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The possibility of negative optical path length in left-handed mediasLHM d is shown to lead to complete
suppression of spontaneous emission of an atom in front of a mirror with a layer of LHM. For the same reason
two atoms put at the foci of a perfect lens formed by a parallel LHM slabfJ. B. Pendry, Phys. Rev. Lett.85,
3966s2000dg exhibit perfect subradiance and superradiance. It is shown that these effects occur over distances
that can be orders of magnitude larger than the transition wavelength and are only limited by the propagation
length within the free-space decay time of the atoms. Single- and two-atom decay rates are calculated from the
Greens function of the electric field in the presence of a LHM and limitations as well as potential applications
are discussed.
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Negative refraction of electromagnetic radiation in so-
called left-handed mediasLHM d predicted in the late 1960s
f1g has recently attracted much attention because of its ex-
perimental demonstration in metamaterials in the cm-wave
rangef2–5g. The most peculiar property of LHM associated
with the negative refraction is the possibility of negative op-
tical path length, which, as pointed out by Pendryf6g, allows
us to construct a perfect lens with a resolution not limited by
diffraction. The lens, an infinite parallel slab of LHM, col-
lects all plane waves from a point source on one side of the
slab in a focal point on the other side with zero phase differ-
ence. Due to the vanishing optical path length between the
focal points also evanescent waves emerging from the source
are exactly reproduced leading to, in principle, unlimited
resolution. This raises the question of what happens to a pair
of atoms put in the foci of the lens or to a single atom put in
its own focus induced by a nearby mirror in combination
with a LHM sFig. 1d.

We here show that the imaginary part of the retarded
Greens function ImfGsr 1,r 2dg between the two focal points
r 1,r 2 of the perfect lensfFig. 1sadg is identical to the free-
space value at the same position ImfGsr ,r dg. As a conse-
quence there occurs perfect subradiance and superradiance
f7g of two atoms atr 1 andr 2 as well as mutual dipole-dipole

shifts even for distancesur 1−r 2u large compared to the tran-
sition wavelength. Likewise the imaginary part of the Greens
function in the focus before a mirror-LHM combinationfFig.
1sbdg becomes the same as for a combination of mirror and
vacuum withr 1=r 2 being directly on the surface of the mir-
ror leading to a strong radiative back action. In both cases
the strong radiative coupling or self-coupling persists as long
as the distance between the atoms or the atom and the mirror
is smaller than the propagation length during the free-space
radiative decay time.

Since the one-atom systemfFig. 1sbdg can be viewed as a
special case of the two-atom systemfFig. 1sadg, we here
discuss only the second one. Let us therefore consider an
infinitely extended slab of homogeneous LHM of thicknessd
and two atoms put in the focal points as shown infFig. 1sad.g
The atoms are two-level systems with ground statesu1l and
excited statesu2l and common transition frequencyv0. The
dipole vectors of the atoms are denoted byd1 and d2. The
coupling of the atoms to the quantized radiation field is de-
scribed by the interaction Hamiltonian in dipole approxima-
tion

HWW = − d̂1 · Êsr 1d − d̂2 · Êsr 2d, s1d

whereÊsr d is the operator of the electric field in the presence
of the LHM. Employing the usual Born-Markov and
rotating-wave approximations one derives the standard mas-
ter equation for the two-atom density matrix in the interac-
tion picture

ṙ = − o
k,l=1

2
Gsr k,r ld

2
sŝl

†ŝkr + rŝl
†ŝk − 2ŝkrŝl

†d

+ i o
k,l=1

2

dvsr k,r ldfŝl
†ŝk,rg . s2d

Here ŝk= u1lkkk2u are the flip operators of thekth atom. The
ratesGsr k,r ld describe the radiative decay of the two two-
level atoms.Gsr k,r kd corresponds to the single-particle decay
rate of an atom at positionr k and Gsr 1,r 2d describes the

FIG. 1. sad Two atoms put into the focal points of a Veselago-
Pendry lens withn=−1. The focal points are all pairs of positions at
the two sides of the slab with distance 2d. The spatial regionsz
.0 svacuumd, −døzø0 sLHM d, andz,−d svacuumd are denoted
by the numbers 0,1,2 respectively.sbd One atom in front of a system
of a perfect mirror combined with a perfect LHM. The optical
length between atom and mirror is zero.
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dissipative cross coupling. Both quantities are determined
by the imaginary part of the Greens tensor of the electric
field at the atomic transition frequencyGsr k,r l ,v0d
=Gmnsr k,r l ,v0dm̂ + n̂, “+” denoting a tensorial product withm̂
and n̂ being unit vectorsf8g

Gsr k,r ld =
2v2dmdn

"«0c
2 ImfGmnsr k,r l,v0dg. s3d

dvsr k,r kd is the single-atom Lamb shift anddvsr 1,r 2d de-
scribes the radiative dipole-dipole shift. It is well known that
the single-atom Lamb shift is not correctly described by the
two-level model. Its explicit expression as given below di-
verges and a renormalization is needed. The Lamb shift is,
however, of no relevance for the present discussion and will
be ignored, i.e., it is assumed to be included in the bare
transition frequency. In contrast the dipole-dipole shift can,
in principle, correctly be calculated within the present model,
when the free-field part is subtracted. This is because the
Veselago-Pendry lens can only lead to contributions within a
finite frequency windowf1g. Subtracting the free-field con-
tribution one finds

dv =
dmdn

"p«0
PE

0

`

dv
v2

c2

ImfDGmnsr 1,r 2,vdg
v − v0

, s4d

where DGmnsr 1,r 2,vd=Gmnsr 1,r 2,vd−Gmn
0 sr 1,r 2,vd,

Gmn
0 sr 1,r 2,vd being the components of the free-field retarded

Greens tensor.
The master Eq.s2d for the two-atom system can be writ-

ten in a diagonal form introducing a basis of symmetric and
antisymmetric statesu11l, u22l, and usl=su12l+ u21ld /Î2 and
ual=su12l− u21ld /Î2. This yields for the populations

ṙ22 = − 2G11r22, s5d

ṙss= + sG11 + G12dr22 − sG11 + G12drss, s6d

ṙaa= + sG11 − G12dr22 − sG11 − G12draa, s7d

ṙ11 = + sG11 + G12drss+ sG11 + G12draa, s8d

whereG11=Gsr ,r d and G12=Gsr 1,r 2d. In addition there is a
level shift of the symmetric and antisymmetric statesusl and
ual below or above the single atom energy by the dipole-
dipole shiftdv, given in Eq.s4d.

To obtain the corresponding results for the mirror-LHM
systemfFig. 1sbdg it suffices to set the atomic flip operators
of the second atom equal to zero and interpret the two-atom
density matrix as a single-atom density matrix. The resulting
rate equations simply readṙ22=−G11r22 and ṙ11=G11r22,
which describe the spontaneous decay of one two-level atom.

The retarded Greens function corresponding to a slab with
a homogeneous and linear magnetodielectric medium can be
calculated by a plane wave decomposition. Followingf9g
one finds for the two positionsr and r 8 in vacuum on the
same side of the lens

G00sr ,r 8,vd =
i

8p2E d2k'

1

kz

3hfRTEêskzdeik·r + ês− kzdeiK ·rg+ês− kzde−iK ·r8

+ fRTMĥskzdeik·r + ĥs− kzdeiK ·rg+ĥs−kzde−iKr 8j ,

s9d

where zøz8 has been assumed. Forr and r 8 being in
vacuum on different sides of the lens one finds

G20sr ,r 8,vd =
i

8p2E d2k'

1

kz
eiK ·sr−r8dfTTEês− kzd + ês− kzd

+ TTMĥs− kzd + ĥs− kzdg . s10d

The superscripts 0,1,2 denote the zones of positionsr andr 8:
z.0 svacuumd, −døzø0 sLHM d, andz,−d svacuumd, re-
spectively. We here have used the definitionsk2=v2/c2, kz

=Îsk2−k'
2 d and d2k'=dkxdky. Furthermore,K ;kxx̂+kyŷ

−kzẑ and we have introduced the orthogonal unit vectorsê
=k 3 ẑ/ uk 3 ẑu and ĥ=pê3k / uku, where p=1 for a normal
medium andp=−1 for a LHM. RTE,RTM, andTTE,TTM are
the reflection and transmission functions of the lens for trans-
verse electric and transverse magnetic modes. They read

RTE =
R01 + R12e

i2k1zd

1 + R01R12e
i2k1zd

, s11d

RTM =
S01 + S12e

i2k1zd

1 + S01S12e
i2k1zd

, s12d

and correspondingly

TTE =
2mkz

mkz + k1z

1 + R12

1 + R01R12e
i2k1zd

eisk1z−kzdd, s13d

TTM =
2«kz

«kz + k1z

1 + S12

1 + S01S12e
i2k1zd

eisk1z−kzdd. s14d

Here k1z=Îk1
2−k'

2 and k1
2=«svdmsvdv2/c2. Rij and Sij are

the reflection coefficients at the boundaries between mediai
and j for TE and TM modes, respectively,

Rij =
m jkiz − mikjz

m jkiz + mikjz
, Sij =

« jkiz − «ikjz

« jkiz + «ikjz
. s15d

The indicesi , j [ h0,1,2j denote again the spatial region,
i.e., k0

2=k2
2=k2;v2/c2 andk1

2=«svdmsvdv2/c2.
From expressionss9d and s10d one can calculate

ImfGsr k,r l ,v0dg for an ideal Veselago-Pendry lens, i.e., for
infinite transversal extension and a lossless medium with
nsv0d=−1. Since in this caseRTE=RTM =0 one finds

ImfG00sr ,r ,v0dg=sk/6pd1̂, i.e., exactly the free-space
value. Most importantly one finds that for all pointsr 8 in
region 2sz8ø−dd

ImfG20sr 8,r ,v0dg = ImfG00sr 8 − 2dẑ,r ,v0dg , s16d

since TTE=TTM =eik1z−kzd and k1z=−kz. The latter holds be-
causek points backward in a LHM. Thus with respect to the
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radiative decay, the second atom located in region 2 atr 8,
i.e., on the other side of the Veselago-Pendry lens, behaves as
if it would be located at positionr 8−2dẑ, i.e., in region 0.
This implies that for an atom pair in the focal pointsr 8=r
+2dẑ

G12 = G11. s17d

Thus the antisymmetric, single excited stateual has vanish-
ing radiative decay, while the symmetric stateusl decays with
twice the free-space rates6d and s7d. That is, the pair of
atoms shows perfect subradiance and superradiance.

A similar calculation yields the imaginary part of the
Greens tensor for the case of an atom in front of a LHM
combined with a mirrorfFig. 1sbdg. One finds for a dipole
moment of the atom parallel or perpendicular to the mirror

GisDẑ,Dẑd = 0, G'sDẑ,Dẑd = 2G0, s18d

G0 being the vacuum decay rate. Figure 2 showsGi as a
function of the displacement of the atom from the focal point
perpendicular to the mirror. One clearly sees a complete sup-
pression of the spontaneous emission for dipoles parallel to
the mirror at the focal point. In free space, i.e., without the
LHM, a similar effect only occurs if the atom is located on
the surface of the mirrorf10g.

Remarkably the propertys16d, and thus the existence of
subradiant and superradiant states, Eq.s17d, as well as the
suppression of spontaneous emission, Eq.s18d, do not seem
to depend on the distance between the atoms or the distance
of the atom from the mirror, provided the space in between is
half filled by a LHM. In particular, in contrast to the free
space, the strong radiativesselfd coupling exists also over
large distances compared to the transition wavelength due to
the vanishing optical length of all pathways between the two
foci.

While the decay properties are determined only by the
Greens tensor at one frequency, the dipole-dipole shiftdv
depends on the whole spectrum of the dielectric function
«svd and the magnetic permeabilitymsvd and thus a general
expression cannot be given. Using various single-resonance
model functions for« and m, which fulfill the Kramers-

Kronig relations we found values ofdv of up to 0.5G11. If
udvu@G11 could be achieved, a perfect coherent excitation
transfer between two atoms at the focal points would be pos-
sible without the use of a resonator. A more detailed study of
the dipole-dipole shift in LHM will be the subject of further
studies.

Let us now discuss the limitations of the predicted effects.
When the lens is not perfect, e.g., in the presence of losses,
the ratio G12/G11 decreases roughly exponentially with the
increasing distance of the atoms and the subradiance and the
superradiance effect disappears Fig. 3sad. The radiative cou-
pling is also not perfect if the lens has only a limited trans-
versal extension. It is not possible to give an analytical ex-
pression for the Greens tensor of a lens consisting of a disk
of finite radiusa. Also a numerical calculation ofG for this
case is quite difficult. One can, however, obtain an estimate
of the effect if d@l by employing a short-wavelength or
ray-optics approximation. Noting that for a lossless LHM
with nsv0d=−1, only propagating waves withk'øv0/c
contribute to ImfG20g, we can model the effect of a finite
transverse extension of the lens by restricting thek' integra-
tion in Eq.s10d to valuesk'økfsa/dd /Îs1/4d+sa/dd2g. The
corresponding result is shown in Fig. 3sbd. It is apparent that
already a moderate ratioa/d is sufficient to obtain close to
100% suppression of the decay of the antisymmetric state
ual.

There is another limitation of the predicted radiative ef-
fects even under ideal conditions, which arises solely from
fundamental properties of LHM. If the slab of negative-index
material has arbitrarily small losses at the frequency of inter-
est and if it has a sufficiently large transversal extension, the
previous discussion seems to suggest that subradiance and
superradiance is possible for two atoms at an arbitrary dis-
tance. For causality reasons this should, of course, not be
possible. Thus the question arises what is the maximum pos-
sible separation 2d of the atoms over which the strong radia-
tive coupling persists? As pointed out already by Veselago
f1g, a lossless LHM is necessarily dispersive. The positivity
of the electromagnetic energy in a lossless LHM requires
that sd/dvdhv Refesvdgjù0, and sd/dvdhv Refmsvdgjù0,
which implies fornsv0d=−1

d

dv
nsv0d ù

1

v0
. s19d

As a consequence of the dispersion the frequency window
Dv over which G20svd<G00svd narrows with increasing

FIG. 2. Normalized rate of spontaneous emissionGiszd /G0 as
function of displacement from focusz. D is the distance from the
focus to the surface of the LHM.

FIG. 3. Left: G12/G11 as function of the imaginary part of the
refractive indexnI for Refng=−1 for different thicknessesd of the
lens,d=100l /2p ssolid lined, d=10l /2p sdashedd, andd=1l /2p
sdottedd. Right: G12/G11 as a function of the transversal radiusa.
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thicknessd of the lens. WhenDv becomes comparable to the
natural linewidth of the atomic transition,G11, the Markov
approximation used in Eq.s2d is no longer valid. To give an
estimate when this happens, we note from Eqs.s10d–s15d
that for d@l the term inG20 that is most sensitive to dis-
persion is the exponential factoreiK ·sr−r8deisk1z−kzdd. Taking
into account a linear dispersion in this factor, according to
n=−1+asv−v0d, with a real value ofa, while keeping the
resonance values inTTE, TTM, andRTE, RTM, one finds for the
Greens tensor

ImfG20svdg =
k

8p
ReFE

0

1

djs1 + j2deisdk0/jdasv−v0dG1̂.

s20d

As can be seen from Fig. 4 the spectral widthDv of the

Greens function is in this approximation of orderDv
<sk0dad−1. Since Eq.s19d implies aù1/v0, one arrives at
Dvøc/d. This leads to an upper bound for the distance of
the atoms, asDv@G11 implies

d !
c

G11
. s21d

This condition can easily be understood. It states that the
distance between the two atoms must be small enough such
that the travel time of a photon from one atom to the other is
small compared to the free-space radiative lifetime.

In summary we have shown that the property of LHM to
allow for a zero optical path length between macroscopically
separated points in a space over a substantial range of fre-
quencies can lead to interesting novel effects in the interac-
tion of atoms with the quantized radiation field. Two atoms
put in the focal points of an ideal, i.e., lossless Veselago-
Pendry lens, exhibit perfect subradiance and superradiance as
long as their distance is smaller than the propagation length
of light corresponding to the free-space decay time. This
effect can be used, e.g., to prepare a maximally entangled
state between the two atoms in a similar way, as suggested in
f11g for a cavity system. In addition an atom put at some
distance from the surface of a mirror with a layer of LHM
behaves as an atom directly on the mirror surface, i.e., shows
complete suppression of spontaneous emission. Although
negative refraction has been observed so far only in the cm-
wave rangef2–5g and would thus be limited to applications
involving, e.g., Rydberg atoms, some ideas have been put
forward to extend negative refraction to the Thzf12g and
optical domainf13g.

J. K. acknowledges financial support by the Deutsche
Forschungsgemeinschaft through the GRK 792 “Nichtlineare
Optik und Ultrakurzzeitphysik.”

f1g V. G. Veselago, Sov. Phys. Usp.10, 509 s1968d.
f2g D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and

S. Schultz, Phys. Rev. Lett.84, 4184s2000d; R. A. Shelby, D.
R. Smith, S. C. Nemat-Nasser, and S. Schultz, Appl. Phys.
Lett. 78, 489 s2001d.

f3g R. A. Shelby, D. R. Smith, and S. Schultz, Science292, 77
s2001d.

f4g A. Grbic and G. V. Eleftheriades, J. Appl. Phys.92, 5930
s2002d.

f5g C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and
M. Tanielian, Phys. Rev. Lett.90, 107401s2003d.

f6g J. B. Pendry, Phys. Rev. Lett.85, 3966s2000d.

f7g R. H. Dicke, Phys. Rev.93, 99 s1954d.
f8g Ho Trung Dung, S. Y. Buhmann, L. Knöll, D.-G- Welsch, S.

Scheel, and J. Kästel, Phys. Rev. A68, 043816s2003d.
f9g L. Tsang, Jin Au Kong, and R. T. Shin,Theory of Microwave

Remote SensingsWiley, New York, 1985d.
f10g H. Morawitz, Phys. Rev.187, 1792s1969d.
f11g M. B. Plenio, S. F. Huelga, A. Beige, and P. L. Knight, Phys.

Rev. A 59, 2468s1999d.
f12g T. J. Yenet al., Science303, 1494s2004d.
f13g M. Ö. Oktel and Ö. E. Müstecaplioğlu, e-print physics/

0406039.

FIG. 4. ImfG20svdg following from Eq. s20d for lossless LHM
with n=−1+asv−v0d for a=45/v0 for dk0=1 sdashedd, 0.2 sdot-
tedd. Also shown is a numerically calculated spectrum for a specific
causal model fornsvd with resonances of«svd andmsvd belowv0.
nsvd was chosen such that Refnsv0dg=−1 anda=45/v0. The cen-
tral structure is well represented by the linear-dispersion approxi-
mation s20d.

J. KÄSTEL AND M. FLEISCHHAUER PHYSICAL REVIEW A71, 011804sRd s2005d

RAPID COMMUNICATIONS

011804-4


