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Abstract

Let &£ be a real Banach space of operators ordered by a cone K. We
give a sufficient condition for that each chain which is bounded above
has a supremum. This condition is satisfied in several classical cases,
as for the Loewner ordering on the space of all symmetric operators
on a Hilbert space, for example.
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1 Introduction

Let E be a real Banach space ordered by a cone K. A cone K is a closed
convex subset of E such that AK' C K (A > 0), and K N (—K) = {0}. As
usual x <y : <= y—x € K. For z < y let [z, y] denote the order interval
of all z with z < z < y. A chain € C F is a nonempty and totally ordered
subset of E and a chain € is called order bounded above, if

Jye EVreC: x <uy.

We say that the order on E (or K for short) has condition (C) if sup €
exists for each chain € C FE which is order bounded above. Condition (C)
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is an assumption for various fixed point theorems and existence results for
differential equations in abstract spaces, see [6], [7], [8], [11], [12], [13] and
the references given there. Moreover condition (C) is valid if K is a regular
cone (that is, each increasing and order bounded sequence is convergent), see
2, Lemma 2] or [7, Lemma 1], and from condition (C) it follows that K is
normal (that is 0 < z < y implies ||z|| < 7||ly|| for some constant v > 1),
see [1, Lemma 2]. Several examples for nonregular cones with property (C)
are known [7], an important example is the Banach space of all bounded
sequences [*°(N,R) ordered by the cone of all nonnegative sequences. In
this note we will prove property (C') for a certain class of operator cones,
including the cone of all positive semidefinite operators on the space of all
symmetric operators on a Hilbert space, for example.

2 Ordered operator spaces

Let E be areal or complex Banach space, let L(E) denote the Banach algebra
of all continuous linear operators on E endowed with the operator norm, and
in the sequel let £ C L(FE) be always a real Banach space with respect to
this norm. Moreover let £ be ordered by a cone K C £. Let us say that K
has property (P) if it satisfies the following conditions.

1.) If (A )nen is an increasing sequence in £ such that
A, <B (neN)
for some B € &, then (A,x),en is convergent in E for each x € E.
2) If Ae L(E) and if
Voy, ..., 0, € EVe>03C e KVj=1,....m: ||Az; — Cxy|| <e,
then A € K.

Examples:

1. Let E = H be a complex Hilbert space with inner product (-,-), and let
E = L,(H) denote the real Banach space of all linear and symmetric (hence
continuous [10, Ch. VIII]) operators on H, endowed with the operator norm,
and ordered by the cone

K={AeL,H): (Az,z) >0 (x € H)}.

The order defined by K is called Loewner ordering. Let I denote the identity
operator, and note the following property of this ordering:

Al <¢ = —cl < A<cl.
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In particular the unit ball in £,(H) is the order interval [—1,I]. It is clear
that K is regular if and only if dimH < co. Moreover L4(H) is not a lattice
with respect to this ordering unless dimH = 1 [3, Ch. 1, Ex. 4]. However,
K has property (P): Condition 1. of property (P) follows from Vigier’s
Theorem [10, Ch. VIII, Theorem 1], and condition 2. can easily be checked
by means of the Cauchy Schwarz inequality.

2. Let E be any real Banach space ordered by a regular cone K, which is
total (that is Ky — Ko = F). Then, the set of all monotone operators

K ={A€c L(E): A(K,) C Ko}

is a cone in & = L(F), and K has property (P): Condition 1. of property
(P) follows trivially from the regularity of Ky, and condition 2. holds since
K is a closed set.

Using the method for regular cones from [7] we now prove:
Theorem 1 Property (P) implies property (C).

Proof: Let € C £ be a chain and B € £ such that
A< B (AcqQ).

For each C € € let
CC)={Aecc: A>CY,

and note that €(C') is a chain for each C € €.

Step 1. Let x4, ...z, € E be fixed. We prove that to each € > 0 there exists
C. € € such that

|Az; — Coxjl| <e (Ae€(C.), j=1,...,m).
Assume by contradiction that
VO e €3Ac € €(C) 3je{l,...,m}: |[Acz; — Czj| > e.
Choose any C € €. By setting
Chi1=A4¢, (neN)

we recursively obtain a sequence (C))neny in € and a sequence (z;,)pen in
{z1,..., 2, } with the following properties:

a.) Chi1 € €(Cy,) (n € N), thus (C),)nen is increasing and bounded by B.
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b.) |Crt1zj, — Crzj || > € (n € N).

According to property (P) we know that (C),),en is strongly convergent, and
since {71,...,Zn,} is finite (7;,)nen has a constant subsequence (z, )ren
with constant x;, say. Thus

€< HanJrlxl - anle — 0 (k - OO)?

a contradiction.

Step 2. Fix x € E. According to step 1. there is a sequence (C),)neny With
Chi1 € €(C,) (n € N) such that

Az — Czl| < % (Aee(C), neN).

Again (C),)nen is increasing and bounded by B. Thus

s(z) == lim Cyx

n—oo

exists. Next, we prove that s(x) is independent on the choice of the operators
C,, in the construction above. Let (D,,),en be a sequence with D, 1 € €(D,,)
(n € N) such that

1
|Az — Dpz|| < - (Ae€(D,), neN),

and let h(x) := lim, .., D,x. Since € is a chain C,, and D,, are comparable
for each n € N. Without loss of generality assume that there is a subsequence
(ng) of (n) such that

an San (kEN)a

that is D, € €(C,,) (k € N), and therefore
1
| Dy, x — Cyp ozl < —  (keN).
Nk

Hence s(z) = h(z), and we have defined a function s : £ — E.

Step 3. If {z1,...2,} is a finite subset of £ we can choose according to
step 1. a sequence (C),)nen with C,11 € €(C,) (n € N) such that

1
||A$]—Cn$J|| <E (AGQ:(Cn), 7=1...,m, nGN)
According to Step 2. we have

s(xj) = lim Chz; (j=1,...,m).

n—oo



Let a € R or C (the scalar field of E) and z,y € E be fixed, and apply the
observation above to the finite set {z,y, ax + y}. We find

s(ar +y) = lim Cy(azx +y) = lim (aChz + Cry) = as(z) + s(y).

n—oo

Thus s : E — E is linear, and we therefore denote it by S (Sz = s(x)).

Next, to prove that S € L(FE) we apply the Closed Graph Theorem: Let
(z7)52, be a convergent sequence in E with limit zy such that (Sz;)32, is
convergent with limit g, say. According to step 1. we can choose a sequence
(Cp)nen with Cyq € €(C,,) such that

1
|Az; — Chxj]| < - (Aee(C,), j=0,...,n, n€N).
In particular
1
|Ciz; — Chzj|| < - (1=0,....,n, L,neN, [ >n),

hence (as | — o0)

1
|Sz; — Chzj|| < - (j=0,...,n, n € N).

The sequence (C,)qen is strongly convergent, hence bounded in norm (by g,
say), according to the Banach Steinhaus Theorem. We obtain

1520 = woll < [[Sz0 = Cooll + [|Crzo = Coyl| + | Cny — Sj| + (1525 = wol|

< [[Szo — Croll + pllwo — )l + [|Coy — S5l + [[Sz; — wol-
If ¢ > 0 we first choose j € N such that

pllzo — ;]| + [|Sz; — wol| <e,
and then n € N such that
[Sxo — Crol| + [|Crzj — Szj| <e.

Then ||Sxo — yo|| < 2¢, and we conclude Sxy = yo. Thus S € L(F).
Step 4. We finally prove that S is the supremum of €.

Let C € € be fixed, and let zq,...,2,, € E.
Again, we can choose (C,,)neny with Cyqq € €(C),) (n € N) such that

1
”ij _CnxJH < E (A € Q:(Cn)a Jj=1...,m, ne N)7
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and by applying step 1. to the chain €(C') we can arrange in addition

C,>C (neN).

As in step 3. we conclude

1 .
[(S = C)zj — (Cn = Oy = [|Sz; — Crzyl| < — (G =1,...,m, n€N).

n

Since C,,—C € K we conclude S > C according to property (P) (in particular
S € &). Thus S is an upper bound of €.

Next, let V € & with A <V (A € ). Let xq,...,z, € E, and let (C,)nen
be as above. Then

1 .
IV = S)z; = (V = Clas| £ = (G =1,...,m, neN)

Again property (P) implies S < V. Summing up S = sup €. n
Remark. From the construction in step 3. of the proof it can easily be

seen that if F is separable, then there is an increasing sequence in € which
is strongly convergent to sup € (choose for (z;)52, a dense sequence in E).

3 An Application

Let € be ordered by a cone K with property (P), let A, B € £ with A < B.
If € C [A, B] is a chain then sup € exists according to Theorem 1, and clearly
sup € € [A, B]. Recall the following version of Tarski’s Fixed Point Theorem
[9]:

Theorem 2 Let ) be an ordered set such that min €2 exists, and such that
each chain in € has a supremum. Let f : Q — Q be increasing. Then
min{z € Q: f(x) =z} ezists.

Now, let f : [A, B] — [A, B] be increasing. According to Theorem 2 we have
a minimal fixed point X, € [A, B] of f. The function f_ : [-B,—A] —
[—B, —A] defined as f_(X) = —f(—X) is increasing too, and the negative
of its minimal fixed point is a maximal fixed point X, € [A, B] of f. Thus

min{X € [A,B]: f(X) =X} and max{X € [A,B]: f(X)= X}

exist.



Example: Let H be a Hilbert space, and let £ and K be as in our first
example. Let Ay,... A, € K, x1,...,x,, € H, and let ¢1,...0,, : R —
[0,00) be increasing and bounded. Let f: K — K be defined by

m

FXO) =) on((Xap, a0)) VX + Ay

k=1

Then f is increasing (note that X — /X + Aj, is increasing according to the
Loewner-Heinz inequality [5]), and, since

0<f(X)< (Z(Supwk(R))\/ X+ HAch) I (X >0),

we may choose A € (0, 00) sufficiently big, such that
S0, M]) € [0, A].
Thus, the equation
> on(Xap, z)) VX + Ay = X
k=1

has in [0, ] a greatest and a smallest solution.
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