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SUMMARY

Adjoint formulation is employed for the optimal control of ow around a rotating cylinder, governed
by the unsteady Navier–Stokes equations. The main objective consists of suppressing Karman vortex
shedding in the wake of the cylinder by controlling the angular velocity of the rotating body, which can
be constant in time or time-dependent. Since the numerical control problem is ill-posed, regularization is
employed. An empirical logarithmic law relating the regularization coe�cient to the Reynolds number
was derived for 606Re6140. Optimal values of the angular velocity of the cylinder are obtained
for Reynolds numbers ranging from Re=60 to Re=1000. The results obtained by the computational
optimal control method agree with previously obtained experimental and numerical observations. A
signi�cant reduction of the amplitude of the variation of the drag coe�cient is obtained for the optimized
values of the rotation rate. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The viscous ow past a circular cylinder has been extensively studied due to its simple
geometry and its representative behavior of general blu� body wakes. A deep understanding
of the control strategies necessary to control ows past rotating blu� bodies could be applied
in areas like drag reduction, lift enhancement, noise and vibration control, aerodynamics, etc.

A very important characteristic of this ow is the Karman vortex shedding (which has been
extensively studied for the last 90 years, starting with the pioneering work of von Karman [1]).

Research on the problem of a ow past a cylindrical rotating body has been
the subject of many experimental [2–4], and numerical investigations [5–9]. However, most
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of these results are primarily focused on the study of formation and development
of vortices in a cylinder wake and they do not attempt to suppress vortex
shedding.

Examples of applying control of vortex shedding in experiments are given by Gad-el-Hak
[10; 11] and Modi [12]. Modi’s experiments are related to the moving surface boundary layer
control for airfoils. The moving surfaces are provided by rotating cylinders located at the
leading edge and=or trailing edge as well as at the top surface of an airfoil. It has been
shown that this mechanism of moving surfaces can prevent ow separation by retarding the
initial growth of the boundary layer, with important consequences for lift enhancement and
stall delay. The control parameter used was the speed ratio (which represents the ratio of
cylinder speed to the free stream speed). This speed ratio can be either constant in time or
time-dependent (e.g. if the airfoil is undergoing a rapid maneuver). This type of result provided
us with the motivation to consider ow control for either a constant or time-dependent angular
rotation of the cylinder.

Di�erent approaches for the control of a ow around a cylinder have been successfully
employed in the last two decades. For example, Tang and Aubry [13] suppressed the vortex
shedding by inserting two small vortex perturbations in the ow; Gillies [14] used neural
networks; Gunzburger and Lee [15] determined the amount of uid injected or sucked on
the rear of the cylinder from a feedback law depending on pressure measurements at stations
along the surface of the cylinder; Huang [16] suppressed vortex shedding by feedback sound;
Joslin et al. [17] showed that ow instabilities can be controlled by wave cancellation; Kwon
and Choi [18], Ozono [19] and You et al. [20] employed splitter plates attached to the
cylinder; Park et al. [21] used a pair of blowing=suction slots located on the surface of the
cylinder; Sakamoto and Haniu [22] introduced a smaller cylinder near the main cylinder, with
experiments conducted by changing the gap between the cylinders and the angle along the
circumference from the front stagnation point of main cylinder; the ow is controlled via
cylinder rotation (see e.g. References [23–27]); Pentek and Kadtke [28] implemented a chaos
control scheme to capture and stabilize a concentrated vortex around the cylinder, the control
being actuated by uniformly rotating the cylinder and actively changing the background ow
velocity far from the body.

Due to the complexity and large dimensions of the control problem suboptimal control
strategies have been considered and implemented. The concept of instantaneous control (e.g.
control at every time step of the underlying dynamical systems) was applied in Choi et al.
[29]. Another approach involves two stages: �rst the approximation of the equations of the
uid ow using reduced order models and then an exact optimization for the reduced system,
the di�erence among various research e�orts consisting in the choice of the basis functions
used for the reduced models. In the reduced basis approach one uses as basis functions the
terms which arise in series expansion of the solution with respect to a parameter (e.g. Ito and
Ravindran [30]). The proper orthogonal decomposition (POD) approach is applied by Graham
et al. [31; 32] and Afanasiev and Hinze [33].

Optimal control methods (OCM) have been employed for ow control. Distributed controls
were used by Abergel and Temam [34], Gunzburger et al. [35], Hou et al. [36; 37]; blowing
and suction on the surface of the cylinder was studied by Berggren [38], Bewley et al. [38],
Ghattas and Bark [40], Li et al. [41]; velocity tracking (boundary velocity controls) was
employed by Gunzburger and Manservisi [42], Gunzburger et al. [43], Hou and Ravindran
[44; 45].

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:43–69



SUPPRESSION OF VORTEX SHEDDING 45

A key component of the process of ow control is the minimization of a cost functional
aiming at the optimization of some of the ow characteristics.

Abergel and Temam [34] minimized the turbulence for a ow respectively driven by volume
forces, a gradient of temperature and a gradient of pressure (the turbulence being measured by
a L2 norm of the curl of v (‖∇× v‖L2) or, respectively, by studying the stress at the boundary);
Berggren [38] minimized the vorticity �eld. Bewley et al. [39] reduced the turbulent kinetic
energy and drag; Ghattas and Bark [40] used as objective function the rate at which energy
is dissipated in the uid.

The present article presents the numerical solution to the problem of controlling vortex
shedding for a ow past a rotating cylinder using full optimal control. It is shown that the
nature of the vortex shedding process is signi�cantly altered by cylinder rotation. In this article
we use global control (the entire body is subjected to prescribed motion) compared to the
approach of local control (e.g. blowing=suction as reported by Li et al. [41]).

The mathematical formulation of the problem implies minimization of a cost functional.
Since all e�cient local minimization algorithms require the computation of the gradient of an
objective functional (which will be described in a later section) with respect to the control
parameters, part of this e�ort was dedicated to the gradient computation.

The adjoint method was employed to obtain the gradient of the discrete cost functional.
The adjoint was constructed directly from the source code of the original discrete nonlinear
model, circumventing di�culties that would appear if one were to �rst obtain the continuous
adjoint model and then discretize the adjoint equations (for more about the di�erences between
the di�erentiate-then-discretize approach and the discretize-then-di�erentiate approach see
Gunzburger [46]).

The objective functional includes a regularization term since the optimization problem is
ill-posed. Another important characteristic is the length of the ‘control’ window (the time
window employed for minimization). It was found that the length of this time window should
be larger than the vortex shedding period if the angular velocity (which serves as the control
parameter) is time-dependent. However, if the angular velocity is constant in time, the length
of the time window should only exceed a certain threshold value which can be smaller than
the vortex shedding period.

The results obtained show that vortex shedding is suppressed for regimes of ow for
606Re61000. For the same values of optimal rotation rate employed to achieve the elimi-
nation of the vortex shedding, the time histories of the drag coe�cient show that a signi�cant
reduction in the amplitude of its variation is obtained compared to the case of the �xed
cylinder.

The article is organized as follows. Section 2 introduces the ow model and its discretiza-
tion in space and time. The optimal control problem is stated in Section 3 which includes
formulation, cost functional(s), control parameters, description of the minimization using a
quasi-Newton-type method and the discussion of the regularization term. The adjoint method
for the computation of the gradient of the cost functional with respect to the control parameters
is presented in Section 4. Procedures for the validation of the adjoint code and for checking
the accuracy of the gradient computed using the adjoint model are presented in Appendices A
and B. Numerical results related to suppression of Karman vortex street and time-histories of
the drag coe�cient are presented in Section 5. This section also includes some discussion of
physical phenomena related to the ow around a rotating circular cylinder. Finally, Section 6
presents the summary and conclusions.
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2. THE GOVERNING EQUATIONS OF THE MODEL

Let B denote a circular cylinder enclosed by an impermeable boundary S, while the
two-dimensional exterior domain D=R2\{B∪S} is the region occupied by an incompressible
viscous uid (for numerical purposes, the domain will be restricted to a rectangle in R2).

The uid is moving with velocity U0 in the x-direction and the cylinder rotates counter-
clockwise with angular velocity 
.

The problem can be mathematically described by the 2-D unsteady Navier–Stokes equations,
where (u; v) is the velocity vector and p is the pressure:
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subject to initial condition

(u; v)|t=0 =(u0; v0) in D (4)

The equations are non dimensional. Re is the Reynolds number de�ned as Re=U0d=�, where
d is the diameter of the cylinder and � is the viscosity.

No-slip boundary conditions are enforced at the upper and lower boundaries; an inow
boundary condition is applied at the left boundary:

u=U0 and v=0 (5)

and an outow boundary condition at the right boundary:

@u

@x
=0 and

@v

@x
=0 (6)

On the surface of the cylinder the velocity is equal to the angular velocity 
=(
x;
y):

u=
x v=
y (7)

2.1. Space and time discretization

The region D is discretized using a staggered grid in which the pressure p is located at the
cell centers, the horizontal velocity u at the midpoints of the vertical cell edges and the vertical
velocity v at the midpoints of the horizontal cell edges. A �nite volume space discretization is
employed throughout. We require that the discretized values of u and v on the boundary cells
be equal to the components of the angular velocity on the circle. Since the vertical boundaries
contain no v-values and the horizontal boundaries contain no u-values, this boundary condition
is enforced by averaging the values on either side of the boundary and setting this average
to be equal to the angular velocity value.
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Figure 1. Streaklines for uncontrolled ow at Re=100 and speed ratio �=0:5.

The time discretization is explicit in the velocities and implicit in the pressure: i.e. the
velocity �eld at each time step tn+1 can be computed once the corresponding pressure was
computed. The time step is required to satisfy the stability condition:
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where �∈ [0; 1] is the Courant–Fredrichs–Levy (CFL) number (set to 0.6 in the code).
More details about the time and space discretization may be found in Griebel et al. [47].

2.2. Problem speci�cation

The domain is a rectangle of 22.0 units in length and 4.1 units in width. The cylinder (located
inside the rectangle) measures 1.0 units in diameter and is situated at a distance of 1.5 units
from the left boundary and 1.6 units from the upper boundary of the domain.

The cylinder is rotating with an angular velocity which can be either constant in time or a
sinusoidal function.

Figure 1 shows the uncontrolled ow for this domain.
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3. SOLVING THE OPTIMAL CONTROL PROBLEM

3.1. Formulation of the optimal control problem

The control problem consists in �nding the optimal angular velocity of the cylinder such that
the Karman vortex shedding in the wake of the cylinder is suppressed.

In order to �nd the optimal value(s) of the angular velocity of the cylinder, we minimize a
cost functional which depends on the state variables as well as on the control variables (i.e.
the rotation parameters: amplitude A and frequency F).

3.2. Possible cost functionals

Based on recent research work (e.g. References [34; 38–40; 48; 49]), several possible ap-
proaches to control the behavior of the ow can be employed, such as: ow tracking (the
velocity �eld should be ‘close’ to a desired �eld); enstrophy minimization (the vorticity is
minimized); dissipation function (minimize the rate at which heat is generated by deforma-
tions of the velocity �eld).

In this research work we considered only ow tracking and vorticity minimization. The
mathematical expressions of the corresponding cost functionals are provided in the next
subsection.

3.3. Mathematical formulation of the problem

If � is the vector of parameters which determine the angular velocity of the cylinder,
minimize the cost functional J with respect to � subject to the constraints imposed by the
2-D unsteady Navier–Stokes equations model.

We considered a cost functional for vorticity minimization of the form:

J (�)=
1

2

∫ t2

t1

∫

D

(�2) dD dt (8)

where the vorticity is �(x; y)= [(@u=@y)]− [(@v=@x)].
The best results were obtained when the cost functional J was chosen to be of the ow

tracking-type, namely:

J (�)=
1

2

∫ t2

t1
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D

(|u− ud|
2 + |v− vd|

2) dD dt (9)

where D is the spatial domain and (ud; vd) is the desired velocity �eld.
We will discuss in this paper only the results obtained for this objective functional since

the best results were obtained for the cost functional of the ow-tracking type.

3.4. Description of the vector of control parameters �

We de�ne the speed ratio � ≡ a
=U , where a is the radius of the cylinder, 
 is the angular
velocity and U is the free stream velocity.

We considered both the constant rotation case: �(t)=A as well as the time harmonic
rotary oscillation case: �(t)=A sin(2�Ft).

The vector of control parameters is �=A or �=(A; F) respectively.
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3.5. Existence of the optimal solution

The control problem involving Navier–Stokes equations was studied by Abergel and Temam
[34], Coron [50], Fursikov et al. [51].

Ou [49] proved an existence theorem for the optimal controls in the case of a rotating
cylinder, continuing the research of Sritharan [52].

3.6. Minimization

The algorithm used here for minimization for the objective function J is a quasi-Newton
unconstrained minimization type method.

We started with the identity matrix and then iteratively, a better approximation Hi to the
inverse Hessian matrix was built up, in such a way that the matrix Hi preserves positive
de�niteness and symmetry.

Using this approximation we constructed the new point:

xi+1 =xi +Hi+1 · (∇J (xi+1)−∇J (xi))

where the new approximation to the inverse Hessian Hi+1 is constructed using the Davidon–
Fletcher–Powell (DFP) rank-2 update formula.

We employed a modi�ed version of the backtracking strategy implemented in Numerical
Recipes [53] to choose a step along the direction of the Newton step p. The goal was to
move to a new point xnew along the direction of the Newton step p:

xnew =xold + �p; 0¡�6�061

such that the function

g(�)= J (xold + �p)

showed a su�cient decrease.
The convergence criteria used here are

J (xnew)6J (xold) + �∇J · (xnew − xold); 0¡�¡1

or ‖∇J (xnew)‖¡10−5.

3.7. Regularization

The numerical experiments proved that the minimization is ill-posed (e.g. while the objective
functional decreased by a very small percentage, the di�erence in the values of the parameter
for which we have this decrease in the function may assume arbitrarily large values).

Our approach for dealing with ill-posedness is to apply a Tikhonov-type regularization. We
added a new term to the cost functional F :

FREG =F + �� (10)

where �¿0 is a regularization parameter and � a regularization function (see Tikhonov and
Arsenin [54]).

The regularization term may also be viewed as playing the role of a penalty term aiming
to ensure that the control parameter lies within a reasonable interval.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:43–69
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For the case of constant rotation the regularization function � is:

�=
1

2

∫

S

(u2 + v2) dS

where (u; v) are the two components of velocity and S is the boundary of the cylinder.
Such a choice was also made by Abergel and Temam [34] and Gunzburger and Manservisi

[42] in their research.
For the time-harmonic case, the regularization function � is chosen to be:

�=

∫ Tw

0

1

2

∫

S

(u2 + v2) dS

where Tw is the length of the time window for optimization.
For an in-depth discussion about di�erent methods for solving ill-posed problems see Hansen

[55] and Alifanov et al. [56].

4. THE ADJOINT METHOD

In this section we present the adjoint method for the computation of the gradient of the cost
functional with respect to the control parameters.

The cost functional assumes the following form:

J[X;�]=
1

2

R
∑

k=0

[X(tk)−X
obs(tk)]

TW(tk)[X(tk)−X
obs(tk)] (11)

where W(tk) is a diagonal weighting matrix, t06tk6tR; [t0; tR] the minimization window and
R is the number of time steps in the minimization window.

To �nd the minimum of the cost functional, e�cient minimization algorithms require the
calculation of the gradient (∇�J[�])T of the cost functional with respect to the control pa-
rameters.

In Appendix A we provide a detailed description of the process of obtaining the gradient

(∇�J[�])T using the adjoint variables �̂ satisfying the adjoint equations (which are also
de�ned in Appendix A).

The gradient of the cost function with respect to the control parameters is:

∇�J[X ]=
R
∑

k=0

�̂(k)(tk)

∇�J[X;�] can be obtained after the following algorithmic steps:

1. Integrate the adjoint model backwards from tR to t0 with zero �nal conditions for the
adjoint variables.

2. The right-hand side in Equation (A8) (the forcing term) W(tk)[X(tk)−X
obs(tk)] is inserted

whenever an analysis time tk ; (k=1; : : : ; R) is reached.
3. At time t= t0 the gradient of the cost functional with respect to the control variables is

obtained.

The discrete operations in the forward model have unique corresponding discrete operations
in the adjoint model. The derivation of the adjoint discrete model provides us with a method
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to employ the original computer code (corresponding to the nonlinear model) in order to
obtain the computer instructions corresponding to the discrete adjoint model.

In Appendix B we present the implementation of the adjoint method to compute the gradient
of the cost functional. The adjoint model is the transpose of the tangent linear model (which
is the linearized version of the nonlinear model). We discuss in Appendix B the coding
strategy for both the adjoint and the tangent linear model and the necessary veri�cations for
the correctness of the gradient computed using this method.

For research related to the description of the adjoint method and its implementation see
Navon et al. [57; 58] and Yang and Navon [59].

5. NUMERICAL RESULTS

5.1. The optimization process

The optimization was performed over a short time interval (time window). The ow was
computed over this time window and the values of the state variables for each time step in
this control window were used in the adjoint computation (speci�cally the ‘forcing term’ for
the adjoint equation).

The time window was located at the beginning of the time evolution and had a length
varying between 1.0 and 4.0 time units.

Even when the ow is considered over a time period of 25.0 time units (which exceeds
by far the length of the control time window), the optimized values of the control parameters
suppress the Karman vortex shedding far beyond the extent of the time window.

The choice of the length of the time window is very important. For both cases, namely
constant and time-dependent angular rotation, the length of the control window should be
larger than the vortex shedding period (VSP), which is the inverse of the Strouhal number
(the Strouhal number is de�ned by St= fKD

U0
, where fK is the Karman vortex street frequency

and D is the diameter of the cylinder).
The adjoint method requires availability of the state variables’ values for all the time steps in

the control time window. For this reason we do not want the time-window length to be much
larger than VSP, since this will increase both the memory and the CPU time requirements
for minimization.

For the case of the constant rotation we obtained satisfactory results with a control time
window smaller than VSP (but not smaller than 1.0 time unit). In the time-dependent case
the choice of a time window smaller than VSP leads to nonconvergence of the minimization
process.

The cost functional which was minimized involved the L2 norm of the di�erence between
the computed velocity and a ‘desired’ velocity. Our ‘desired’ ow was obtained for Reynolds
number Re=2 and the ratio between the angular velocity and the free stream velocity had a
value of 2.0 (see Figure 2).

5.2. Suppression of Karman vortex shedding in the constant rotation case

We consider the speed ratio

�=
a


U
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Figure 2. Streaklines for the ‘desired’ ow at Re=2 and speed ratio �=2:0.

where a is the radius of the cylinder, 
 is the angular velocity and U is the free stream
velocity.

The uncontrolled ow is taken at �=0:5 (an example is provided in Figure 1, for Re=100).
The minimization satis�es the convergence criteria after 5–11 minimization iterations for
all the cases we considered: i.e. the Reynolds number taking the values 606Re
61000.

For each case considered we found a threshold value for � (denoted �Re) such that for
any �¿�Re a full suppression of the Karman vortex shedding was obtained (see Figures 3,
4 and 5).

The CPU time required for a typical optimal ow control calculation was 2–3h on a Silicon
Graphics Indigo (SGI) machine.

The results for 606Re6160 were found to be in very good agreement with the numerical
results obtained by Kang et al. [60] (see Figure 6).

For the case 606Re6140 the regularization parameter was found by using an empirically
derived law relating it to the Reynolds number (see Figure 7). We started by �nding the
values of the regularization parameter by trial and error for two Reynolds numbers (we
considered Re=60 and Re=100) and then we assumed the existence of a logarithmic relation
between the regularization parameter and the Reynolds number. Based on this assumption

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:43–69
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Figure 3. Streaklines for controlled ow at Re=100 with optimal speed ratio �=1:84.

we were able to obtain the corresponding regularization parameters for the other Reynolds
numbers (in our case Re=80 , Re=120 and Re=140, respectively).

For the case 1606Re61000 the empirical law employed in the previous case for obtaining
the regularization parameter did not yield good results and, as a consequence, the correspond-
ing regularization parameters were found by trial and error. A possible explanation of this
phenomenon is the following: the Karman vortex regime for 1606Re61000 is inherently
di�erent than the regime for 606Re6140 (see Zdravkovich [61]).

To check that the minimization results were robust, we performed for each case two di�erent
minimizations: one starting with an initial guess of �=0:9 (a value less than the optimal value)
and one starting with an initial guess of �=3:5 (a value greater than the optimal value of
�). For both initial guesses, the results obtained for the optimal value of � were identical.

As the Reynolds number increases from 60 to 1000 we can see from Figure 8 that the
rotation rate will tend asymptotically to a value which is in good agreement with previously
obtained experimental and numerical results.

At Re=1000 we compare our results with the values obtained by Chew et al. [62]. They
found that for �=2 and �=3 any vortex shed will be weak and Karman vortex shedding
almost disappears for �=3, a phenomenon which was also described experimentally by Badr
et al. [3] and numerically by Chou [63]. We found the ‘optimal’ � to be �=2:32 for Re=1000.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:43–69
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Figure 4. Streaklines for controlled ow at Re=400 with optimal speed ratio �=2:18.

For Re¿200 the ow is not completely free of vortex shedding (as it can be seen from
Figures 4 and 5). This situation was also described by Chen et al. [5].

In the case presented here (time independent angular velocity) we found that control time
windows smaller than the Karman vortex shedding period (but not smaller than 1.0 time
units) gave satisfactory results. This observation is important since a smaller control window
reduces the computer memory necessary for storing of the state variables (which are required
for the adjoint computation). A smaller time window also means a sizable reduction in the
required CPU time.

5.3. The time histories of the drag coe�cient in the constant rotation case

Practical applications (in aerodynamics) of optimal control for ow around a rotating cylinder
involve the optimization of the drag coe�cient (CD).

We compare the variation of the drag coe�cient in the controlled case (with rotation) with
the corresponding variation for the no-rotation case (�=0). In order to compare them on
the same plot we subtracted from CD the corresponding mean value ( �CD). The mean drag
coe�cients obtained numerically for the case of no rotation were in agreement with the values
reported by He et al. [26] (see Table I).
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Figure 5. Streaklines for controlled ow at Re=1000 with optimal speed ratio �=2:35.

We noticed a very signi�cant reduction in the amplitude of the uctuation for the drag
coe�cient when the ow is controlled.

In a viscous ow the total drag forces are contributed by the pressure and skin friction
due to the viscous e�ects. For known vorticity values (!(x; y)= [(@u=@y)− (@v=@x)]) on the
cylinder surface, the drag can be calculated in the polar coordinates r − �:

CD(t)=CDP
(t) + CDf(t)=

2

Re

∫ 2�

0

[(

@!(t)

@r

)]

S

sin � d�−
2

Re

∫ 2�

0

[!(t)]S sin � d� (12)

where the subscript S denotes quantities evaluated on the cylinder surface and the subscripts
P and f represent the contributions from pressure and friction, respectively.

Figures 9 and 10 show plots of the time histories of the drag coe�cient for di�erent
Reynolds numbers and for time in the interval 06t620 time units. On each plot we present
two graphs: the drag obtained for a ow in the �xed cylinder case (�=0) and, respectively,
the drag for the ow obtained using the optimal value of the control speed ratio � (in each
case we subtracted the corresponding mean value).

The results presented demonstrate the e�ectiveness in improving the drag performance by
selecting a proper rotation rate, the Figures 9 and 10 showing a reduction of more than 60
per cent of the amplitude of the drag variation.
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Figure 6. Comparison between our results (⋄) and the results obtained by Kang et al. [60]:
the speed ratio � vs. the Reynolds number.

Figure 7. Regularization parameter vs. Reynolds number.

5.4. Suppression of Karman vortex shedding for the time harmonic rotary oscillation

Now we consider the angular velocity to be time-dependent. A special case is the time
harmonic rotary oscillation, for which the speed ratio assumes the form �(t)=A sin(2�Ft).

The minimization was performed for values of the Reynolds numbers in the range 1006
Re61000.

Several time windows were used (the length of the control windows varying between 1.0
and 5.0 time units). In order to obtain numerical convergence for the minimization we had
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Figure 8. The optimal speed ratio � vs. the Reynolds number.

Table I. The mean value of the drag coe�cient �CD for various Reynolds numbers.

Re 100 200 400 700 1000

Present work 1.42 1.44 1.54 1.59 1.68
He et al. [26] 1.35 1.36 1.42 1.48 1.52

to choose a time window longer than the Karman vortex shedding period, otherwise the
minimization failed to converge.

The regularization parameter was chosen by trial and error. For this case we could not
�nd a relationship between the regularization parameter and the Reynolds number, as for the
previous constant rotation rate case.

The ow obtained using the optimal values of the angular velocity after the minimization
is presented in Figures 11 and 12. In this case we do not obtain complete suppression of
the vortex shedding. However, if we compare this ow with the uncontrolled ow (described
in Figure 13) we can see that the ow is markedly less turbulent when the optimal rotation
parameters provided by the minimization are employed.

5.5. The time histories of the drag coe�cient for the time harmonic rotary oscillation

Reduction of the drag coe�cient using time harmonic rotary oscillation was reported by
Tokumaru and Dimotakis [4], Baek and Sung [6] and He et al. [26]. The research of He
et al. [26] shows a 30 to 60 per cent drag reduction if one uses a rotating cylinder, compared
to the �xed cylinder con�guration.

Our results are presented in Figures 14 and 15 which show plots of the time histories of
the drag coe�cient for time in the interval 06t620 time units.
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Figure 9. The variation of the drag in the controlled (dotted line) and uncontrolled case
(continuous line) for Re=100.

Figure 10. The variation of the drag in the controlled (dotted line) and uncontrolled case
(continuous line) for Re=1000.

They are not as impressive as the results obtained for the constant rotation case, a possible
reason being that we could not obtain the full suppression of Karman vortex shedding.

Comparing our results with He et al. [26] we can distinguish small di�erences in the numer-
ical values obtained for the optimal control parameters (in both research articles, the forcing
angular velocity is !(t)=!1 sin(2�Set) and the optimal control parameters are the amplitude
!1 and the forcing frequency Se). Our ‘optimal’ amplitude !1 di�ers by at most 10 per
cent from the value reported in their research. We did not obtain the same ‘optimal’ forcing
frequency (which in their case was very close to the lock-in forcing frequency).
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Figure 11. Streaklines for the controlled ow at Re=100 with optimal parameters
A=6:5; F =1:13 (�(t)=A sin(2�Ft)).

One possible explanation for this situation is the following: there is a di�erence in the
formulation of the cost functionals used in our research and those described in He et al. [26]
(this di�erence appears to be due to the setting of the optimal control problem: our main
goal was the suppression of the Karman vortex shedding, while their research aimed toward
reduction of drag).

5.6. Description of the physical phenomena and their corresponding computational results

At low Reynolds numbers (Re¡40) the wake behind a non rotating cylinder comprises a
steady recirculation region with two vortices symmetrically attached to the cylinder, whose
size grows with increasing Reynolds number. When the Reynolds number is slightly larger,
Re¡60, the trailing vortex street becomes unstable and develops an unsteady wavy pat-
tern. For Reynolds numbers 60¡Re¡200, the Karman vortex shedding occurs in the near
wake behind a cylinder due to the ow instability accompanying a large uctuating pres-
sure and, thus, a periodically oscillating lift force. The attached vortices become asymmet-
ric and are shed alternately at a well-de�ned frequency. At higher Reynolds numbers (i.e.
Re¿200) the ow becomes more turbulent and vortex shedding also occurs, but assuming
more complicated patterns this time. In this last case the vortex structures are unstable to 3-D
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Figure 12. Streaklines for the controlled ow at Re=1000 with optimal parameters
A=6:0; F =0:86 (�(t)=A sin(2�Ft)).

perturbations. For this reason, numerical results available from the 2-D codes agree well with
the experimental data for Reynolds numbers Re6160 but results obtained for larger Reynolds
numbers are not always consistent as a consequence of the three-dimensionality e�ect (e.g.
Graham [64]).

For higher Reynolds numbers 3-D codes will yield results which will match experimental
data better than their 2-D counterparts. Zhang and Dalton [65] obtain smaller global quantities
such as drag and lift (with better agreement with experimental values) than the corresponding
2-D simulation, the di�erence being attributed to the phase di�erence of ows in di�erent
spanwise locations caused by three-dimensionality and the 3-D mixing, both absent in the
2-D simulation.

For Reynolds numbers (Re¿160) there are various instabilities. After the wake undergoes
a supercritical Hopf bifurcation (the primary instability) that leads to 2-D Karman vortex
street the secondary instability occurs sequentially, which results in the onset of the 3-D ow.
The periodic wakes are characterized by two critical modes which are respectively associated
with large-scale and �ne-scale structures in span (see Williamson [66], Ding and Kawahara
[67]).

The rotation of a cylinder in a viscous uniform ow is expected to modify the wake ow
pattern and vortex shedding con�guration, which may reduce the ow-induced oscillation or
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Figure 13. Streaklines for the uncontrolled ow at Re=100 and speed ratio �(t)=2:5 sin(1:0�t).

Figure 14. The variation of the drag in the controlled (dotted line) and uncontrolled case (continuous
line) at Re=100 for the time-dependent speed ratio �(t).
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Figure 15. The variation of the drag in the controlled (dotted line) and uncontrolled case continuous
line) at Re=1000 for the time-dependent speed ratio �(t).

augment the lift force. The basic physical rationale behind the rotation e�ect is that as the
cylinder rotates, the ow of the upper cylinder is decelerated and easily separated, while the
ow of the lower cylinder is accelerated and the separation can be delayed or suppressed.
Hence the pressure on the accelerated side becomes smaller than that of the decelerated side,
resulting in a mean lift force (this e�ect is known as ‘Magnus e�ect’ (e.g. Reference [68])).

As we increase the control parameter � (the angular velocity normalized by the free stream
velocity), the ow becomes asymmetric and at the same time the pressure on the lower
(accelerated) side of the cylinder decreases, resulting in a negative downward mean lift. The
rotation e�ect is mainly con�ned to the ow in the vicinity of the cylinder surface. For the
near-surface ow, with increasing � the negative vorticity on the upper side of the cylinder
dominates the positive vorticity on the lower side, thus weakening the vortex shedding which
will eventually disappear.

There is a transition state (called critical state) between the state of periodically alternate
double side shed vortex pattern for smaller � and the state of steady single side attached
vortex pattern for larger � (e.g Ling and Shih [69], Badr et al. [3], Chen et al. [5]).

Another characteristic of the ow is the synchronization of cylinder and wake. This will
determine the apparition of a ‘lock-on’ phenomenon. In the case of time harmonic rotary
oscillations it was described experimentally by Tokumaru and Dimotakis [4] and numerically
by Chou [9] and Dennis et al. [7] who studied the e�ects of the forcing frequency and am-
plitude on a cylinder wake. If the forcing frequency lies in the neighborhood of the natural
Karman frequency the combined system of cylinder and wake will be locked in (and, ac-
cording to He et al. [26], this is the optimal value for the forcing frequency for the drag
reduction).

For this case (time dependent rotational oscillation) two co-rotating vortex pairs are shed
away from the cylinder to form a co-rotating vortex pair which slows down their convection
further downstream, which seems to delay the development of the periodic ow pattern in
the near wake.
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When the forcing frequency is lower than the natural shedding frequency an initial clock-
wise vortex is formed on the lower half of the cylinder when the cylinder is rotated in the
counterclockwise direction and a counterclockwise vortex is formed on the upper half when
the clockwise rotation starts. This leads to a non-synchronized vortex formation mode which
cannot lead to suppression of Karman vortex shedding.

When the forcing frequency is higher than the natural shedding frequency an initial reactive
clockwise vortex is formed on the upper half of the cylinder when the cylinder is rotated in
the counterclockwise direction and a counterclockwise vortex is formed on the lower half
when the clockwise rotation starts, which leads to a synchronized vortex mode (this is one of
the reasons why the optimal values for the forcing frequency obtained in the previous section
cannot be lower than the vortex shedding frequency).

The behavior of the drag coe�cient CD is determined by the fact that ow separation is a
major source of pressure drag and the moving-wall e�ects will postpone this separation. As
shown by Prandtl in 1925 [70] separation is completely eliminated on the side of the cylinder
where the wall and the freestream move in the same direction and on the other side of the
cylinder separation is developed only incompletely.

6. SUMMARY AND CONCLUSIONS

Suppression of Karman vortex shedding is achieved for a ow around a rotating cylinder
using full optimal control. The numerical results obtained here agree to a large extent to
results obtained by other researchers using other numerical or experimental methods to solve
this problem.

An additional result obtained was the signi�cant reduction of the amplitude of the drag
coe�cient using the rotation parameters given by the optimal control.

The main advantage of the optimal-control approach to ow control is the considerable
freedom in choosing the objective function and the parameters of interest. However, this
approach is very complex and quite demanding computationally.

The adjoint method for computing the gradient of the cost functional with respect to the
control parameters provides us with the necessary tool to apply full optimal control to the
problem of a ow around a rotating cylinder.

Our results were obtained for Reynolds numbers in the range [60; 1000]. The next step in
our research will be to apply this method for higher Reynolds numbers.

Also a future research work related to this subject is to consider the application of the
adjoint method to adaptive grids and exploiting the parallelism of this method. These issues
are important factors in reducing the memory requirements (the adaptive grid) and improving
the CPU time (both the adaptive grid and the parallelization).

This optimization problem is characterized by its ill-posedness. Our approach for circum-
venting it was the inclusion of a regularization term in the objective functional. An empirical
law for �nding suitable penalty parameters was found, allowing e�cient minimization to be
performed. There are other approaches for dealing with ill-posedness which can be used as
well: the utilization of a second-order Tikhonov regularization function (e.g. Alekseev and
Navon [71]) or the method of Singular Value Decomposition (SVD) which will decompose
the problem into well-posed and ill-posed components (e.g. Liu et al. [72]).
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7. APPENDIX A: DERIVING THE ADJOINT METHOD

In this section we present the adjoint method for the computation of the gradient of the cost
functional with respect to the control parameters.

The cost functional has the following form:

J[X;�]=
1

2

R
∑

k=0

[X(tk)−X
obs(tk)]

TW(tk)[X(tk)−X
obs(tk)] (A1)

where W(tk) is a diagonal weighting matrix, t06tk6tR, [t0; tR] is the minimization window
and R is the number of time steps in the minimization window.

To �nd the minimum of the cost functional, e�cient minimization algorithms require the
calculation of the gradient of the cost functional with respect to the control parameters:
(∇�J[�])T .

Near X(�) (the state vector at time �) the nonlinear model can be written as:

X(�+ �t)=F(X(�))

To calculate the gradient of the cost functional with respect to the control parameters we
de�ne the change in the cost function resulting from a small perturbation �� about the model
control parameters �:

�J[X;�]=J[X;� + ��]− J[X;�] (A2)

As we take the limit ||��||→ 0, �J[X;�] is the directional derivative in the �� direction and
it is given by:

�J[X;�]= {∇�J[�]}T�� (A3)

On the other hand, �J[X;�] may also be expressed in the following form (using de�nition
(A1) of the cost functional):

�J[X;�]=
R
∑

k=0

(W(tk)[X(tk)−X
obs(tk)])

T�X(tk) (A4)

where �X(tk) is the perturbation of the state vector obtained from the perturbation of the
model parameters ��.

Combining relations (A3) and (A4) we obtain:

{∇�J[X;�]}T��=
R
∑

k=0

(W(tk)[X(tk)−X
obs(tk)])

T�X(tk) (A5)

From the above relation it is clear that we should express �X(tk) as a function of �� in order
to obtain an expression for ∇�J[X;�].
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We start by linearizing the model about the current model solution:

�X(t0 + �t)=
@F(X )(t0)

@�
�� (A6)

Using Equation (A6) for each time step we obtain:

�X(tk) =N(tk −�t)�X(tk −�t)

=N(tk −�t)N(tk − 2�t)�X(tk − 2�t)

=N(tk −�t)N(tk − 2�t)N(tk − 3�t)�X(tk − 3�t)

= · · ·

=Qk�� (A7)

where N(t) ≡ @F[X (t)]=@� and Qk represents the result of applying all the operator matrices
in the linear model to obtain �X(tk) from ��.

With the relation �X(tk)=Qk��, equation (A5) becomes:

∇�J[X;�]=
R
∑

k=0

QT
kW(tk)[X(tk)−X

obs(tk)] (A8)

We de�ne the adjoint equations for the adjoint variables �̂(k):

�̂(k)(t0)=Q
T
k �̂

(k)(tk); for k=1; : : : ; R (A9)

If the adjoint variable �̂(k)(t) at time tk is initialized as:

�̂(k)(tk)=W(tk)[X(tk)−X
obs(tk)]

then the gradient of the cost function with respect to the control parameters is:

∇�J[X ]=
R
∑

k=0

�̂(k)(tk)

8. APPENDIX B: NUMERICAL IMPLEMENTATION OF THE ADJOINT METHOD

8.1. Coding the adjoint and the tangent linear method

If we linearize the nonlinear model we obtain the tangent linear model (TLM). The transpose
of the TLM is the adjoint model.

For coding the TLM, we linearize the original nonlinear forward model code line by line,
DO-loop by DO-loop and subroutine by subroutine.

If we view the tangent linear model as the result of the multiplication of a number of op-
erator matrices: A1A2 · · ·AM where each matrix Ai; i=1; : : : ; M represents either a subroutine
or a single DO-loop, then the adjoint model can be viewed as being a product of adjoint
subproblems: AT

MA
T
M−1 · · ·A

T
1 :
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The correctness of the adjoint of each operator was checked using the following identity:

(AQ)T (AQ)=QT (AT (AQ))

where Q represents the input of the original code and A can be either a single DO-loop or
a subroutine. All subroutines of the adjoint model were subjected to this test.

The accuracy of the gradients calculated by the adjoint method should be at the level of
machine precision. Errors could result due to coding mistakes, round-o� errors or the presence
of non di�erentiable functions.

A method for the gradient check is described below, using the following Taylor expansion
of the cost functional:

J(X + �h)=J(X) + �hT∇J(X ) +O(�2) (A10)

Figure A1. The accuracy check for the gradient for the constant rotation case (top) and
time-dependent rotation case (bottom).
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where ||h||=1; � scalar and ∇J(X) is the gradient of the cost functional J(X) with respect
to X computed using the adjoint code.

Rewriting the above formula, a function of � can be de�ned as (see Navon et al. [57]):

�(�)=
J(X+ �h)− J(X)

�hT∇J(X)
(A11)

The gradient computed using the adjoint model can be assumed to be completely accurate
(up to the machine error) when lim�→0 |�(�)|=1. A validity region of the gradient test is
normally obtained for 10−3

¿�¿� (where � is the machine accuracy). For �¿10−3 we have
truncation error and for � near the machine accuracy roundo� errors prevail.

The results of the gradient check test are displayed in Figure A1.
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