.e. through the increase of the ferromagnetic resonance (FMR)  linewidth5. 
However, the effective spin current injected into the NM may be substantially reduced, or even fully suppressed, 
due to interfacial loss of spin  coherence6, thus a more reliable proof of effective spin injection into the NM is 
obtained through inverse spin Hall effect (ISHE), i.e. a pure spin current generates a charge current due to the 
spin–orbit  interaction7. The interconversion between charge current and spin current is completed by spin Hall 
effect (SHE) that is the reciprocal effect to  ISHE8. ISHE enables an electrical detection of a pure spin current 
according to the  expression7: JC = (2qe/ħ)θSHJS × σ, being JS the spin current, ħ the reduced Planck’s constant, qe 
the electron charge, σ is the spin polarization vector and θSH is the Hall angle, which quantifies the conversion 
efficiency between charge and spin currents. However, the voltage signal detected in FMR experiments on 
metallic FM/NM devices may also have contributions coming from spin rectification effects (SRE)9. SRE appear 
due to the nonlinear synchronous coupling between an oscillating eddy current, induced by the magnetic field 
of the microwave, and an oscillating resistance in magnetic materials giving place to the appearance of a dc 
voltage/current9. Therefore, SRE enable the study of magnetization dynamics using electrical measurements in 
a broad range of magnetic materials including metals, semiconductors and insulators. SRE are also behind the 
recent development of techniques such as Spin Torque ferromagnetic resonance (ST-FMR) that allow a complete 
characterization of dynamic magnetic properties, such as α and θSH

10,11. Thermoelectric effects, i.e. Seebeck and 
Nernst effects, may also contribute to generate an electromotive  force12. In a FM/NM heterostructure SRE are 
typically integrated by anisotropic magnetoresistance (AMR) and anomalous Hall effect (AHE) due to spin–orbit 
coupling in the FM  layer13. Separating the voltage generated by ISHE from parasitic contributions due to SRE in 
spin pumping experiments is a complicated work that has been tackled by several authors in the past few years 
but is still not fully resolved. Pioneer methods for separating ISHE and SRE were based on line shape separation 
assuming that the symmetric contribution is coming uniquely from  ISHE14. Nevertheless, SRE also contribute 
to the symmetric part of the transverse voltage  signal15. A more elaborated analysis of line shape was proposed 
by Mosendz et al.16,17. However, its applicability is severely limited due to the specific requirements of the experi-
mental setup and the experimental conditions. A separation method based on the different angular and field 
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symmetries of ISHE and SRE was proposed by Bai et al.18 but a very precise control of the field orientation and a 
high-power microwave source are required, thus limiting its practical application. Other separation methods rely 
on the different magnetic field orientation dependence of ISHE and SRE  signals19–22 however, they require a long 
and tedious measurement process. The different dependencies on the thicknesses of the FM and NM layers has 
been used to disentangle ISHE and SRE contribution to the measured voltage  signal23. Obviously, this method 
requires a large number of samples and measurements, as well as a proper account of the thickness dependence 
of different parameters, such as the resistivity of the FM or the spin mixing conductance. Separation of both 
signals by using the different behavior of ISHE and SRE under the inversion of the direction of spin injection 
has also been  reported24,25. The corresponding signals are obtained simply by adding and subtracting the voltage 
signals measured by inverting the spin injection direction. However, reversing the stacking order in the bilayer 
may severely affect the quality of the interfaces and therefore, modify the effective spin injection. Thus, the direct 
addition/subtraction procedure may be affected by this experimental error. An alternative procedure, consist-
ing of flipping the whole sample covered by a pristine substrate on top, to ensure as much as possible similar 
experimental conditions in both measurements, has also been  proposed23. Nevertheless, this requires to make 
substrates on both sides thinner to guarantee a good signal to noise ratio.

In this work we propose a new method to suppress the SRE contribution leading to a straightforward meas-
urement of the ISHE transverse voltage signal in SP experiments in FM/NM bilayers. This method can be easily 
implemented and allows a full suppression of the SRE signal in SP experiments in coplanar waveguide (CPW) 
and microstrip experimental setups.

Results
FMR and transverse voltage signals measurements have been determined simultaneously. At the resonance 
frequency an absorption Lorentzian-shaped peak appears in the transmission coefficient of the CPW, S, whose 
derivative is described by the  expression26:

being kS and kAS the symmetric and antisymmetric FMR constants and Hres and ΔH are the resonance field and 
linewidth, respectively. These two parameters are related to the magnetic features of the samples through the 
Kittel  equations27:

where f is the resonant frequency, γ = gμB/ħ is the gyromagnetic ratio (in units of GHz/T), μ0 is the vacuum 
permeability, Hres and Hk are the resonant and anisotropy fields respectively (Hk is nearly zero in magnetically 
isotropic Py films), MS is the saturation magnetization of the Py film, ΔH(0) is the so-called inhomogeneous line 
broadening and α is the Gilbert damping  constant28–30.

The values obtained for both MS and α in Py alone films are in good agreement with values previously reported 
(see Supplementary Information, Table S1)15,31,32. On the other hand, values of ΔH(0) are low, as expected for 
a magnetically and structurally homogeneous system. A substantial increase of the effective damping, αeff, is 
detected in Py/Pt bilayer samples which would be indicative of the existence of spin injection (see Fig. 1). The 
SP process can, therefore, be viewed as an extrinsic contribution to the Gilbert damping αeff. = α + αsp, whose 
value can be estimated from the increase of the FMR linewidth, ΔH, in samples with and without Pt  layer6,15. The 
enhancement of the magnetic damping allows also determining the effective spin-mixing conductance, g↑↓ef

6,15,33.

Being tFM the thickness of the FM layer and αPy and αPy/Pt the damping of the Py layer and of the Py/Pt bilayer 
respectively. The value obtained in our samples (tPy ~ 16 nm) is g↑↓ef  ~ (2.31 ± 0.27) ×  1019 m −2, in good agreement 
with previous values reported for Py/Pt15,34,35.

The effective spin injection into the Pt layer is detected through the transverse voltage signal generated by 
ISHE. Other potential sources, i.e. thermoelectric effects, are discarded since the temperature increase at reso-
nance is about few hundreds of mK, even at large RF  power36, thus their contribution to the final voltage signal 
is irrelevant. The voltage signal is generated by the same magnetization dynamics that governs FMR, thus the 
line shape of the voltage curves should be a  Lorentzian9:

where  VS and  VAS correspond to the symmetric and antisymmetric voltage amplitudes, respectively. The signal 
due to ISHE should only depend on the cone angle of the magnetization precession being, therefore, fully 
symmetric. However, SRE also contribute to the symmetric part of the experimental signal complicating the 
separation of both signals.
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The voltage signal corresponding to different 5 × 5  mm2 samples (see Table S1), as a function of the frequency, 
is shown in Fig. 2a. All the curves show the same shape as a function of the applied magnetic field. However, 
they have different intensities due to small differences in the absorption of the hrf field, higher resistivity of Py 
compared to Pt and/or the contribution due to ISHE.

It is also worth noticing that the measured voltage signal is negative. However, considering the electrical 
connections in our setup (see Supplementary Information. Fig. S1b), ISHE voltage signal is expected to be 

Figure 1.  Representative curves showing the dependence of the resonant frequency on the magnetic field for 
the three sets of films at room temperature (a). Frequency dependence of the absorption linewidth at room 
temperature for a Py layer compared with that of Py/Pt and Pt/Py bilayers. The increase of the damping in the 
bilayers is clearly shown (b). Sample dimensions: 5 × 5  mm2.

Figure 2.  (a) Representative transverse voltage signal for the three set of samples as a function of the applied 
magnetic field for different frequencies (GHz) as indicated in the figure. (b) Amplitude of the symmetric (full 
symbols) and antisymmetric (open symbols) components of the transverse voltage signal of each curve as a 
function of frequency. Sample dimensions: 5 × 5  mm2.
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positive in the case of Si//Py/Pt stacking since both Pt and Py have a positive Hall  angle6,12. Voltage curves in 
Fig. 2a have been analyzed by using Eq. (5) and the voltage amplitudes corresponding to the symmetric and 
antisymmetric contributions as a function of frequency are depicted in Fig. 2b. From this figure it is evident that 
the relative magnitude of the symmetric and antisymmetric voltage amplitudes is very similar for each sample 
and frequency. This result evidences that in samples with width, W, along the CPW of W = 5 mm, SRE are the 
dominant contribution to the measured transverse voltage signal. The origin of the SRE (occurring in the Py film) 
is the inductive coupling between the sample and the CPW signal line, which creates an eddy current travelling 
in the opposite direction of the CPW signal line  current25,37. Therefore, it may be reduced by laminating the 
sample in the direction of the induced current. According to this, at sufficiently short sample width, W, along 
the CPW signal line the circulating eddy current should be almost zero and therefore, SRE should vanish while 
ISHE voltage signal should be almost constant.

The dependence of the transverse voltage signal on W was measured in the three sets of samples. For that 
purpose, samples with different values of W, ranging from 2 mm to 20 μm, have been analyzed (see Table S2 in 
Supplementary information).

It is important to notice that all samples, irrespective to W, share the same magnetic properties with the 
5 × 5  mm2 original films (see Table S1). The difference in the Gilbert damping values of Py and Py/Pt bilayers is 
also maintained. This indicates that, from the magnetic point of view, Py films are not affected by the patterning 
process.

As shown in Fig. 3a the transverse voltage signal measured in Py samples is always of negative sign irrespec-
tive to W and its amplitude decreases with decreasing W. Moreover, the amplitude of both the symmetric and 

Figure 3.   Transverse voltage signal in Si//Py (a), Si//Py/Pt (b) and Si//Pt/Py (c) films with different width, W, 
as a function of the magnetic field for different frequencies (GHz) as indicated in the figure.
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antisymmetric components also decreases with increasing frequency (see Fig. 4a). It is also worth mentioning 
that both the symmetric and antisymmetric voltage amplitudes become zero at sufficiently small width, i.e. 
W ≤ 100 μm (see detail in Fig. 4d).

In the case of Py/Pt bilayers the first remarkable feature is that the sign of the voltage signal changes and 
becomes positive for W below about 200 μm (see Fig. 3b). As in the case of Py alone samples, the amplitude of 
the voltage signal decreases with decreasing W above 200 μm. However, for W below 200 μm the amplitude of 
the voltage signal becomes almost constant and fully symmetric (see Fig. 4b,e).

Finally, the stacking order of Py and Pt was inverted to take advantage of the different behavior of ISHE and 
SRE under the inversion of the spin injection  direction22,23.

In Pt/Py bilayers the transverse voltage signal at resonance is always negative (see Fig. 3c) irrespective of W. 
However, unlike the case of Py alone samples, a closer look at their symmetric and antisymmetric voltage com-
ponents reveals that while the amplitude of the antisymmetric component goes to zero with decreasing W, the 
amplitude of the symmetric component remains at a negative value (see Fig. 4c,f). Thus, results for the smaller 
W values are a mirror image of those obtained in the Si// Py/Pt samples, as expected for ISHE considering the 
inversion of the spin injection direction.

In all the cases it is observed that the intensity of the voltage signal slightly decreases on increasing the fre-
quency, which is contrary to the expected behavior since, in principle, the spin current generated by SP should 
be proportional to the precession frequency, f3. However, a slight decrease is observed due to the compensation 
between the magnetization-precession frequency and the spin current generated by a cycle of the precession, 
due to their different frequency  dependencies3,38.

Discussion
Considering that SRE are generated by a microwave eddy current, at sufficiently short W the current should be 
very small ( −→j ≈ 0 ). Therefore, SRE should vanish while ISHE voltage signal should be almost constant since it is 
not affected by the absence of 

−→
j  and no dependence on W should be observed. As a consequence, below a certain 

threshold value of W (about 200 μm) the contribution of SRE to the transverse voltage signal should be almost 
zero, as effectively observed in the case of Py alone samples (see Fig. 4a). It is worth noting that contributions 
to the transverse voltage signal due to self-induced charge current in the Py layer may also  exist39–42. However, 
studies of the temperature dependence of the self-induced transverse voltage in Py demonstrate that spin-charge 
conversion efficiency at room temperature is very  low39, in agreement with our observation of almost zero trans-
verse voltage signal once SRE contributions have been suppressed. In the Si//Py/Pt samples for large values of W 

Figure 4.  Left: Sample width dependence of the symmetric (full symbols) and antisymmetric (open symbols) 
components of the transverse voltage signal at different frequencies for Si//Py (a), Si//Py/Pt (b) and Si//Pt/Py (c) 
films. Right: Zoom of V values close to zero for Si//Py (d), Si//Py/Pt (e) and Si//Pt/Py (f) films.
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the measured voltage signal is: i) negative; but, considering the electrical connections in our experimental setup, 
ISHE voltage signal should be positive; and ii) has a decreasing amplitude as W is reduced (see Figs. 3b and 4b). 
This behavior is similar to that observed in the Py alone samples and indicates that the measured voltage signal 
is dominated by the SRE contribution. When the W threshold value is approached the SRE contribution almost 
disappears and the measured voltage signal becomes positive and with a W-independent amplitude, thus indicat-
ing that only ISHE signal is contributing to the measured voltage signal (see Fig. 4b). In fact, it is observed that 
the line-shape corresponding to negative voltage values has both symmetric and antisymmetric contributions, 
while the line-shape associated to positive voltage signals is fully symmetric (see Fig. 4b), thus making evident 
that they are originated by ISHE.

In samples with inverted stacking order, i.e. Si//Pt/Py no change of sign in the measured transverse voltage 
signal was observed (see Fig. 3c). This contradicts the expected change in sign due to the inverted spin injec-
tion direction, and is due to the fact that SRE do not depend on the spin injection direction while ISHE is an 
odd function of  it22,23, and in this configuration SRE and ISHE signals have the same sign. Our picture predicts 
that, below a certain threshold value of W, the amplitude of the signal should be almost constant, since SRE 
contributions should be zero and ISHE contribution does not depend on W, as it is in fact observed (see Fig. 4c). 
The spectral line-shape analysis confirms that below the threshold value the measured voltage signal is fully 
symmetric, and does not depend on W, while above it both symmetric and antisymmetric contributions are 
present (see Fig. 4c). Figure 5 shows the dependence of the symmetric component of the voltage amplitude as a 
function of the sample width, W, at a given frequency. The figure clearly illustrates that in Py alone samples the 
measured transverse voltage signal progressively goes to zero as W decreases. However, in both Py/Pt and Pt/
Py bilayer systems the symmetric component of the signal saturates at a positive and negative value respectively 
(according to the expected sign of ISHE), and has almost the same absolute value. This indicates that once SRE 
effects are suppressed the remaining measured signal corresponds to ISHE. Therefore, since the inversion of the 
spin injection direction must change the sign of the ISHE signal, while that of the SRE contribution remains the 
same, half the subtraction of both signals should give the value of the ISHE signal.

In Fig. 5b the half-sum  (VS
+) and half-difference  (VS

-), defined as:V±
s = (1/2)

(

V
Py/Pt
s ± V

Pt/Py
s

)

 , of the 
bilayer symmetric voltage amplitude with respect to W are depicted. As expected, a constant value in the half-
difference is observed indicating the value of the ISHE component. On the other hand, the half-sum should 
decrease and go to zero as W decreases, since SRE contribution should be progressively reduced, as effectively 
shown in the picture. The W threshold value does not depend on the width of the active line of the CPW neither 
on the separation of the electrical contacts, provide they are far apart from the CPW active line were excitation 
of the magnetization takes place. However, it may be slightly dependent on the resistivity of the FM material, so 
this threshold value may be smaller in a FM material with higher conductivity.

From the values of the ISHE voltage signal, and assuming a λS≈ 8 nm (according to the resistivities of the Pt 
layer, namely ρ ~ 10 μΩ cm), a value of the Hall angle, θSH ~ 0.015 ± 0.005 is derived. This value is in the range 
of low values reported in the literature. However, it should be noted that there is a broad range of values of Pt 
conductivity and, therefore, of the spin diffusion length, λS, and a clear correlation between θSH and λS has been 
 observed43. Taking into account this relation the value of θSH derived in this work is comparable to values reported 
in systems with similar resistivities of the Pt layer. (See Ref.43 and references therein).

To gain a deeper insight into the behavior of the induced current circulating through the Py layer a numerical 
study of the SRE on Si// Py/Pt bilayers in a CPW experimental setup has been performed. The time dependence 
of the magnetic field inside the sample induces a time dependent current density −→j  as described by Maxwell’s 
equations. Riet and  Roozeboom44 use a quite crude approximation in which the magnetic field inside the fer-
romagnet is assumed to have only one component (contained in the film plane). In our case, in order to make a 

Figure 5.  (a) Dependence of the amplitude of the symmetric component of the transverse voltage signal of each 
sample set at room temperature as a function of sample width, W. (b) Half-sum  (VS

+) and half-difference  (VS
–) 

of the symmetric voltage amplitudes of the Si//Py/Pt and Si//Pt/Py samples at 4 GHz and room temperature. 
Error bars have, approximately, the size of the symbols.
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little bit more realistic calculations, the methodology presented in the series of papers by Kostylev et al. has been 
used (see Supplementary information)24,25,45,46. The main results derived from the numerical solution are that 
the dominant effect contributing to SRE is the AMR term. Moreover, the AMR term has both symmetric and 
antisymmetric components being dominant the symmetric component (see Fig. S8). Results obtained also show 
that the sign of the SRE voltage signal and that of ISHE voltage signal are opposed for the Si//Py/Pt stacking. 
Additionally, our estimation of the finite size effects along the CPW direction shows that the voltage contribu-
tion to the measured transverse voltage signal progressively decreases as W is reduced (see Fig. 6) in agreement 
with our experimental results.

Conclusions
We have designed a strategy to suppress SRE contribution to the transverse voltage signal measured in SP experi-
ments in FM/NM bilayers. SRE are generated by a microwave eddy current circulating through the sample due to 
the inductive coupling between the sample and the signal line of the CPW. Thus, a way to reduce SRE is reducing 
this circulating current. For that purpose, we have reduced the width, W, of the sample along the CPW signal line. 
According to this, at sufficiently short W the circulating current should be very small while ISHE voltage signal 
should be almost constant since it is not affected by the absence of the induced current. Thus, the contribution of 
SRE to the measured voltage signal is suppressed. To demonstrate this a careful study of the SP process  in three 
sets of samples (Si//Py, Si//Py/Pt and Si//Pt/Py) as a function of W has been performed at room temperature. It 
is shown that, in the case of Py alone samples, the measured transverse voltage signal is generated by SRE and 
progressively decreases as W is reduced and becomes vanishing small below a threshold value of approximately 
200 μm. In the case of the Py/Pt system, the measured transverse voltage signal progressively decreases as W 
decreases, changes sign and saturates at a positive value for W values below approximately 200 μm. When the 
same measurements are performed in a sample with inverted stacking order, i.e. Pt/Py, the measured transverse 
voltage signal progressively decreases as W decreases, but in this case, there is no change of sign and the signal 
saturates at a negative value, being the absolute value of the signal similar to that measured in the Py/Pt sample. 
These results demonstrate that SRE in SP experiments, using a CPW or microstrip experimental setup, can be 
fully suppressed by reducing W. An analysis of the rectifications effects in a FM/NM bilayer system on top of a 
CPW by finding a numerical solution of the Maxwell’s equations, using the Landau-Lifshitz equation with the 
Gilbert damping term (LLG) as the constitutive equation of the media, also confirms that the expected contri-
bution of the SRE: (i) has symmetric and antisymmetric contributions; (ii) is against ISHE in Py/Pt stacking 
sequence; and (iii) strongly diminishes as W is reduced.

Materials and methods
Three different sets of samples, namely, i) Si// Py, ii) Si// Py/Pt, and iii) Si// Pt/Py have been prepared by using 
DC magnetron sputtering technique. All samples have been grown in situ on top of Si (100) substrates, that 
have a native  SiO2 passivation layer, at room temperature and using 2.7 mTorr (Py) and 5 mTorr (Pt) of Ar-H2 
working gas pressure. The thickness of the Py (Ni 80%-Fe 20%) and Pt layers, determined by X-ray reflectometry, 
(measured using a Siemens D5000 diffractometer) was estimated to be 15–16 nm and 5 nm, respectively for all 
samples. UV photolithography was used for the patterning of the single-striped and multiple stripes (fringed) 
samples in a 10,000 class cleanroom (ISO7). Using a combination of lithographic and ion milling techniques 5 × 5 
 mm2 thin films have been transformed into 5 × W  mm2 stripe-shaped samples, where W is the width of the stripe. 
Samples with different values of W, ranging from 5 mm to 50 μm, have been prepared, while for smaller values 
of W (20 µm) a fringed pattern was used. Single striped samples were 5 mm long, while fringed samples were 
only 2 mm long. The use of fringed patterns instead of a single strip for W = 20 µm is justified by the fact that for 
values of W below approximately 100 µm FMR measurements are too noisy, making it difficult to determine the 

Figure 6.  Sample width, W, dependence of the AMR pre-factor plotted according to the sign convention used 
for experimental measures. Parameters used for the calculations are detailed in the Supplementary information.
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fitting parameters, �H and Hres . Additionally, the global voltage drop across the fringed pattern is the average 
voltage drop across each individual strip (see supplementary information).

The static magnetic properties of the different samples were studied by using a SQUID magnetometer 
(MPMS-X7 by Quantum Design). Py layers exhibit coercive fields (μ0HC) on the order of  10–4 T and a satura-
tion magnetization around 0.88 T (See Supplementary material) in good agreement with results reported in the 
literature. The dynamic magnetic properties were studied by means of a ferromagnetic resonance spectrometer 
(FMR) made of a broadband coplanar waveguide (CPW) (NanOsc), inserted in a physical properties measure-
ments system (PPMS by Quantum Design) using a lock-in differential detection method. The transverse voltage 
signal across the sample was measured using a Keithley 2182A nanovoltmeter. Sample is located upside-down 
and connections are made at both sides by pins already mounted on the sample holder (See Fig. S1b). Electrical 
contacts (Au) have been deposited Ex situ by dc-magnetron sputtering. Finally, UV photolithography was used 
for the patterning of the single-striped samples and multiple stripes samples (fringed patterned). A schematic 
representation of both systems is shown in Fig. S1a.
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