Suprema of chains of operators

Gerd Herzog, Christoph Schmoeger

Karlsruher Institut für Technologie
Institut für Analysis, D-76128 Karlsruhe, Germany
gerd.herzog2@kit.edu, christoph.schmoeger@kit.edu

Abstract

Let \mathcal{E} be a real Banach space of operators ordered by a cone K. We give a sufficient condition for that each chain which is bounded above has a supremum. This condition is satisfied in several classical cases, as for the Loewner ordering on the space of all symmetric operators on a Hilbert space, for example.

MSC classification (2010): 46B40, 47L07
Keywords: Ordered operator spaces, Loewner ordering, chains, Tarski's Fixed Point Theorem.

1 Introduction

Let E be a real Banach space ordered by a cone K. A cone K is a closed convex subset of E such that $\lambda K \subseteq K(\lambda \geq 0)$, and $K \cap(-K)=\{0\}$. As usual $x \leq y: \Longleftrightarrow y-x \in K$. For $x \leq y$ let $[x, y]$ denote the order interval of all z with $x \leq z \leq y$. A chain $\mathfrak{C} \subseteq E$ is a nonempty and totally ordered subset of E and a chain \mathfrak{C} is called order bounded above, if

$$
\exists y \in E \forall x \in \mathfrak{C}: x \leq y
$$

We say that the order on E (or K for short) has condition (C) if sup \mathfrak{C} exists for each chain $\mathfrak{C} \subseteq E$ which is order bounded above. Condition (C)
is an assumption for various fixed point theorems and existence results for differential equations in abstract spaces, see [6], [7], [8], [11], [12], [13] and the references given there. Moreover condition (C) is valid if K is a regular cone (that is, each increasing and order bounded sequence is convergent), see [2, Lemma 2] or [7, Lemma 1], and from condition (C) it follows that K is normal (that is $0 \leq x \leq y$ implies $\|x\| \leq \gamma\|y\|$ for some constant $\gamma \geq 1$), see [1, Lemma 2]. Several examples for nonregular cones with property (C) are known [7], an important example is the Banach space of all bounded sequences $l^{\infty}(\mathbb{N}, \mathbb{R})$ ordered by the cone of all nonnegative sequences. In this note we will prove property (C) for a certain class of operator cones, including the cone of all positive semidefinite operators on the space of all symmetric operators on a Hilbert space, for example.

2 Ordered operator spaces

Let E be a real or complex Banach space, let $\mathcal{L}(E)$ denote the Banach algebra of all continuous linear operators on E endowed with the operator norm, and in the sequel let $\mathcal{E} \subseteq \mathcal{L}(E)$ be always a real Banach space with respect to this norm. Moreover let \mathcal{E} be ordered by a cone $K \subseteq \mathcal{E}$. Let us say that K has property (P) if it satisfies the following conditions.
1.) If $\left(A_{n}\right)_{n \in \mathbb{N}}$ is an increasing sequence in \mathcal{E} such that

$$
A_{n} \leq B \quad(n \in \mathbb{N})
$$

for some $B \in \mathcal{E}$, then $\left(A_{n} x\right)_{n \in \mathbb{N}}$ is convergent in E for each $x \in E$.
2.) If $A \in \mathcal{L}(E)$ and if

$$
\forall x_{1}, \ldots, x_{m} \in E \forall \varepsilon>0 \exists C \in K \forall j=1, \ldots, m:\left\|A x_{j}-C x_{j}\right\| \leq \varepsilon,
$$

then $A \in K$.

Examples:

1. Let $E=H$ be a complex Hilbert space with inner product (\cdot, \cdot), and let $\mathcal{E}=\mathcal{L}_{s}(H)$ denote the real Banach space of all linear and symmetric (hence continuous [10, Ch. VIII]) operators on H, endowed with the operator norm, and ordered by the cone

$$
K=\left\{A \in \mathcal{L}_{s}(H):(A x, x) \geq 0 \quad(x \in H)\right\}
$$

The order defined by K is called Loewner ordering. Let I denote the identity operator, and note the following property of this ordering:

$$
\|A\| \leq c \Longleftrightarrow-c I \leq A \leq c I
$$

In particular the unit ball in $\mathcal{L}_{s}(H)$ is the order interval $[-I, I]$. It is clear that K is regular if and only if $\operatorname{dim} H<\infty$. Moreover $\mathcal{L}_{s}(H)$ is not a lattice with respect to this ordering unless $\operatorname{dim} H=1[3$, Ch. 1, Ex. 4]. However, K has property (P) : Condition 1. of property (P) follows from Vigier's Theorem [10, Ch. VIII, Theorem 1], and condition 2. can easily be checked by means of the Cauchy Schwarz inequality.
2. Let E be any real Banach space ordered by a regular cone K_{0} which is total (that is $\overline{K_{0}-K_{0}}=E$). Then, the set of all monotone operators

$$
K=\left\{A \in \mathcal{L}(E): A\left(K_{0}\right) \subseteq K_{0}\right\}
$$

is a cone in $\mathcal{E}=\mathcal{L}(E)$, and K has property (P) : Condition 1. of property (P) follows trivially from the regularity of K_{0}, and condition 2 . holds since K_{0} is a closed set.
Using the method for regular cones from [7] we now prove:
Theorem 1 Property (P) implies property (C).
Proof: Let $\mathfrak{C} \subseteq \mathcal{E}$ be a chain and $B \in \mathcal{E}$ such that

$$
A \leq B \quad(A \in \mathfrak{C})
$$

For each $C \in \mathfrak{C}$ let

$$
\mathfrak{C}(C):=\{A \in \mathfrak{C}: A \geq C\}
$$

and note that $\mathfrak{C}(C)$ is a chain for each $C \in \mathfrak{C}$.
Step 1. Let $x_{1}, \ldots x_{m} \in E$ be fixed. We prove that to each $\varepsilon>0$ there exists $C_{\varepsilon} \in \mathfrak{C}$ such that

$$
\left\|A x_{j}-C_{\varepsilon} x_{j}\right\|<\varepsilon \quad\left(A \in \mathfrak{C}\left(C_{\varepsilon}\right), j=1, \ldots, m\right)
$$

Assume by contradiction that

$$
\forall C \in \mathfrak{C} \exists A_{C} \in \mathfrak{C}(C) \exists j \in\{1, \ldots, m\}:\left\|A_{C} x_{j}-C x_{j}\right\| \geq \varepsilon
$$

Choose any $C_{1} \in \mathfrak{C}$. By setting

$$
C_{n+1}=A_{C_{n}} \quad(n \in \mathbb{N})
$$

we recursively obtain a sequence $\left(C_{n}\right)_{n \in \mathbb{N}}$ in \mathfrak{C} and a sequence $\left(x_{j_{n}}\right)_{n \in \mathbb{N}}$ in $\left\{x_{1}, \ldots, x_{m}\right\}$ with the following properties:
a.) $C_{n+1} \in \mathfrak{C}\left(C_{n}\right)(n \in \mathbb{N})$, thus $\left(C_{n}\right)_{n \in \mathbb{N}}$ is increasing and bounded by B.

b.) $\left\|C_{n+1} x_{j_{n}}-C_{n} x_{j_{n}}\right\| \geq \varepsilon(n \in \mathbb{N})$.

According to property (P) we know that $\left(C_{n}\right)_{n \in \mathbb{N}}$ is strongly convergent, and since $\left\{x_{1}, \ldots, x_{m}\right\}$ is finite $\left(x_{j_{n}}\right)_{n \in \mathbb{N}}$ has a constant subsequence $\left(x_{j_{n_{k}}}\right)_{k \in \mathbb{N}}$ with constant x_{l}, say. Thus

$$
\varepsilon \leq\left\|C_{n_{k}+1} x_{l}-C_{n_{k}} x_{l}\right\| \rightarrow 0 \quad(k \rightarrow \infty)
$$

a contradiction.
Step 2. Fix $x \in E$. According to step 1. there is a sequence $\left(C_{n}\right)_{n \in \mathbb{N}}$ with $C_{n+1} \in \mathfrak{C}\left(C_{n}\right)(n \in \mathbb{N})$ such that

$$
\left\|A x-C_{n} x\right\|<\frac{1}{n} \quad\left(A \in \mathfrak{C}\left(C_{n}\right), n \in \mathbb{N}\right)
$$

Again $\left(C_{n}\right)_{n \in \mathbb{N}}$ is increasing and bounded by B. Thus

$$
s(x):=\lim _{n \rightarrow \infty} C_{n} x
$$

exists. Next, we prove that $s(x)$ is independent on the choice of the operators C_{n} in the construction above. Let $\left(D_{n}\right)_{n \in \mathbb{N}}$ be a sequence with $D_{n+1} \in \mathfrak{C}\left(D_{n}\right)$ ($n \in \mathbb{N}$) such that

$$
\left\|A x-D_{n} x\right\|<\frac{1}{n} \quad\left(A \in \mathfrak{C}\left(D_{n}\right), n \in \mathbb{N}\right)
$$

and let $h(x):=\lim _{n \rightarrow \infty} D_{n} x$. Since \mathfrak{C} is a chain C_{n} and D_{n} are comparable for each $n \in \mathbb{N}$. Without loss of generality assume that there is a subsequence $\left(n_{k}\right)$ of (n) such that

$$
C_{n_{k}} \leq D_{n_{k}} \quad(k \in \mathbb{N})
$$

that is $D_{n_{k}} \in \mathfrak{C}\left(C_{n_{k}}\right)(k \in \mathbb{N})$, and therefore

$$
\left\|D_{n_{k}} x-C_{n_{k}} x\right\|<\frac{1}{n_{k}} \quad(k \in \mathbb{N}) .
$$

Hence $s(x)=h(x)$, and we have defined a function $s: E \rightarrow E$.
Step 3. If $\left\{x_{1}, \ldots x_{m}\right\}$ is a finite subset of E we can choose according to step 1. a sequence $\left(C_{n}\right)_{n \in \mathbb{N}}$ with $C_{n+1} \in \mathfrak{C}\left(C_{n}\right)(n \in \mathbb{N})$ such that

$$
\left\|A x_{j}-C_{n} x_{j}\right\|<\frac{1}{n} \quad\left(A \in \mathfrak{C}\left(C_{n}\right), j=1, \ldots, m, n \in \mathbb{N}\right)
$$

According to Step 2. we have

$$
s\left(x_{j}\right)=\lim _{n \rightarrow \infty} C_{n} x_{j} \quad(j=1, \ldots, m)
$$

Let $\alpha \in \mathbb{R}$ or \mathbb{C} (the scalar field of E) and $x, y \in E$ be fixed, and apply the observation above to the finite set $\{x, y, \alpha x+y\}$. We find

$$
s(\alpha x+y)=\lim _{n \rightarrow \infty} C_{n}(\alpha x+y)=\lim _{n \rightarrow \infty}\left(\alpha C_{n} x+C_{n} y\right)=\alpha s(x)+s(y) .
$$

Thus $s: E \rightarrow E$ is linear, and we therefore denote it by $S(S x=s(x))$.
Next, to prove that $S \in \mathcal{L}(E)$ we apply the Closed Graph Theorem: Let $\left(x_{j}\right)_{j=1}^{\infty}$ be a convergent sequence in E with limit x_{0} such that $\left(S x_{j}\right)_{j=1}^{\infty}$ is convergent with limit y_{0}, say. According to step 1 . we can choose a sequence $\left(C_{n}\right)_{n \in \mathbb{N}}$ with $C_{n+1} \in \mathfrak{C}\left(C_{n}\right)$ such that

$$
\left\|A x_{j}-C_{n} x_{j}\right\|<\frac{1}{n} \quad\left(A \in \mathfrak{C}\left(C_{n}\right), j=0, \ldots, n, n \in \mathbb{N}\right)
$$

In particular

$$
\left\|C_{l} x_{j}-C_{n} x_{j}\right\|<\frac{1}{n} \quad(j=0, \ldots, n, l, n \in \mathbb{N}, l>n)
$$

hence (as $l \rightarrow \infty$)

$$
\left\|S x_{j}-C_{n} x_{j}\right\| \leq \frac{1}{n} \quad(j=0, \ldots, n, n \in \mathbb{N})
$$

The sequence $\left(C_{n}\right)_{n \in \mathbb{N}}$ is strongly convergent, hence bounded in norm (by μ, say), according to the Banach Steinhaus Theorem. We obtain

$$
\begin{gathered}
\left\|S x_{0}-y_{0}\right\| \leq\left\|S x_{0}-C_{n} x_{0}\right\|+\left\|C_{n} x_{0}-C_{n} x_{j}\right\|+\left\|C_{n} x_{j}-S x_{j}\right\|+\left\|S x_{j}-y_{0}\right\| \\
\leq\left\|S x_{0}-C_{n} x_{0}\right\|+\mu\left\|x_{0}-x_{j}\right\|+\left\|C_{n} x_{j}-S x_{j}\right\|+\left\|S x_{j}-y_{0}\right\| .
\end{gathered}
$$

If $\varepsilon>0$ we first choose $j \in \mathbb{N}$ such that

$$
\mu\left\|x_{0}-x_{j}\right\|+\left\|S x_{j}-y_{0}\right\|<\varepsilon
$$

and then $n \in \mathbb{N}$ such that

$$
\left\|S x_{0}-C_{n} x_{0}\right\|+\left\|C_{n} x_{j}-S x_{j}\right\|<\varepsilon .
$$

Then $\left\|S x_{0}-y_{0}\right\|<2 \varepsilon$, and we conclude $S x_{0}=y_{0}$. Thus $S \in \mathcal{L}(E)$.
Step 4 . We finally prove that S is the supremum of \mathfrak{C}.
Let $C \in \mathfrak{C}$ be fixed, and let $x_{1}, \ldots, x_{m} \in E$.
Again, we can choose $\left(C_{n}\right)_{n \in \mathbb{N}}$ with $C_{n+1} \in \mathfrak{C}\left(C_{n}\right)(n \in \mathbb{N})$ such that

$$
\left\|A x_{j}-C_{n} x_{j}\right\|<\frac{1}{n} \quad\left(A \in \mathfrak{C}\left(C_{n}\right), j=1, \ldots, m, n \in \mathbb{N}\right)
$$

and by applying step 1 . to the chain $\mathfrak{C}(C)$ we can arrange in addition

$$
C_{n} \geq C \quad(n \in \mathbb{N})
$$

As in step 3. we conclude

$$
\left\|(S-C) x_{j}-\left(C_{n}-C\right) x_{j}\right\|=\left\|S x_{j}-C_{n} x_{j}\right\| \leq \frac{1}{n} \quad(j=1, \ldots, m, n \in \mathbb{N})
$$

Since $C_{n}-C \in K$ we conclude $S \geq C$ according to property (P) (in particular $S \in \mathcal{E}$). Thus S is an upper bound of \mathfrak{C}.
Next, let $V \in \mathcal{E}$ with $A \leq V(A \in \mathfrak{C})$. Let $x_{1}, \ldots, x_{m} \in E$, and let $\left(C_{n}\right)_{n \in \mathbb{N}}$ be as above. Then

$$
\left\|(V-S) x_{j}-\left(V-C_{n}\right) x_{j}\right\| \leq \frac{1}{n} \quad(j=1, \ldots, m, n \in \mathbb{N})
$$

Again property (P) implies $S \leq V$. Summing up $S=\sup \mathfrak{C}$.
Remark. From the construction in step 3. of the proof it can easily be seen that if E is separable, then there is an increasing sequence in \mathfrak{C} which is strongly convergent to $\sup \mathfrak{C}$ (choose for $\left(x_{j}\right)_{j=1}^{\infty}$ a dense sequence in E).

3 An Application

Let \mathcal{E} be ordered by a cone K with property (P), let $A, B \in \mathcal{E}$ with $A \leq B$. If $\mathfrak{C} \subseteq[A, B]$ is a chain then $\sup \mathfrak{C}$ exists according to Theorem 1 , and clearly $\sup \mathfrak{C} \in[A, B]$. Recall the following version of Tarski's Fixed Point Theorem [9]:

Theorem 2 Let Ω be an ordered set such that $\min \Omega$ exists, and such that each chain in Ω has a supremum. Let $f: \Omega \rightarrow \Omega$ be increasing. Then $\min \{x \in \Omega: f(x)=x\}$ exists.

Now, let $f:[A, B] \rightarrow[A, B]$ be increasing. According to Theorem 2 we have a minimal fixed point $X_{\min } \in[A, B]$ of f. The function $f_{-}:[-B,-A] \rightarrow$ $[-B,-A]$ defined as $f_{-}(X)=-f(-X)$ is increasing too, and the negative of its minimal fixed point is a maximal fixed point $X_{\max } \in[A, B]$ of f. Thus

$$
\min \{X \in[A, B]: f(X)=X\} \quad \text { and } \quad \max \{X \in[A, B]: f(X)=X\}
$$

exist.

Example: Let H be a Hilbert space, and let \mathcal{E} and K be as in our first example. Let $A_{1}, \ldots, A_{m} \in K, x_{1}, \ldots, x_{m} \in H$, and let $\varphi_{1}, \ldots \varphi_{m}: \mathbb{R} \rightarrow$ $[0, \infty)$ be increasing and bounded. Let $f: K \rightarrow K$ be defined by

$$
f(X)=\sum_{k=1}^{m} \varphi_{k}\left(\left(X x_{k}, x_{k}\right)\right) \sqrt{X+A_{k}} .
$$

Then f is increasing (note that $X \rightarrow \sqrt{X+A_{k}}$ is increasing according to the Loewner-Heinz inequality [5]), and, since

$$
0 \leq f(X) \leq\left(\sum_{k=1}^{m}\left(\sup \varphi_{k}(\mathbb{R})\right) \sqrt{\|X\|+\left\|A_{k}\right\|}\right) I \quad(X \geq 0)
$$

we may choose $\lambda \in(0, \infty)$ sufficiently big, such that

$$
f([0, \lambda I]) \subseteq[0, \lambda I] .
$$

Thus, the equation

$$
\sum_{k=1}^{m} \varphi_{k}\left(\left(X x_{k}, x_{k}\right)\right) \sqrt{X+A_{k}}=X
$$

has in $[0, \lambda I]$ a greatest and a smallest solution.

References

[1] Andô, T.: On fundamental properties of a Banach space with a cone. Pacific J. Math. 12 (1962), 1163-1169.
[2] Bondarenko, V. A.: Integral inequalities for a Volterra equation in a Banach space with a cone. Mat. Zametki 9 (1971), 151-160.
[3] Borwein, J.M., Lewis, A.S.: Convex analysis and nonlinear optimization. Theory and examples. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. 3. New York, NY: Springer (2000).
[4] Erné, M.: \mathcal{W}-completeness and fixpoint properties. Arch. Math. (Brno) 24 (1988), 147-155.
[5] Heinz, E.: Beiträge zur Störungstheorie der Spektralzerlegung. Math. Ann. 123 (1951), 415-438.
[6] Herzog, G.: An intermediate value theorem in ordered Banach spaces. Ann. Polon. Math. (to appear).
[7] Lemmert, R., Redheffer, R. M., Volkmann, P.: Ein Existenzsatz für gewöhnliche Differentialgleichungen in geordneten Banachräumen. General inequalities, 5 (Oberwolfach, 1986), 381-390, Internat. Schriftenreihe Numer. Math., 80, Birkhäuser, Basel, 1987.
[8] Lemmert, R.: Existenzsätze für gewöhnliche Differentialgleichungen in geordneten Banachräumen. Funkc. Ekvacioj, Ser. Int. 32 (1989), 243249.
[9] Markowsky, G.: Chain-complete posets and directed sets with applications. Algebra Universalis 6 (1976), 53-68.
[10] Riesz, F., Sz.-Nagy, B.: Functional analysis. London-Glasgow: Blackie \& Son, Ltd. XII (1956).
[11] Schmidt, S.: Existenzsätze für gewöhnliche Differentialgleichungen in Banachräumen. Funkc. Ekvacioj, Ser. Int. 35 (1992), 199-222.
[12] Uhl, R.: Smallest and greatest fixed points of quasimonotone increasing mappings. Math. Nachr. 248-249 (2003), 204-210.
[13] Volkmann, P.: Über Kegel, welche einer Bedingung von Lemmert genügen. Series Math. Debrec. Katowic. No 7. (2000). http://www.math.us.edu.pl/smdk/

