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Abstract

Let E be a real Banach space of operators ordered by a cone K. We
give a sufficient condition for that each chain which is bounded above
has a supremum. This condition is satisfied in several classical cases,
as for the Loewner ordering on the space of all symmetric operators
on a Hilbert space, for example.
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1 Introduction

Let E be a real Banach space ordered by a cone K. A cone K is a closed
convex subset of E such that λK ⊆ K (λ ≥ 0), and K ∩ (−K) = {0}. As
usual x ≤ y : ⇐⇒ y − x ∈ K. For x ≤ y let [x, y] denote the order interval
of all z with x ≤ z ≤ y. A chain C ⊆ E is a nonempty and totally ordered
subset of E and a chain C is called order bounded above, if

∃y ∈ E ∀x ∈ C : x ≤ y.

We say that the order on E (or K for short) has condition (C) if sup C

exists for each chain C ⊆ E which is order bounded above. Condition (C)
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is an assumption for various fixed point theorems and existence results for
differential equations in abstract spaces, see [6], [7], [8], [11], [12], [13] and
the references given there. Moreover condition (C) is valid if K is a regular
cone (that is, each increasing and order bounded sequence is convergent), see
[2, Lemma 2] or [7, Lemma 1], and from condition (C) it follows that K is
normal (that is 0 ≤ x ≤ y implies ‖x‖ ≤ γ‖y‖ for some constant γ ≥ 1),
see [1, Lemma 2]. Several examples for nonregular cones with property (C)
are known [7], an important example is the Banach space of all bounded
sequences l∞(N,R) ordered by the cone of all nonnegative sequences. In
this note we will prove property (C) for a certain class of operator cones,
including the cone of all positive semidefinite operators on the space of all
symmetric operators on a Hilbert space, for example.

2 Ordered operator spaces

Let E be a real or complex Banach space, let L(E) denote the Banach algebra
of all continuous linear operators on E endowed with the operator norm, and
in the sequel let E ⊆ L(E) be always a real Banach space with respect to
this norm. Moreover let E be ordered by a cone K ⊆ E . Let us say that K
has property (P ) if it satisfies the following conditions.

1.) If (An)n∈N is an increasing sequence in E such that

An ≤ B (n ∈ N)

for some B ∈ E , then (Anx)n∈N is convergent in E for each x ∈ E.

2.) If A ∈ L(E) and if

∀x1, . . . , xm ∈ E ∀ε > 0 ∃C ∈ K ∀j = 1, . . . , m : ‖Axj − Cxj‖ ≤ ε,

then A ∈ K.

Examples:
1. Let E = H be a complex Hilbert space with inner product (·, ·), and let
E = Ls(H) denote the real Banach space of all linear and symmetric (hence
continuous [10, Ch. VIII]) operators on H, endowed with the operator norm,
and ordered by the cone

K = {A ∈ Ls(H) : (Ax, x) ≥ 0 (x ∈ H)}.

The order defined by K is called Loewner ordering. Let I denote the identity
operator, and note the following property of this ordering:

‖A‖ ≤ c ⇐⇒ −cI ≤ A ≤ cI.
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In particular the unit ball in Ls(H) is the order interval [−I, I]. It is clear
that K is regular if and only if dimH < ∞. Moreover Ls(H) is not a lattice
with respect to this ordering unless dimH = 1 [3, Ch. 1, Ex. 4]. However,
K has property (P ): Condition 1. of property (P ) follows from Vigier’s
Theorem [10, Ch. VIII, Theorem 1], and condition 2. can easily be checked
by means of the Cauchy Schwarz inequality.

2. Let E be any real Banach space ordered by a regular cone K0 which is
total (that is K0 −K0 = E). Then, the set of all monotone operators

K = {A ∈ L(E) : A(K0) ⊆ K0}

is a cone in E = L(E), and K has property (P ): Condition 1. of property
(P ) follows trivially from the regularity of K0, and condition 2. holds since
K0 is a closed set.

Using the method for regular cones from [7] we now prove:

Theorem 1 Property (P ) implies property (C).

Proof: Let C ⊆ E be a chain and B ∈ E such that

A ≤ B (A ∈ C).

For each C ∈ C let
C(C) := {A ∈ C : A ≥ C},

and note that C(C) is a chain for each C ∈ C.

Step 1. Let x1, . . . xm ∈ E be fixed. We prove that to each ε > 0 there exists
Cε ∈ C such that

‖Axj − Cεxj‖ < ε (A ∈ C(Cε), j = 1, . . . , m).

Assume by contradiction that

∀C ∈ C ∃AC ∈ C(C) ∃j ∈ {1, . . . , m} : ‖ACxj − Cxj‖ ≥ ε.

Choose any C1 ∈ C. By setting

Cn+1 = ACn (n ∈ N)

we recursively obtain a sequence (Cn)n∈N in C and a sequence (xjn)n∈N in
{x1, . . . , xm} with the following properties:

a.) Cn+1 ∈ C(Cn) (n ∈ N), thus (Cn)n∈N is increasing and bounded by B.
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b.) ‖Cn+1xjn − Cnxjn‖ ≥ ε (n ∈ N).

According to property (P ) we know that (Cn)n∈N is strongly convergent, and
since {x1, . . . , xm} is finite (xjn)n∈N has a constant subsequence (xjnk

)k∈N
with constant xl, say. Thus

ε ≤ ‖Cnk+1xl − Cnk
xl‖ → 0 (k →∞),

a contradiction.

Step 2. Fix x ∈ E. According to step 1. there is a sequence (Cn)n∈N with
Cn+1 ∈ C(Cn) (n ∈ N) such that

‖Ax− Cnx‖ <
1

n
(A ∈ C(Cn), n ∈ N).

Again (Cn)n∈N is increasing and bounded by B. Thus

s(x) := lim
n→∞

Cnx

exists. Next, we prove that s(x) is independent on the choice of the operators
Cn in the construction above. Let (Dn)n∈N be a sequence with Dn+1 ∈ C(Dn)
(n ∈ N) such that

‖Ax−Dnx‖ <
1

n
(A ∈ C(Dn), n ∈ N),

and let h(x) := limn→∞ Dnx. Since C is a chain Cn and Dn are comparable
for each n ∈ N. Without loss of generality assume that there is a subsequence
(nk) of (n) such that

Cnk
≤ Dnk

(k ∈ N),

that is Dnk
∈ C(Cnk

) (k ∈ N), and therefore

‖Dnk
x− Cnk

x‖ <
1

nk

(k ∈ N).

Hence s(x) = h(x), and we have defined a function s : E → E.

Step 3. If {x1, . . . xm} is a finite subset of E we can choose according to
step 1. a sequence (Cn)n∈N with Cn+1 ∈ C(Cn) (n ∈ N) such that

‖Axj − Cnxj‖ <
1

n
(A ∈ C(Cn), j = 1, . . . , m, n ∈ N).

According to Step 2. we have

s(xj) = lim
n→∞

Cnxj (j = 1, . . . , m).
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Let α ∈ R or C (the scalar field of E) and x, y ∈ E be fixed, and apply the
observation above to the finite set {x, y, αx + y}. We find

s(αx + y) = lim
n→∞

Cn(αx + y) = lim
n→∞

(αCnx + Cny) = αs(x) + s(y).

Thus s : E → E is linear, and we therefore denote it by S (Sx = s(x)).

Next, to prove that S ∈ L(E) we apply the Closed Graph Theorem: Let
(xj)

∞
j=1 be a convergent sequence in E with limit x0 such that (Sxj)

∞
j=1 is

convergent with limit y0, say. According to step 1. we can choose a sequence
(Cn)n∈N with Cn+1 ∈ C(Cn) such that

‖Axj − Cnxj‖ <
1

n
(A ∈ C(Cn), j = 0, . . . , n, n ∈ N).

In particular

‖Clxj − Cnxj‖ <
1

n
(j = 0, . . . , n, l, n ∈ N, l > n),

hence (as l →∞)

‖Sxj − Cnxj‖ ≤ 1

n
(j = 0, . . . , n, n ∈ N).

The sequence (Cn)n∈N is strongly convergent, hence bounded in norm (by µ,
say), according to the Banach Steinhaus Theorem. We obtain

‖Sx0 − y0‖ ≤ ‖Sx0 − Cnx0‖+ ‖Cnx0 − Cnxj‖+ ‖Cnxj − Sxj‖+ ‖Sxj − y0‖
≤ ‖Sx0 − Cnx0‖+ µ‖x0 − xj‖+ ‖Cnxj − Sxj‖+ ‖Sxj − y0‖.

If ε > 0 we first choose j ∈ N such that

µ‖x0 − xj‖+ ‖Sxj − y0‖ < ε,

and then n ∈ N such that

‖Sx0 − Cnx0‖+ ‖Cnxj − Sxj‖ < ε.

Then ‖Sx0 − y0‖ < 2ε, and we conclude Sx0 = y0. Thus S ∈ L(E).

Step 4. We finally prove that S is the supremum of C.

Let C ∈ C be fixed, and let x1, . . . , xm ∈ E.

Again, we can choose (Cn)n∈N with Cn+1 ∈ C(Cn) (n ∈ N) such that

‖Axj − Cnxj‖ <
1

n
(A ∈ C(Cn), j = 1, . . . , m, n ∈ N),
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and by applying step 1. to the chain C(C) we can arrange in addition

Cn ≥ C (n ∈ N).

As in step 3. we conclude

‖(S − C)xj − (Cn − C)xj‖ = ‖Sxj − Cnxj‖ ≤ 1

n
(j = 1, . . . , m, n ∈ N).

Since Cn−C ∈ K we conclude S ≥ C according to property (P ) (in particular
S ∈ E). Thus S is an upper bound of C.

Next, let V ∈ E with A ≤ V (A ∈ C). Let x1, . . . , xm ∈ E, and let (Cn)n∈N
be as above. Then

‖(V − S)xj − (V − Cn)xj‖ ≤ 1

n
(j = 1, . . . , m, n ∈ N).

Again property (P ) implies S ≤ V . Summing up S = sup C.

Remark. From the construction in step 3. of the proof it can easily be
seen that if E is separable, then there is an increasing sequence in C which
is strongly convergent to sup C (choose for (xj)

∞
j=1 a dense sequence in E).

3 An Application

Let E be ordered by a cone K with property (P ), let A,B ∈ E with A ≤ B.
If C ⊆ [A, B] is a chain then sup C exists according to Theorem 1, and clearly
sup C ∈ [A, B]. Recall the following version of Tarski’s Fixed Point Theorem
[9]:

Theorem 2 Let Ω be an ordered set such that min Ω exists, and such that
each chain in Ω has a supremum. Let f : Ω → Ω be increasing. Then
min{x ∈ Ω : f(x) = x} exists.

Now, let f : [A,B] → [A,B] be increasing. According to Theorem 2 we have
a minimal fixed point Xmin ∈ [A,B] of f . The function f− : [−B,−A] →
[−B,−A] defined as f−(X) = −f(−X) is increasing too, and the negative
of its minimal fixed point is a maximal fixed point Xmax ∈ [A,B] of f . Thus

min{X ∈ [A,B] : f(X) = X} and max{X ∈ [A,B] : f(X) = X}

exist.
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Example: Let H be a Hilbert space, and let E and K be as in our first
example. Let A1, . . . , Am ∈ K, x1, . . . , xm ∈ H, and let ϕ1, . . . ϕm : R →
[0,∞) be increasing and bounded. Let f : K → K be defined by

f(X) =
m∑

k=1

ϕk((Xxk, xk))
√

X + Ak.

Then f is increasing (note that X → √
X + Ak is increasing according to the

Loewner-Heinz inequality [5]), and, since

0 ≤ f(X) ≤
(

m∑

k=1

(sup ϕk(R))
√
‖X‖+ ‖Ak‖

)
I (X ≥ 0),

we may choose λ ∈ (0,∞) sufficiently big, such that

f([0, λI]) ⊆ [0, λI].

Thus, the equation

m∑

k=1

ϕk((Xxk, xk))
√

X + Ak = X.

has in [0, λI] a greatest and a smallest solution.
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