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Suprathreshold stochastic resonance in neural processing tuned by correlation
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Suprathreshold stochastic resonance (SSR) is examined in the context of integrate-and-fire neurons, with an
emphasis on the role of correlation in the neuronal firing. We employed a model based on a network of spiking
neurons which received synaptic inputs modeled by Poisson processes stimulated by a stepped input signal. The
smoothed ensemble firing rate provided an output signal, and the mutual information between this signal and
the input was calculated for networks with different noise levels and different numbers of neurons. It was found
that an SSR effect was present in this context. We then examined a more biophysically plausible scenario where
the noise was not controlled directly, but instead was tuned by the correlation between the inputs. The SSR
effect remained present in this scenario with nonzero noise providing improved information transmission, and
it was found that negative correlation between the inputs was optimal. Finally, an examination of SSR in the
context of this model revealed its connection with more traditional stochastic resonance and showed a trade-off
between supratheshold and subthreshold components. We discuss these results in the context of existing empirical
evidence concerning correlations in neuronal firing.
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I. INTRODUCTION

One of the more striking facts about neural processing is that
neurons in vitro fire with considerable regularity in response
to a constant stimulus, while neurons in vivo exhibit much
greater irregularity in response to the same stimulus [1]. This
irregularity has often been characterized as noise without this
necessarily implying a lack of functional utility [2]. A number
of possible sources for neuronal noise in vivo have been
proposed, including intrinsic channel noise [3] and Johnson
electrical noise [4], and one of the most important sources,
especially in view of the clear difference between the in vivo
and in vitro cases, is network noise. This argues that noise can
arise from the pattern of spiking inputs arriving at synapses to
a given neuron, which itself may arise due to the presynaptic
neurons themselves having irregular firing patterns, or by their
having a particular pattern of connectivity. The presence of
this irregularity has led to neural spike trains being treated as
stochastic processes, and in particular Poisson processes.

Given the prominence of neuronal noise in vivo, it is
natural to question what the functional role of such noise
might be, especially in neural coding where the map from
stimuli to neural response is explored. Two frequently used
coding schemes are rate coding, which concerns the average
number of spikes per unit time and contains information about
the stimuli in the firing rate of the neuron, and temporal
coding, which focuses on the precise timing of single spikes
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or the high-frequency firing-rate fluctuations which may carry
information [5]. For many years, there has been a debate on
the significance of temporal coding vs rate coding within
the neuroscience community. Some suggestions, such as
coincidence detection, posit the existence of a precise temporal
code in neural spike trains [6,7], arguing that the variability in
neural spike trains is directly useful in capturing features of the
presynaptic input. Others reject these claims [8§—10] and argue
for a rate code in which it is the number of spikes occurring
in a given short time period that is the principal carrier of
information, regardless of the precise timing of the spikes
within that period. Although the debate about temporal and
rate coding continues [2,11,12], both temporal and rate coding
allow for the possibility that neuronal noise is beneficial in
neural information processing.

One well-documented example of the benefits of noisy
coding is stochastic resonance (SR) [13,14], in which an appro-
priate amount of noise can help to reveal the temporal structure
in a predominantly subthreshold signal. Neurophysiological
experiments have suggested that the mechanism could be used
by sensory systems [15] and motor systems [16] in enhancing
the perception and transfer of information. In neural systems
this has also been demonstrated in the context of both temporal
coding [17], including specifically coincidence detection [18],
and rate coding [19]. However, in general, traditional SR
suffers from the problem that neural systems are adaptive in a
number of ways, including a limited ability to independently
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vary firing thresholds and tune the intrinsic noise level, and
so an effect which relies on thresholds set above a signal dc
level and noise adjusted close to an optimal level is inevitably
limited in scope.

In the last decade, an important new form of SR has been
discovered which does not require subthreshold signals, but
instead operates in a quite different way in the context of
a population of simple processing elements [20,21]. Termed
suprathreshold stochastic resonance (SSR), this suggests an-
other possible functional role of noise in neural processing and
one that is likely to be much wider in scope than traditional SR.
This has been demonstrated in simple, discrete time, models of
threshold units, the specific context of the bifurcation point of
neurons modeled by the Fitzhugh-Nagumo equations [21-25],
a population of Poisson neurons [26], and for the more
common models of integrate-and-fire neurons and Hodgkin-
Huxley neurons [27,28]. These previous investigations mainly
concentrate on tuning the noise level, but it is not clear how this
relates to the noisy environment in which neurons operate. It is
desirable to seek a more biophysically plausible way to realize
the phenomenon, and to that end in this paper we present a
demonstration for integrate-and-fire neurons when presented
with inputs modeled by Poisson processes (the most common
paradigm), adopting a rate coding perspective. In particular,
we demonstrate that improved information processing shown
in SSR may be achieved in neural systems by tuning the
correlations in neuronal firing in a way that conforms to known
biophysical properties.

II. MODEL AND INPUTS

A. Integrate-and-fire model

We first describe a simplified neuron model that is widely
used in the computational neuroscience community as it
demonstrates similar dynamics to biological neurons at the
level of individual spike trains: the leaky integrate-and-
fire model [29-31]. It receives inputs modeled by Poisson
processes (that can be nonhomogenous in the general case)
which represent the effect on the membrane potential (the
principal state variable) of inputs from other neurons; this
version, commonly called Stein’s model [32,33], has been
used previously to examine traditional SR [19].

The main state equation for the integrate-and-fire neuron is

dv(t) = —%V(t)dt +dI(), (1)

where V (¢) is the membrane potential and is a function of time,
y is the membrane time constant which controls the speed
of decay of the membrane potential, and I(¢) is the external
input to the neuron. A spike is recorded when V(t) crosses
the threshold Vipgesh, at which point the neuron is reset to the
resting potential Vi.g. This gives us a set of s firing times t;
which make up a spike train that is characterized by the neural
response function p(¢):

T = inf{t > Ti—1 - V([) = Vthresh|v(7:i—l) = Vresl}a
79 = 0, (2)

p0) =7 8t —m),
i=1
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For all experiments presented in this paper, y = 20 ms,
V(t) has a resting potential Vieq = —70 mV and a firing
threshold Vipesn = —50 mV. These values were chosen to be
in a biophysically plausible range.

Our model consists of N integrate-and-fire neurons, each
of which receives a continuous noisy input 7,,(#) and generates
a spike train output p,(¢), with 1 < n < N. The spike train
of the nth neuron is converted into a continuous firing rate by
convolution with a Gaussian filter:

y(t) = / dr o(x)on(t — 1),

oo
1 72
expl—=—]-
J2no, P 207

The Gaussian filter is noncausal (centered upon the current
time and therefore using spikes from the future as well as the
pastinits estimate), which provides an unbiased estimate of the
firing rate at any given point in time, and has a width equal to
the membrane time constant (o, = 20 ms). This method avoids
problems of edge effects associated with more straightforward
binning and counting methods [34]. The output of the complete
system of neurons, y(t), is simply the mean firing rate averaged
across the population:

3)

w(t) =

1 N
() =+ D ). “)

n=1

This model is used in all of the experiments presented here.

B. Input stimulus

The inputs &, are independent, uniformly distributed integer
random variables, between limits [10,40] which were chosen
to reflect typical firing rates. x is the indicator function and
Tw = 250 ms is the length of time the signal remains at one
value, giving the time-dependent stimulus x(¢):

x(0) =) Ex(t € {(k — DTy kTw}). )
k

The input therefore consists of a simple stepped signal
taking four values in turn (10, 20, 30, 40) and which changes
every 250 ms. These inputs are used in all of our experiments
here except the final ones on adaptive correlation control
(where they are replaced by a similar step function but covering
a wider range of values). How the stimulus x(¢) is mapped onto
the inputs /(¢) which the neurons actually receive is specified
in individual experiments.

C. Performance measurement

In keeping with previous work on SSR [21-23], our
performance measurement is given by the mutual information
of the system, which characterizes the information processing
capability of the system. This is a probability-based approach
which essentially measures the extent to which the inputs and
outputs can be predicted from each other. It is given by

MI = Hy — Hioises

o0
Hy = _/ dy Py(y)l()gz Py(y),
—o0
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Hiope = — / / dx dy P,(x)Py(y|v) logs P,(yx).  (6)

Here H, is the entropy of the output, and Hygise gives the
noise entropy, which essentially represents how much of the
output entropy is due to noise rather than the input signal x.
The difference between them is the mutual information MI,
which characterizes how well the output y can be predicted
given knowledge of the input signal x. The mutual information
is evaluated numerically throughout; the source code used to
achieve this and all other aspects of our simulations presented
here can be downloaded from [35]. It is calculated from the
probability distributions of the respective input and output
variables, which are estimated with a histogram technique
with the same measurement resolution used in all instances.
This ensures that the distributions are accurately estimated
and that the measurement resolution plays no direct role in the
estimation of mutual information.

In general, noisier inputs will lead to lower mutual infor-
mation, all other things being equal, but if the information
processing capability of the system is actually enhanced by
the presence of a certain level of noise, then we would expect
to see the mutual information increase in these circumstances;
hence, mutual information is a very appropriate way to test
for SSR. In our model, if the population of neurons have
an input that is completely predictable on the basis of the
firing rate output (assuming that the output system has enough
capability to represent all of the input information), even if the
output itself is not smooth (as may be the case for a neural
population subject to intrinsic noise, depending on the specific
form of the noise) or in the same range as the input, then the
mutual information will match the entropy of the input. An
example of the input signal and performance measurement
used in our model is shown in Fig. 1. The stepped input to
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FIG. 1. Entropy and mutual information with a noise-free stepped
input and a noisy output. The input signal has an entropy of 2 bits,
which limits the amount of information that can be transmitted to that
level, while the output signal has a much higher entropy of just under
6 bits. The mutual information nearly matches the input entropy,
reflecting the fact that in spite of the noisy output, the input can still
be strongly predicted on the basis of a given output value.
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the model takes just four discrete values and is the limiting
information factor in all of our simulations here (except the
last ones on adaptive correlation control), so the maximum
mutual information attainable with this input is two bits.

D. Suprathreshold stochastic resonance

It is useful when first testing for an SSR effect in our model
of integrate-and-fire neurons to adopt a similar approach to
that used in the basic SSR model [21-23] and control the input
signal and noise level directly. In this case, therefore, the inputs
d1,(t) to each neuron of the model were directly characterized
by independent signal and noise terms. The signal is simply
the value of the stimulus x(#) as previously described, with the
same value for all units at a given time point, and the noise is
a random Gaussian variable with zero mean and variance O’XZ,
which is independent for each neuron, hence the inputs can be
described as

dl,(t) = x(t)dt + o,d B, (1), @)

where B, (t)(n = 1,2, ...,N) are mutually independent stan-
dard Brownian motions. The results for different numbers of
neurons in the model, in terms of mutual information as a
function of the noise parameter o,, are shown in Fig. 2. These
results have a strong similarity to the results of the basic model
and of previous SSR models using integrate-and-fire neurons
[27,36] and clearly show that our model of integrate-and-fire
neurons is capable of demonstrating SSR behavior. Networks
with more than one neuron improved performance in the
presence of noise, with greater improvement for a greater
number of neurons, while a model containing just a single
neuron showed no improvement.

III. POISSON INPUTS AND DIFFUSION APPROXIMATION

The experiment in the previous section demonstrates the
existence of SSR in a network of integrate-and-fire neurons
but does so by directly specifying the inputs, including an

FIG. 2. Mutual information shown as a function of the noise
strength. Networks containing more than one neuron benefit from
some noise, as predicted by SSR theory.
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independent additive noise component, to each neuron. In
reality, neurons are subject to spiking inputs from other
neurons. Given this, the inputs I,(t) are most commonly
modeled as Poisson processes where the noise level scales
with the signal; in other words, we have a system with
signal-dependent noise rather than independent additive
noise.

The state equation of the nth neuron in our model is given by
Eq. (1) but with d I,,(¢) now specified in terms of excitatory and
inhibitory postsynaptic potentials due to presynaptic action
potentials:

dv,(t) = —%Vn(t)dt +dI,(1),
» . ®)
dI,(t) = aidExc, (1) = Y _ bjdlnh, ;(t).

i=1 j=1

Exc, ;(t) are nonhomogeneous Poisson processes that repre-
sent the p excitatory postsynaptic potentials (EPSPs) with rate
Ag.i(t) and a magnitude of g;; the ¢ inhibitory postsynaptic
potentials (IPSPs) Inh,, ;(¢) are also nonhomogeneous Poisson
processes with a rate A; ;(f) and a magnitude of b;. For
the sake of clarity, in the following the subscript i (j) is
dropped from Ag ;(t) and a; (A;;(t) and b;) and we adopt
the simplifying assumption that the input processes share the
same magnitude a (b) and rate Ag (A;). Invoking a diffusion
approximation [37,38] and thereby separating out the mean
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and variance terms, we can write these inputs as
Exc, (1) = Ap(t) + v/ Ae(0) B, (D),
Inh, ;(t) = A (1) + /A (1) B, (D),

which gives the total synaptic input to the nth neuron as

p q
dl,(t) = a Z Ap(t)dt — b Z A(t)dt

i=1 j=1

r
+ay_ Vrpt)dBE (1)
i=1

©))

q
—b Y \a@)dB] ;o) (10)
j=1

where Ap(z) is the excitatory Poisson process parameter,
Az(t) is the inhibitory Poisson process parameter, Bf ;(t) are
standard Brownian motions for the EPSPs, B,{ J (t) are standard
Brownian motions for the IPSPs, and all other variables are
as previously specified. Noting that the standard deviation
of a sum or difference of N (not generally independent)

Gaussian processes n with mean individual variance 0772 and

. . . 2 N
mean correlation coefficient ¢ = NN-Do? S (ming) —

(n:){n;)) is given by \/N[onz + ¢(N — 1)o], and that the sum
of a set of Brownian motions is also a Brownian motion, we
can further simplify this to

d1,(t) = laphp(t) — bgh (D] dt + (Va?re()pll + (p — Degl + b2A(0)gl1 + (q — Der)d Ba(o), (1D

in which the first term represents the signal, the second
term describes the noise fluctuations, and cg and c¢; are the
mean correlation coefficients for the excitatory and inhibitory
synaptic inputs, respectively. In general, cx and ¢; can take
positive or negative values, with an upper bound of 1 (fully
positively correlated) and a lower bound of cx > —1/(p — 1)
and ¢; > —1/(g — 1). B,(¢) are by definition independent of
each other, since any mutual dependence between the inputs is
incorporated into the correlation coefficients and the Gaussian
form ensures no higher order dependencies exist.

It is important to note that in the above diffusion approxi-
mation we treat the sum of N Gaussian random variables as a
Gaussian random variable, but this is not inherently true in the
general case. There are, however, an important set of scenarios
for which this assumption does hold true. These include the
case of independent Gaussian random variables (not relevant
in our scenario), the case where the joint distribution of the
correlated variables is still Gaussian (a more widely applicable
case, including in our scenario) and a much wider case based
on consideration of the following facts. Suppose X; and X, are
two uncorrelated standard normal random variables, and if we
define a new random variable Y; as Y; = pX; + /(1 — p?)X,,
then Y| is also a Gaussian random variable. Obviously, Y is not

generally independent of X,, having a correlation coefficient
p, but their sum Z =Y, 4+ X, is still a Gaussian random
variable. In many cases, the sum of potentially correlated
Gaussian random variables is thus still Gaussian, and this
kind of treatment has been commonly used in theoretical
neuroscience and our scenario is also founded on this
premise.

For SSR, it is necessary that the mean input value is greater
than or equal to the neural firing threshold in our model.
To achieve this in the context of integrate-and-fire neurons
receiving excitatory and inhibitory Poisson inputs we control
the ratio of excitatory and inhibitory inputs [39] by specifying
a single firing rate parameter A(¢), which is defined as the sum
of the parameters A g (¢) that characterize the individual EPSPs,
and a time-averaged constant ratio of excitatory to inhibitory
inputs r such that rA(¢) is the sum of the parameters for the
IPSPs:

p
M) =) rp(),
i=1

. (12)
rAt) = ZA,(:).

j=1
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This framework is more commonly used in the context
of balanced inputs, that is, where excitatory and inhibitory
inputs exactly match [40,41], and where this ratio is preserved
at all times (even under changing stimulus conditions) by an
implied mechanism that scales excitatory and inhibitory inputs
simultaneously. Here we have relaxed these two assumptions,
and instead adopted a balance that, averaged over time and
spatial fluctuations in the model, favors excitatory inputs just
to the extent required to reach firing threshold on average,
in which circumstances we have E{%} =0and E{V(t)} =
Vinresh, NOting that these refer purely to the requirements for the
inputs and give the actual expected values in the absence of a
reset mechanism after firing. This has the additional benefit of
being biophysically more plausible than the exactly-balanced-
at-all-times scenario because it does not require a mechanism
for the instantaneous shift of the excitatory-inhibitory ratio
under different stimulus conditions in order to maintain the
balance.

We first rewrite the signal and noise in terms of separate
mean and standard deviation:

dl,(t) = u(t)dt + o ()dB,(1),
w(t) = apip(t) — bgi(), (13)
o ()= varg()p[1+(p—Degl + b2 (g1 +(g — Dey].

Our requirement of inputs on average matching the firing
threshold as previously stated means

1
0=E _;Vthresh"‘zln(t)
! (14

Vthresh

= E{n(n)},

because wu(t) is the expected signal value and the expected
noise value is zero by definition. Expressing this in terms of
our firing rate parameter A and ratio r gives us the general
result

u(t) = At)(a — br)
o (1) = Va?r(@®)[1 + (p — Degl + b2A0)r[1 + (g — Dey]

o g _ Vlhresh
r_E{b any} 4>

Here the symbol {} denotes taking the average value of
A(t) over time. For our demonstration of SSR in a model
of integrate-and-fire neurons receiving Poisson inputs, and to
facilitate comparison with [19], weseta =b =1, p=¢q =
50, and cg = ¢; = 0 (uncorrelated inputs); it should, however,
be noted that in general the central behavior of the model is
similar across a very wide parameter space. We also need to be
able to separately control the noise level in order to determine
whether or not any nonzero level of noise gives improved
performance. For this experiment we use a noise coefficient
o, prepended to the synaptic input expression given in Eq. (15).
It should be noted that only in the special case of o, = 1 are
the inputs strictly Poisson processes; nevertheless varying the
parameter from this value can be seen as a reflection of the
wide variety of Fano factors both above and below that of
a Poisson process reported in the literature for neural spike
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FIG. 3. Mutual information shown as a function of the noise
strength. Once again, networks containing more than one neuron
benefit from some noise.

trains under different conditions [42]. These facts allow us to
simplify Eq. (15) for this particular experiment to

p(t) = A@)(d —r),

o(t) =yox(1+7), (16)

v res
r:E{l— h Sh}.
Mty
Setting the input firing rate parameter to the stepped input
signal previously defined in Sec. II B, A(t) = x(¢), we obtained
the results shown in Fig. 3. The SSR effect is once again

clearly present, demonstrating that neurons receiving spike
train inputs appear to benefit from noise.

IV. CORRELATION CONTROL

In the previous experiment, although neurons received
summarized spiking inputs stimulated by a stepped input
signal and which allows noise to scale with the inputs, the
noise was further scaled explicitly and independently of the
signal (via the parameter o,). In addition, the inputs were
strictly uncorrelated; that is, cg = ¢; = 0 in Eq. (15). Both
of these are unlikely to be true in the general case, so in
this section we present a model which still receives spike
train inputs (including in one example strictly Poisson spike
trains), but where noise is no longer directly controlled
(except insofar as we set different noise parameter values
for comparison across different simulations), and inputs can
now be correlated. Correlation has previously been studied in
the context of SSR [43], where it was found that positive
correlations in the background noise decrease information
transmission and reduce the benefits of population coding.
Here, we study the more biophysically interesting case of the
correlations in spiking neuronal inputs, rather than artificially
controlling noise correlation directly. We also consider the full
range of negative to positive correlations, in contrast to the
exclusively positive correlations studied by [43]. In principle,
the excitatory and inhibitory input correlations cg and ¢; can
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be tuned independently of each other and certain combinations
will still lead to SSR, but a full exploration of this parameter
space is beyond the scope of the current study. Instead, here we
adopt a single correlation parameter in this section by defining
¢ = cg = ¢y for the purpose of clarity of demonstration and
to allow a comparison with previous work [19,43] which also
used a single correlation parameter.

We first fixed the input noise parameter o, at a chosen value
(shown in the figures) and then measured mutual information
as a function of correlation instead by systematically varying
the value of ¢ [cgand ¢; in Eq. (15)] across a range of values
and obtaining the output of the network for each correlation
value in turn. We againseta = b = 1, p = g = 50 to facilitate
comparison with our earlier results.

It can be seen in Fig. 4 that for a typical low value
(<1) of the input noise parameter (o, = 0.4), negatively
correlated inputs give optimal performance. In fact, o, must
be approximately 0.2 for small numbers of neurons N to have
optimal performance from uncorrelated inputs. In the special
case of o, = 1.0, which is equivalent to having no additional
noise scaling parameter o, prepended to the variance of the
diffusion approximation in Eq. (15) and therefore gives strictly
Poisson inputs, optimal performance comes from negatively
correlated inputs. The more general result across a range
of o, and correlation values can be seen in Fig. 5. The
ridge of highest mutual information values shows that as
the noise parameter becomes larger, the correlation must
become more negative to compensate and retain optimal
information transmission. Importantly, this ridge is also higher
than the plateau that exists for low values of o, and c; this
plateau represents the situation where the noise input is too
low to drive neurons in receipt of subthreshold input signals
to reach their firing threshold. In other words, a significant
nonzero amount of noise results in improved information
transmission in this network of N = 30 neurons, which is
in keeping with SSR.

It is instructive to examine the mutual information sepa-
rately for the subthreshold and suprathreshold regions of the
input space, as well the total (combined) mutual information.
We are able to do this due to the use of a time-averaged ratio
of excitatory and inhibitory inputs » in combination with a
stepped input signal x(#) [still defined by Eq. (5), but here with
limits (5,100) and an increment size of 5], shown in the bottom
panel of Fig. 6. This means that the inputs are, averaged over
time, enough to cause the network neurons to spike without
any additional noise, but this can be divided into subthreshold
inputs, which are below average and insufficient to stimulate
spiking behavior without additional noise, and suprathreshold
inputs which are above average and can stimulate spiking
behavior without additional noise. The results for a network
of 20 neurons receiving either subthreshold, suprathreshold,
or all (subthreshold and suprathreshold) inputs, are shown
in the top panel of Fig. 6. It is clearly apparent that as
correlation becomes more positive, thereby increasing noise,
the suprathreshold signal loses MI, while the subthrehold
signal gains MI. This provides an interesting link between
SSR and classical SR; we are seeing a classical SR effect for
the subthreshold component of the signal which up to a certain
level outweighs the detrimental effect on the suprathreshold
signal, giving an overall benefit. The bottom of Fig. 6 clearly

PHYSICAL REVIEW E 84, 011923 (2011)

-0.010408 0.079592

[

N=30

—-0.010408 0.079592
[

—0.0194082 —-0.0104082
C

~0%%0a082 0.0795918

FIG. 4. Mutual information as function of correlation. The
vertical dotted line gives the zero correlation position; logarithmic
spacing is used for visual clarity. (Top) o, = 0.2; uncorrelated inputs
give optimal performance. (Middle) o, = 0.4; negatively correlated
inputs give optimal performance at this noise level. (Bottom) o, = 1;
negatively correlated inputs give optimal performance in the absence
of a special noise parameter.
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FIG. 5. Mutual information shown as a function of correlation
and noise strength, for a network of N = 30 neurons. The vertical
plane shows the position of zero correlation.

shows the reason why; the subthreshold signal has no response
at all because the signal is not strong enough to reach threshold
and there is no noise to assist it. This is both traditional SR,
because noise would clearly help to sometimes push the input
over threshold, and more often when the signal is closer to the
threshold, and SSR because varied thresholds in the neurons
would allow some to respond to a subthreshold signal because
their individual thresholds would also be below the signal dc
level. This is the theoretical link between SR and SSR.

The fact that noise is required to boost subthreshold signals,
but potentially damaging for suprathreshold signals, suggests
that an adaptive correlation control procedure could be highly
beneficial in optimizing information transmission. A relatively
high correlation (according to a model-specific scale; in this
case relatively high essentially means uncorrelated) at low
signal levels could generate a high level of noise that would
boost the signal into the threshold region, and as the signal
level becomes higher, the correlation should become more
negative, reducing noise and thus limiting the detrimental
effect on the suprathreshold signal region. An example of
this is shown in Fig. 7. Whereas in previous simulations the
correlation value was held constant across time within a single
run, here the correlation value was varied with time in the way
shown in the top panel of Fig. 7. This correlation function
was created in a simple piecewise fashion, with the correlation
decreasing from an upper limit of —0.01, to a lower limit
of —0.020 408 which is the minimum possible correlation
value —1/(q — 1) where ¢ = 50 is the number of Poisson
input processes. The correlation decreased as a logarithmically
spaced step function with 11 steps, each timed to coincide with
a change in the input stimulus value. As the stepped inputs
increased, the correlation became more negative, reducing the
noise level accordingly, until the input stimulus reached the
suprathreshold point, at which time the correlation attained its
most negative value and remained there for the remainder of
the simulation. This is an adaptive correlation control in the
sense that the correlation decreases when the signal increases;
this was defined arbitrarily in this case, but a mechanism
specifically linking these can be conceived in principle. The
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FIG. 6. (Top) Mutual information as a function of correlation for
all inputs, subthreshold inputs, and suprathreshold inputs; N = 20
here. This shows that increased noise is beneficial for the subthreshold
part of the signal and detrimental to the suprathreshold part of the
signal. (Bottom) Stimulus and response for a zero-noise case (o, =
0). The flat response in the subthreshold region results in low mutual
information in the absence of noise.

results of simulating the same network of 20 neurons with
the same stepped input signal as that used in the previous
example (Fig. 6), but now with adaptive correlation control,
is shown in the bottom panel of Fig. 7. It can clearly be
seen that overall information transmission is improved by
using the adaptive procedure beyond the highest level possible
with a fixed correlation value that does not change over time,
by controlling noise level in response to prevailing stimulus
conditions. This example is certainly not optimal in any sense,
but is presented as a proof of concept. It uses the same model,
including the same time-averaged ratio of balanced inputs r, as
our examples in the previous sections. In practice, the r could
not be estimated from the input signal prior to that signal being
presented to the model; that is, our mechanism as above is not
strictly causal. However, the model is in practice robust to
different values of this ratio, and as long as inputs are usually
within limits learned from prior experience, as is the case for
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FIG. 7. (Top) Adaptive correlation control. The correlation de-
creases as a function of input, using a piecewise step function as
shown. (Bottom) Stimulus and response with adaptive correlation
control. The subthreshold region now has some response, though not
optimal, and the suprathreshold region remains largely free of the
detrimental effect of noise.

typical firing rates of particular types of neurons [44], then a
value for this ratio can be obtained in advance. However, the
question of the optimal adaptive technique that could be used
remains open to research, as does the question of how, if at all,
the brain implements such a feature.

V. DISCUSSION

Suprathreshold stochastic resonance is an important new
phenomenon that offers a functional explanation of noise
in information processing systems. We have developed a
framework for SSR in the context of integrate-and-fire neural
models, both with independent noise and with Poisson process
spiking inputs modeled by a diffusion approximation. Our
results demonstrate that within a model of spiking neurons
receiving other spiking inputs driven by a simple stimulus,
SSR is present and optimal information transmission can be
achieved with a nonzero level of noise. Moreover, we have
shown that this noise level can be tuned by correlations in
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the presynaptic neural firing, with more negatively correlated
firing resulting in decreased noise (and vice versa). In our
simulations, a model receiving Poisson inputs with a fixed
level of correlation achieved optimal information transmission
when the presynaptic firing was negatively correlated. We also
demonstrated, however, that there is a theoretical link between
SSR and traditional SR in our model, and that information
transmission could be improved still further by the use of an
adaptive correlation measure, which boosts noise when the
input signal is in a subthreshold regime and reduces it when
the signal is suprathreshold.

Our results are in broad agreement with previous theo-
retical studies on correlation in neural systems, which have
demonstrated that even small positive correlation results in
reduced information transmission [43], to the extent that
population coding is redundant beyond units of at most a few
hundred neurons [45,46], while negative correlation results in
increased information transmission in the context of traditional
SR [19]. The benefits of negative correlation exist not only
for presynaptic firing, but also extend to neurons within
the model itself, which may occur due to mutual inhibitory
connections [47].

Given these clearly established theoretical benefits of
negatively correlated firing, it seems odd at first glance that
empirical findings suggest the presence of weak positive
correlations in neural firing in vivo [46,48,49]. However,
there are several possible explanations for this which are
compatible with the results of theoretical modeling. First, the
concept of redundancy reduction has been proposed for the
visual system [50,51] (but see also [52]), which suggests an
increasingly sparse representation as we move from retinal
ganglion neurons through the lateral geniculate nucleus into
the primary visual cortex and beyond, something which is
corroborated by results from sparse coding and independent
components analysis models [53-56]. As a sparse repre-
sentation is inherently likely to exhibit reduced correlation,
this suggests that the weak positive correlation observed in
retinal ganglion neurons may be reduced in cortical areas.
Second, existing correlation measures have looked primarily at
neighboring neurons in sensory areas such as the retina. These
are typically organized in a way that neighboring neurons
will have similar receptive fields [57], so mutual input to
these neurons is an extrinsic driving force toward positively
correlated firing [8]. Just as spike timing variability increases
along the visual pathway from retina to cortex [58], so it
may also be expected that the influence of mutual input on
the positive correlation of neighboring neurons decreases,
particularly in higher cognitive areas which have less of a
sensory topological organization. Third, SSR is based on
increasing the diversity of the output response [21,25]. This
should be more strongly present in neural areas with a
greater biophysical diversity of neuronal properties than retinal
ganglion or even thalamic neurons. Recent evidence suggests
that this is indeed the case [59], with more intrinsically
diverse neurons exhibiting reduced correlation and increased
information transfer.

These additional factors suggest that, rather than looking
at a single correlation measure in sensory areas, it may be
more beneficial to look at correlation in the same areas under
different conditions [60]. In particular, our model predicts that
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as a signal gets stronger, the correlation should decrease in
order to control the noise and continue to optimize information
transfer. This has received little empirical investigation to
date, but was addressed in two recent multielectrode studies
looking at the olfactory bulb of the sheep [61] and the
anterior superior temporal sulcus of the macaque monkey
[42]. Both of these studies found that stimulus onset (as
opposed to background, rest or habituation) was accompanied
by a temporarily decreased correlation between neurons.
Modeling this response, the author of [42] found that this
transiently decreased correlation at stimulus onset increased
the transmission of information about this stimulus beyond
what could be achieved with a purely static correlation
measure. We believe that SSR, and its connection to traditional
SR demonstrated in our model, provides the theoretical
underpinning of these findings. This also emphasizes the

PHYSICAL REVIEW E 84, 011923 (2011)

importance of adopting the right measure of correlation, in
particular, using an appropriate baseline condition and treating
correlation as a nonstationary variable. It is too early to say
for certain that SSR exists in real neural systems, but our
demonstration and explanation outlined here suggest that this
is very likely to be the case, and the evidence to date is
encouraging.
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