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ABSTRACT

Magnetic nanoflowers are densely packed aggregates of superferromagnetically coupled iron oxide nanocrystallites, which excel during
magnetic hyperthermia experiments. Here, we investigate the nature of the moment coupling within a powder of such nanoflowers using
spin-resolved small-angle neutron scattering. Within the powder, the nanoparticles are agglomerated to clusters, and we can show that the
moments of neighboring nanoflowers tend to align parallel to each other. Thus, the whole system resembles a hierarchical magnetic nano-
structure consisting of three distinct levels, i.e., (i) the ferrimagnetic nanocrystallites as building blocks, (ii) the superferromagnetic nano-
flowers, and (iii) the supraferromagnetic clusters of nanoflowers. We surmise that such a supraferromagnetic coupling explains the enhanced
magnetic hyperthermia performance in the case of interacting nanoflowers.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5121234

The working principle of magnetic hyperthermia (MHT) is to
administer a moderate quantity of magnetic nanoparticles within
tumors and to heat them up by applying alternating magnetic fields
with clinically acceptable parameters [i.e., comparatively high frequen-
cies � 100 kHz but low amplitudes �20 mT (Refs. 1 and 2)] to kill
the tumors. Additionally, a magnetomechanical actuation of the
embedded particles may disrupt the cytoskeleton and lead to cell
death.3,4 In physiological environments, nanoparticles usually agglom-
erate, which can significantly modify their magnetic properties com-
pared to the dilute noninteracting case5,6 and which in turn may alter
their heating behavior.7–10 Depending on the characteristics of the
individual particles and the field parameters, such a clustering can
either improve or impair the MHT performance.11–15 In fact, it was
observed for the so-called nanoflowers, which are densely packed
aggregates of iron oxide crystallites, that they excel during MHT
experiments compared to the single-crystals16 and other systems such
as magnetosomes.17 This intriguing result motivated numerous studies
regarding synthesis and characterization of such flower-shaped
particles.18–23 It can be shown that an exchange coupling between the
cores leads to a superferromagnetic magnetization state24 within the
individual nanoflowers,25 but with a significant internal spin disorder

caused by the high defect density, e.g., due to the grain boundaries.26

It is speculated that such a disordered state enables an increased exci-
tation of the moments,27,28 similar to other defect-rich particles.29

When introduced into tumors, it is safe to assume that the nano-
flowers will agglomerate to clusters, and thus interparticle interac-
tions will be relevant.30 In Bender et al.,31 we could show for
homogeneous superparamagnetic nanoparticles a predominance for
antiferromagnetic-like moment correlations within particle clusters
via polarized small-angle neutron scattering (SANS). In this work,
we use the same approach to determine the nature of the moment
coupling within a powder of iron oxide nanoflowers.

The synomag-D nanoflowers were supplied by micromod
Partikeltechnologie GmbH. They consist predominately of c–Fe2O3 and
are coated with dextran. A detailed study of these particles can be found
in Bender et al.,27 which showed that they are around 39nm in size and
consist of crystallites with sizes ranging from 5 to 15nm. Transmission
electron microscopy (TEM) images were taken with an FEI Titan
80–300 TEM, for which the sample was prepared by putting a small
droplet of the dilute dispersion of the particles on a carbon-coated cop-
per grid. Figure 1 shows a typical TEM image of the nanoflowers, in
which they are agglomerated to small clusters of 3 and 9 particles,
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respectively. As can be seen, the nanoparticles are irregular in shape and
around 30–40nm in size.

The polarized SANS experiment of the nanoflower powder32 was
performed with the instrument D33 at the Institut Laue-Langevin
(ILL), Grenoble (France)33 at room-temperature using a mean wave-
length of k ¼ 0.6 nm (Dk/k ¼ 10%) and a detector distance of 10.3 m.
We employed longitudinal neutron-spin analysis (POLARIS) to collect
the four spin-resolved intensities IþþðqÞ; I��ðqÞ; Iþ�ðqÞ, and
I�þðqÞ, where þ denotes the polarization state “spin-up.” This
approach enables the separation of nuclear and magnetic scattering
contributions and was applied in several studies to investigate mag-
netic nanoparticle ensembles.31,34,35 A homogeneous magnetic field H

was applied perpendicular to the neutron beam (H? k) with a field

amplitude of l0H ¼ 2mT, which was necessary to maintain the neu-

tron beam polarization.
Figures 2(a) and 2(b) display the 2D scattering patterns of the

non-spin-flip (nsf) cross section I��ðqÞ and of the spin-flip (sf) cross
section Iþ�ðqÞ, respectively. For the geometry H? k, the nsf cross
sections can be written as

I66ðqÞ / j~N j2 þ b2hj ~M zj
2 sin 4

Hþ b2hj ~M yj
2 sin 2

H cos 2H

�b2hð ~M y
~M

�

z þ ~M z
~M

�

yÞ sin
3
H cosH

7bhð~N ~M
�

z þ ~N
�
~M zÞ sin

2
H

6bhð~N ~M
�

y þ ~N
�
~M yÞ sinH cosH; (1)

where H is the angle between the scattering vector q ¼ ð0; qy; qzÞ
and the magnetic fieldH and bh ¼ 2:7� 10�15 m=lB, with lB being
the Bohr magneton. Hence, in Figs. 2(a) and 2(b), the field was
applied along H ¼ 0�. Moreover, ~N ðqÞ and ~M ¼ ½ ~MxðqÞ; ~M yðqÞ;
~M zðqÞ� are the Fourier transforms of the nuclear scattering length
density and the magnetization vector field in the x-, y-, and z-direc-
tions, respectively, and the index � denotes the complex conjugate.
One remarkable advantage of POLARIS is that the purely nuclear
scattering can be accessed without further assuming a saturated
magnetic system (absence of misaligned moments). To be precise,
the purely nuclear cross section InucðqÞ / j~N j2 can be determined,
in the case of isotropic structures, from the sector parallel to H of
the nsf intensities.

FIG. 1. TEM image of three separate clusters of nanoflowers. The nuclear SANS
results indicate that within the particle powder large clusters with sizes >160 nm
exist.

FIG. 2. Polarized SANS analysis of the nanoflower powder. The magnetic field with l0H ¼ 2 mT was applied along H ¼ 0� , and the total accessible q-range was around
0.03–0.3 nm�1. (a) 2D scattering pattern of the nsf cross section I��ðqÞ. (b) 2D scattering pattern of the sf cross section Isf ðqÞ. (c) Purely nuclear 1D cross section InucðqÞ /
PðqÞSðqÞ extracted from I��ðqÞ (sector parallel to H, H ¼ 0�6 10�) of the powder, the nuclear cross section InucðqÞ / PðqÞ determined from I��ðqÞ of the dilute colloidal
dispersion (from Bender et al.27) and the magnetic cross sections j~M x j

2
and j~M y j

2
extracted from the sf cross section IsfðqÞ. The dashed line at q ¼ 0:17 nm�1 indicates the

border between the intraparticle length scale (high q) and the interparticle length scale (low q). (d) IsfðqÞ integrated over the whole q-range as a function of H. (e) The correla-
tion functions P(r) extracted by indirect Fourier transforms of the 1D nuclear scattering cross section P(q) of the colloid (from Bender et al.27) and the magnetic cross sections
j~M x j

2
and j~M y j

2
.
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The sf intensities, on the other hand, are of purely magnetic ori-
gin. We assume for our sample that chiral scattering terms can be
neglected,36 and thus we can write Isf ðqÞ ¼ Iþ�ðqÞ ¼ I�þðqÞ, with
(forH? k)37

Isf ðqÞ / j ~Mxj
2 þ j ~M yj

2 cos 4Hþ j ~M zj
2 sin 2

H cos 2H

�ð ~M y
~M

�

z þ ~M z
~M

�

yÞ sinH cos 3H: (2)

The nsf intensity in Fig. 2(a) exhibits basically no anisotropy,
indicating the dominance of the isotropic nuclear scattering and thus
verifying a randomly oriented microstructure. The purely nuclear 1D
cross section InucðqÞ is determined from the sector parallel to magnetic
field of I��ðqÞ and is plotted in Fig. 2(c). As can be seen, InucðqÞ
exhibits a peak at around q¼ 0.17 nm�1. For particle ensembles, the
total nuclear cross section is usually written as InucðqÞ / PðqÞSðqÞ,
where P(q) is the particle form factor and S(q) the structure factor aris-
ing from the particle arrangement.38 For comparison, in Fig. 2(c), we
also plot the purely nuclear scattering cross section of the same nano-
flowers in dilute colloidal dispersion from Bender et al.27 In this case,
there is no significant structure formation, and thus InucðqÞ / PðqÞ.
The observed peak for InucðqÞ of the powder can be thus attributed to
interparticle correlations, which implies an average center-to-center
distance between the nanoflowers of 2p=0:17 nm�1 ¼ 36 nm (near-
est neighbor correlations).39,40 This estimation is in good agreement
with our previous analysis in Bender et al.,27 where we determined an
average particle size of around 39nm. For q ! 0 (i.e., the interparticle
length scale), the forward scattering intensity increases, which indi-
cates the presence of larger structures within the samples.39 Thus, we
can conclude that no long-range order exists but that the nanoflowers
within the powder are agglomerated to large clusters with average
sizes outside the minimal q-resolution, i.e., average cluster sizes of
>160nm.

The sf intensity Isf ðqÞ in Fig. 2(b) exhibits a well-pronounced

anisotropy, and in Fig. 2(d), we plot Isf ðqÞ integrated over the whole
q-range as a function of H. The functional form is well described by
the trigonometric terms from Eq. (2) without the linear term, which
implies equal magnetization along the x-, y-, and z-directions and a
zero net magnetization. This is expected because the sample was in the
demagnetized state (i.e., the powder was not exposed to a magnetic
field prior to the polarized SANS experiment) and 2mT is not suffi-
cient to significantly align the moments (as a reminder, the low mag-
netic field had to be applied to remain the polarization of the neutron

beam). In Fig. 2(c), we plot Isf ðqÞ determined perpendicular to the

field direction, i.e., Isf ðq;H ¼ 90�Þ / j ~Mxj
2, and the difference

between Isf ðq;H ¼ 90�Þ and Isf ðq;H ¼ 0�Þ, i.e., j ~M yj
2. Both cross

sections are in the high q-range (i.e., the intraparticle q-range) basically
identical to each other and to the nuclear particle form factor P(q).
This confirms the superferromagnetic magnetization state within the

individual nanoflowers. In the interparticle q-range (q < 0:17 nm�1),

however, both j ~Mxj
2 and j ~M yj

2 start to deviate from P(q) and increase

strongly with decreasing q. Additionally, it can be observed in Fig. 2(c)

that in the low q-range, j ~Mxj
2 significantly deviates from j ~M yj

2. This

can be attributed to the anisotropy of the magnetic structure factor
and indicates a disordered microstructure without a short range pseu-
docrystalline order.41 The deviation of both magnetic contributions

j ~Mxj
2 and j ~M yj

2 from P(q) is evidence for interparticle moment

correlations between neighboring nanoflowers. To reveal the nature of
these interactions, we extracted the underlying magnetic correlation
functions P(r) from the scattering intensities by indirect Fourier trans-
forms.42 As can be seen in Fig. 2(e), for the two magnetic contributions

j ~Mxj
2 and j ~M yj

2, we obtain positive values for P(r) for length scales

well above the nanoflower size (r � 36 nm), which indicates positive
correlations between the moments of neighboring nanoflowers. This
can be interpreted as evidence for a supraferromagnetic magnetization
state within the clusters of these superferromagnetic nanoflowers.

To conclude, we performed a spin-resolved SANS study on a
powder of iron oxide nanoflowers, which enables the separation of
nuclear and magnetic scattering contributions. Analysis of the nuclear
SANS data shows that the nanoflowers are agglomerated to large clus-
ters. The magnetic scattering contributions then indicate that the
moments between neighboring particles are preferentially aligned par-
allel to each other. We interpret this as evidence for a supraferromag-
netic magnetization state within the clusters of nanoflowers.
Considering that the nanoflowers itself are aggregates of superferro-
magnetically coupled crystallites, the whole system can be thus
regarded as a hierarchical magnetic nanostructure consisting of three
distinct levels, i.e., (i) the ferrimagnetic nanocrystallites as building
blocks, (ii) the superferromagnetic nanoflowers, and (iii) the suprafer-
romagnetic clusters of nanoflowers. It can be assumed that such supra-
ferromagnetic correlations increase the low-field susceptibility of the
ensemble and thus its MHT performance compared to the dilute, non-
interacting ensemble. Indeed, we surmise that our observation explains
the intriguing result in Sakellari et al.19 where for colloidal dispersions
of 50-nm nanoflowers, an increased heating with the increasing parti-
cle concentration was detected, which is in contrast to other nanopar-
ticle ensembles for which usually increasing interactions result in a
decrease in the MHT performance.43,44 Considering that in physiolog-
ical environments usually a clustering of immersed nanoparticles
occurs, it is a promising result for such nanoflowers that their excep-
tional heating behavior can be even further enhanced by cluster forma-
tion. For further studies, we propose a systematic investigation of the
relations between the cluster size and MHT performance for embed-
ded nanoflowers, ideally accompanied by polarized SANS studies to
probe the interparticle moment correlations.
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beamtime at the instrument D33 and David Gonz�alez-Alonso for
his help during the experiment. This project received funding from
the European Commission Framework Programme 7 under Grant
Agreement No. 604448 (NanoMag), the National Research Fund of
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