Annales scientifiques de l'É.N.S.

G. FLOQUET

Sur les équations différentielles linéaires à coefficients périodiques

Annales scientifiques de l'É.N.S. 2^e série, tome 12 (1883), p. 47-88 http://www.numdam.org/item?id=ASENS 1883 2 12 47 0>

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1883, tous droits réservés.

L'accès aux archives de la revue « Annales scientifiques de l'É.N.S. » (http://www.elsevier.com/locate/ansens) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES

A COEFFICIENTS PÉRIODIQUES,

PAR M. G. FLOQUET,

PROFESSEUR A LA FACULTÉ DES SCIENCES DE NANCY.

Je considère, dans ce travail, une équation différentielle linéaire homogène

$$P(y) = \frac{d^m y}{dx^m} + p_1 \frac{d^{m-1} y}{dx^{m-1}} + p_2 \frac{d^{m-2} y}{dx^{m-2}} + \ldots + p_m y = 0,$$

à coefficients uniformes et périodiques, de même période ω , et dont l'intégrale générale est supposée uniforme.

J'étudie la forme analytique des solutions.

Si l'on faisait le changement de variable

$$e^{\frac{2\pi x\sqrt{-1}}{\omega}}=\xi,$$

on obtiendrait une transformée linéaire dont les coefficients seraient des fonctions uniformes de ξ. De l'expression connue de ses intégrales, dans le domaine d'un point singulier, on pourrait conclure, en posant

$$\xi = e^{\frac{2\pi x \sqrt{-1}}{\omega}}$$
, la forme des solutions de $P(y) = 0$.

Mais j'ai préféré aborder la question directement, sur l'équation P = o elle-même, d'autant plus que, pour suivre cette voie, il suffit de se reporter aux célèbres recherches de M. Fuchs, en adoptant une méthode identique à celle qui l'a guidé dans l'étude des intégrales autour d'un point singulier (').

⁽¹⁾ Journal de Crelle, t. 66.

l'obtiens ainsi un système fondamental S de solutions, lié à une certaine équation algébrique $\Delta=0$, analogue à l'équation fondamentale de M. Fuchs, et que j'appelle l'équation fondamentale relative à la période ω . Le premier membre Δ est un déterminant de degré m par rapport à l'inconnue ε . Les éléments du système S constituent autant de groupes que l'équation fondamentale $\Delta=0$ a de racines distinctes, et, en appliquant le procédé exposé dans un important Mémoire de M. Hamburger (¹), on peut facilement distinguer ces groupes en sous-groupes indépendants les uns des autres.

J'arrive en particulier aux conclusions suivantes:

- 1. Soient $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$ les racines distinctes de l'équation fondamentale $\Delta = 0$; soit λ_i l'ordre à partir duquel les déterminants mineurs de Δ cessent d'être tous nuls pour $\varepsilon = \varepsilon_i$:
- 1° P = 0 admet comme intégrales distinctes $\lambda_1 + \lambda_2 + \ldots + \lambda_n$ fonctions périodiques de seconde espèce, et n'en admet pas davantage;
- 2º Il existe un système fondamental de solutions comprenant d'abord $\lambda_1 + \lambda_2 + \ldots + \lambda_n$ fonctions périodiques de seconde espèce, puis $m (\lambda_1 + \lambda_2 + \ldots + \lambda_n)$ expressions qui affectent chacune la forme d'un polynôme entier en x, ayant pour coefficients des fonctions périodiques de seconde espèce de même multiplicateur;
- 3° Les multiplicateurs des fonctions périodiques qui figurent dans ce système fondamental soit comme éléments, soit comme coefficients dans les éléments sont égaux aux diverses racines $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$ de l'équation fondamentale.
- II. Pour que P = 0 admette comme intégrales distinctes m fonctions périodiques de seconde espèce, il faut et il suffit que chaque racine de $\Delta = 0$ annule tous les déterminants mineurs de Δ jusqu'à l'ordre égal au degré de multiplicité de cette racine exclusivement.

Je dis qu'une fonction uniforme f(x) est une fonction périodique de seconde espèce, de période ω , lorque l'on a

$$\vec{\mathfrak{F}}(x+\omega)=\varepsilon\vec{\mathfrak{F}}(x),$$

le multiplicateur ϵ étant une constante. Si $\epsilon = 1$, la fonction est périodique; elle est dite aussi périodique de première espèce.

⁽¹⁾ Journal de Crelle, t. 76.

I. - Équation fondamentale.

i. Désignons par $f_1(x)$, $f_2(x)$, ..., $f_m(x)$ m solutions distinctes de l'équation P = 0, choisies arbitrairement. Si l'on fait décrire à la variable un chemin quelconque allant du point x au point $x + \omega$, les fonctions uniformes f(x) acquièrent en $x + \omega$ des valeurs déterminées $f_1(x + \omega)$, $f_2(x + \omega)$, ..., $f_m(x + \omega)$, tandis que les coefficients périodiques de P = 0 reprennent leurs valeurs initiales p_1, p_2, \ldots, p_m . D'où je conclus que $f_1(x + \omega)$, $f_2(x + \omega)$, ..., $f_m(x + \omega)$ sont aussi des intégrales de P = 0, constituant un système évidemment fondamental. On a donc

$$f_{1}(x + \omega) = A_{11}f_{1}(x) + A_{12}f_{2}(x) + \ldots + A_{1m}f_{m}(x),$$

$$f_{2}(x + \omega) = A_{21}f_{1}(x) + A_{22}f_{2}(x) + \ldots + A_{2m}f_{m}(x),$$

$$\vdots$$

$$f_{m}(x + \omega) = A_{m1}f_{1}(x) + A_{m2}f_{2}(x) + \ldots + A_{mm}f_{m}(x),$$

le déterminant des m² constantes A étant différent de zéro.

Supposons que P = o admette comme intégrale une fonction périodique de seconde espèce F(x), de période ω , au multiplicateur ε . On a nécessairement

$$F(x) = u_1 f_1(x) + u_2 f_2(x) + \ldots + u_m f_m(x),$$

les constantes u n'étant pas toutes nulles, et, par hypothèse,

$$F(x + \omega) = \varepsilon F(x)$$
,

c'est-à-dire

$$(A_{11}u_1 + A_{21}u_2 + \ldots + A_{m1}u_m)f_1(x) + (A_{12}u_1 + A_{22}u_2 + \ldots + A'_{m2}u_m)f_2(x) + \ldots + (A_{1m}u_1 + A_{2m}u_2 + \ldots + A_{mm}u_m)f_m(x) = \varepsilon [u_1f_1(x) + u_2f_2(x) + \ldots + u_mf_m(x)].$$

Or cette égalité exige que u_1, u_2, \ldots, u_m et ε satisfassent aux m équations

$$(A_{11}-\varepsilon) u_1 + A_{21} u_2 + \ldots + A_{m1} u_m = 0,$$

 $A_{12} u_1 + (A_{22}-\varepsilon) u_2 + \ldots + A_{m2} u_m = 0,$
 $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$
 $A_{1m} u_1 + A_{2m} u_2 + \ldots + (A_{mm}-\varepsilon) u_m = 0,$

Ann. de l'Éc. Normale, 2º Série. Tome XII. - Février 1883.

qui entraînent la suivante :

$$\Delta = \left| egin{array}{ccccc} A_{11} - \epsilon & A_{12} & \dots & A_{1m} \\ A_{21} & A_{22} - \epsilon & \dots & A_{2m} \\ \dots & \dots & \dots & \dots \\ A_{m1} & A_{m2} & \dots & A_{mm} - \epsilon \end{array} \right| = 0.$$

Cette équation $\Delta = 0$, de degré m en ε , et qui n'a ni racines nulles, ni racines infinies, est ce que j'appellerai l'équation fondamentale relative à la période ω , ou simplement l'équation fondamentale.

On peut dire alors que:

Toute intégrale périodique de seconde espèce, de période ω , à un multiplicateur qui est racine de l'équation fondamentale.

Réciproquement, à une racine de l'équation fondamentale correspondent, par les équations du premier degré en u, des systèmes de valeurs de u_1, u_2, \ldots, u_m qui ne sont pas toutes nulles, et par suite des fonctions

$$u_1 f_1(x) + u_2 f_2(x) + \ldots + u_m f_m(x)$$

différentes de zéro, et périodiques de seconde espèce. Si en particulier l'équation $\Delta = 0$ admettait comme racine une racine de l'équation binôme $\epsilon^k - 1 = 0$, on obtiendrait une intégrale possédant la période $k\omega$.

2. Les racines de l'équation fondamentale sont indépendantes du choix du système fondamental.

Pour le démontrer directement, considérons un autre système pareil $g_1(x), g_2(x), \ldots, g_m(x)$, tel que

le déterminant des m² constantes B étant différent de zéro. L'équation

éQUATIONS DIFFÉRENTIELLES LINÉAIRES A COEFFICIENTS PÉRIODIQUES. fondamentale, pour ce nouveau système, est

$$\Delta_{1} = \begin{vmatrix} B_{11} - \epsilon & B_{12} & \dots & B_{1m} \\ B_{21} & B_{22} - \epsilon & \dots & B_{2m} \\ \dots & \dots & \dots & \dots \\ B_{m1} & B_{m2} & \dots & B_{mm} - \epsilon \end{vmatrix} = 0.$$

Je dis que les deux polynômes Δ et Δ , sont égaux, quel que soit ϵ . Soient, en effet,

les équations qui expriment linéairement les g(x) à l'aide des f(x), le déterminant Δ_2 des m^2 constantes, L n'étant pas nul. On obtient alors pour $g_i(x+\omega)$ les deux expressions suivantes :

$$g_{i}(x + \omega) = (\mathbf{A}_{11}\mathbf{L}_{i1} + \mathbf{A}_{21}\mathbf{L}_{i2} + \ldots + \mathbf{A}_{m1}\mathbf{L}_{im})f_{1}(x) + \ldots + (\mathbf{A}_{1m}\mathbf{L}_{i1} + \ldots + \mathbf{A}_{mm}\mathbf{L}_{im})f_{m}(x),$$

$$g_{i}(x + \omega) = (\mathbf{B}_{i1}\mathbf{L}_{11} + \mathbf{B}_{i2}\mathbf{L}_{21} + \ldots + \mathbf{B}_{im}\mathbf{L}_{m1})f_{1}(x) + \ldots + (\mathbf{B}_{i1}\mathbf{L}_{1m} + \ldots + \mathbf{B}_{im}\mathbf{L}_{mm})f_{m}(x).$$

Par suite, les coefficients de chaque fonction f(x) devant être égaux dans ces deux expressions, on a, pour les diverses valeurs de i et de j,

$$\sum_{k=1}^{k=m} A_{kj} L_{ik} = \sum_{k=1}^{k=m} B_{ik} L_{kj} = C_{ij}.$$

Il résulte de là que les deux déterminants obtenus en multipliant le déterminant Δ_2 successivement par les déterminants Δ et Δ_4 ont leurs éléments égaux chacun à chacun, et se confondent tous deux avec le déterminant

$$\begin{vmatrix} C_{11} - L_{11} \varepsilon & C_{12} - L_{12} \varepsilon & \dots & C_{1m} - L_{1m} \varepsilon \\ C_{21} - L_{21} \varepsilon & C_{22} - L_{22} \varepsilon & \dots & C_{2m} - L_{2m} \varepsilon \\ \dots & \dots & \dots & \dots \\ C_{m1} - L_{m1} \varepsilon & C_{m2} - L_{m2} \varepsilon & \dots & C_{mm} - L_{mm} \varepsilon \end{vmatrix}.$$

On a done

et, comme Δ_2 n'est pas nul, les deux polynômes Δ et Δ_4 sont égaux quel que soit ϵ .

La démonstration précédente est de M. Hamburger, qui l'a appliquée à l'équation fondamentale de M. Fuchs. M. Hamburger prouve, en outre (¹), que:

Si, pour une valeur de ε , tous les déterminants mineurs jusqu'à l'ordre $\lambda = 1$ sont nuls dans Δ , sans que tous ceux d'ordre λ le soient, il en est de même dans le déterminant Δ_1 .

II. - Système fondamental S. - Groupes d'intégrales.

3. Supposant d'abord les racines de l'équation fondamentale toutes différentes entre elles, je les désigne par $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_m$. J'en déduis (n° 1), par l'intermédiaire des équations en u, m intégrales périodiques de seconde espèce $F_1(x), F_2(x), \ldots, F_m(x)$, de période ω , aux multiplicateurs respectifs $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_m$. Ces m fonctions uniformes constituent un système fondamental; car, s'il existait entre elles une relation à coefficients constants de la forme

$$C_1F_1(x) + C_2F_2(x) + \ldots + C_mF_m(x) = 0$$

on en conclurait, en changeant x en $x + \omega m - 1$ fois de suite,

$$\begin{bmatrix} \mathbf{I} & \mathbf{I} & \dots & \mathbf{J} \\ \mathbf{\varepsilon}_1 & \mathbf{\varepsilon}_2 & \dots & \mathbf{\varepsilon}_m \\ \mathbf{\varepsilon}_1^2 & \mathbf{\varepsilon}_2^2 & \dots & \mathbf{\varepsilon}_2^m \\ & \ddots & \ddots & \ddots \\ \mathbf{\varepsilon}_1^{m-1} & \mathbf{\varepsilon}_2^{m-1} & \dots & \mathbf{\varepsilon}_m^{m-1} \end{bmatrix} = 0,$$

ce qui est impossible. Donc:

Si l'équation fondamentale n'a que des racincs simples, P = 0 admet comme intégrales distinctes m fonctions périodiques de seconde espèce, de période ω et ayant pour multiplicateurs ces racines.

4. Considérant maintenant le cas des racines multiples, je désigne par ε_1 , ε_2 , ..., ε_n les racines distinctes de l'équation fondamentale, et par μ_1 , μ_2 , ..., μ_n leurs ordres de multiplicité respectifs.

⁽¹⁾ Journal de Crelle, t. 76, p. 115, 116 et 117.

Envisageons d'abord la racine ε_i .

J'en déduis (n° 1), à l'aide des équations en u, une intégrale périodique de seconde espèce $F_i(x)$, de période ω , et de multiplicateur ε_i , ce qui est toujours possible. Remarquant ensuite que les valeurs des m constantes u, qui figurent dans

$$F_1(x) = u_1 f_1(x) + u_2 f_2(x) + \ldots + u_m f_m(x),$$

ne sont pas toutes nulles, je suppose, par exemple, la valeur de u_1 différente de zéro, et j'observe que dans cette hypothèse le système des intégrales $F'_1(x)$, $f_2(x)$, $f_3(x)$, ..., $f_m(x)$ est aussi fondamental. Je le substitue au système primitif $f_1(x)$, $f_2(x)$, ..., $f_m(x)$.

Cela posé, soient

$$F'_{1}(x + \omega) = \varepsilon_{1} F'_{1}(x),$$

$$f_{2}(x + \omega) = B_{21} F'_{1}(x) + B_{22} f_{2}(x) + \ldots + B_{2m} f_{m}(x),$$

$$f_{3}(x + \omega) = B_{31} F'_{1}(x) + B_{32} f_{2}(x) + \ldots + B_{3m} f_{m}(x),$$

$$f_{m}(x + \omega) = B_{m1} F'_{1}(x) + B_{m2} f_{2}(x) + \ldots + B_{mm} f_{m}(x).$$

L'équation

$$\begin{bmatrix} \varepsilon_1 - \varepsilon & 0 & \dots & 0 \\ B_{21} & B_{22} - \varepsilon & \dots & B_{2m} \\ \dots & \dots & \dots & \dots \end{bmatrix} = 0$$

$$B_{m1} \quad B_{m2} \quad \dots \quad B_{mm} - \varepsilon$$

a les mêmes racines (nº 2) que l'équation $\Delta=$ 0. Par conséquent, l'équation

$$\begin{vmatrix} B_{22} - \varepsilon & \dots & B_{2m} \\ \dots & \dots & \dots \\ B_{mn} & \dots & B_{mm} - \varepsilon \end{vmatrix} = 0$$

admet encore la racine ε_4 . Il en résulte que, si u'_2 , u'_3 , ..., u'_m désignent un ensemble de solutions des équations

$$(B_{22}-\varepsilon_1) u_2 + \ldots + B_{m2} u_m = 0,$$

$$\vdots$$

$$B_{2m} u_2 + \ldots + (B_{mm}-\varepsilon_1) u_m = 0,$$

on pourra supposer que les m-1 constantes u' ne sont pas toutes

nulles. Si done on pose

$$\mathbf{F}'_{2}(x) = u'_{2} f_{2}(x) + u'_{3} f_{3}(x) + \ldots + u'_{m} f_{m}(x),$$

l'intégrale $F_2(x)$ n'est pas identiquement nulle et satisfait, en outre, à la condition

$$\mathbf{F}_{2}'(x+\omega) = \varepsilon_{21} \,\mathbf{F}_{1}'(x) + \varepsilon_{1} \,\mathbf{F}_{2}'(x),$$

comme on le vérifie aisément. La notation 21 désigne la constante

$$B_{21} u'_2 + B_{31} u'_3 + \ldots + B_{m1} u'_m,$$

qui, d'ailleurs, peut être zéro. Supposant, par exemple, u_2' différent de zéro, je substitue au système $F_4'(x)$, $f_2(x)$, $f_3(x)$, ..., $f_m(x)$ le système $F_4'(x)$, $F_2'(x)$, $f_3(x)$, ..., $f_m(x)$, qui est aussi fondamental.

Raisonnant sur ce nouveau système comme sur le précédent, j'obtiendrai une intégrale $F'_3(x)$ satisfaisant à la condition

$$\mathbf{F}_{3}'(x+\omega) = \varepsilon_{31}\mathbf{F}_{1}'(x) + \varepsilon_{32}\mathbf{F}_{2}'(x) + \varepsilon_{1}\mathbf{F}_{3}'(x),$$

ε₃₄ et ε₃₂ désignant des constantes qui peuvent être nulles. Puis je remplacerai le système employé par le système

$$F'_1(x), F'_2(x), F'_3(x), f_4(x), \ldots, f_m(x),$$

qui pourra aussi être regardé comme fondamental.

En continuant de la sorte, j'arriverai au système

$$F'_1(x), F'_2(x), \ldots, F'_{\mu_1}(x), f_{\mu_1+1}(x), \ldots, f_m(x).$$

Ayant ainsi déduit de la racine ε_1 les μ_1 intégrales F'(x), on traitera de même la racine ε_2 . On en déduira les μ_2 intégrales $F'_1(x)$, $F''_2(x)$, ..., $F''_{\mu_2}(x)$, et l'on arrivera au système fondamental

$$F'_1(x), F'_2(x), \ldots, F'_{\mu_1}(x), F''_1(x), F''_2(x), \ldots, F''_{\mu_2}(x), f_{\mu_1+\mu_2+1}(x), \ldots, f_m(x).$$

On répétera le même raisonnement successivement pour chacune des autres racines ε_3 , ε_4 , ..., ε_n . Finalement, on aura un système fondamental d'intégrales composé de *n groupes*, analogues au groupe F'(x). D'où cette proposition :

Soit n le nombre des racines distinctes $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$ de l'équation fondamentale; soient $\mu_1, \mu_2, \ldots, \mu_n$ leurs ordres de multiplicité, tels que $\mu_1 + \mu_2 + \ldots + \mu_n = m$; il existe un système fondamental de solutions se partageant en n groupes, correspondant respectivement à ces racines, et les μ éléments qui constituent le groupe répondant à la racine ε , d'ordre μ , jouissent des propriétés suivantes :

$$\begin{split} \mathbf{F}_{1}(x+\omega) &= \mathbf{\epsilon} \quad \mathbf{F}_{1}(x), \\ \mathbf{F}_{2}(x+\omega) &= \mathbf{\epsilon}_{21} \mathbf{F}_{1}(x) + \mathbf{\epsilon} \quad \mathbf{F}_{2}(x), \\ \mathbf{F}_{3}(x+\omega) &= \mathbf{\epsilon}_{31} \mathbf{F}_{1}(x) + \mathbf{\epsilon}_{32} \mathbf{F}_{2}(x) + \mathbf{\epsilon} \mathbf{F}_{3}(x), \\ & \dots \\ \mathbf{F}_{\mu}(x+\omega) &= \mathbf{\epsilon}_{\mu 1} \mathbf{F}_{1}(x) + \mathbf{\epsilon}_{\mu 2} \mathbf{F}_{2}(x) + \dots + \mathbf{\epsilon}_{\mu, \mu-1} \mathbf{F}_{\mu-1}(x) + \mathbf{\epsilon} \mathbf{F}_{\mu}(x). \end{split}$$

D'après cela, le premier élément de chaque groupe est une fonction périodique de seconde espèce. Il peut exister d'ailleurs, dans un même groupe, plusieurs éléments de cette nature, car les constantes affectées d'indices peuvent être nulles. Donc :

Si n est le nombre des racines distinctes de l'équation fondamentale, P = 0 admet comme intégrales linéairement indépendantes au moins n fonctions périodiques de seconde espèce, de période ω et ayant pour multiplicateurs ces racines.

Et, par conséquent :

L'équation P = 0 admet toujours comme intégrale au moins une fonction périodique de seconde espèce.

5. Que l'équation fondamentale ait ou n'ait pas de racines multiples, on vient d'obtenir dans tous les cas m intégrales distinctes, se comportant d'une manière simple quand on y change x en $x + \omega$. Je désignerai dorénavant par la lettre S ce système fondamental particulier, et par $\Phi_1, \Phi_2, \ldots, \Phi_n$ les différents groupes, corrélatifs des racines $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$, auxquels il donne lieu.

Il faut remarquer que, lorsque, dans le système S, on remplace une quelconque des intégrales $F_i(x)$ par une combinaison linéaire

$$C_1F_1(x) + C_2F_2(x) + \ldots + C_iF_i(x)$$

de cette intégrale et de celles qui la précèdent dans le groupe Φ auquel elle appartient, si C_i n'est pas nul, le système total ne cesse pas d'être fondamental, et, de plus, les propriétés du groupe Φ sont conservées.

Observons encore que l'on calcule aisément $F_4(x+k\omega)$, $F_2(x+k\omega)$, ..., $F_n(x+k\omega)$, k désignant un nombre entier. On trouve successivement

$$\begin{split} F_{1}(x+k\omega) &= \varepsilon^{k} \, F_{1}(x), \\ F_{2}(x+k\omega) &= \varepsilon^{k} \left[k \frac{\varepsilon_{21}}{\varepsilon} \, F_{1}(x) + F_{2}(x) \right], \\ F_{3}(x+k\omega) &= \varepsilon^{k} \left\{ \left[\frac{k(k-1)}{1\cdot 2} \frac{\varepsilon_{32}\varepsilon_{21}}{\varepsilon^{2}} + \frac{k}{1} \frac{\varepsilon_{31}}{\varepsilon} \right] F_{1}(x) + \frac{k}{1} \frac{\varepsilon_{32}}{\varepsilon} \, F_{2}(x) + F_{3}(x) \right] \right\}, \\ F_{4}(x+k\omega) &= \varepsilon^{k} \left\{ \left[\frac{k(k-1)(k-2)}{1\cdot 2\cdot 3} \frac{\varepsilon_{43}\varepsilon_{32}\varepsilon_{21}}{\varepsilon^{3}} + \frac{k(k-1)}{1\cdot 2} \frac{\varepsilon_{43}\varepsilon_{31} + \varepsilon_{42}\varepsilon_{21}}{\varepsilon^{2}} + \frac{k}{1} \frac{\varepsilon_{41}}{\varepsilon} \right] F_{1}(x) \right. \\ &+ \left[\frac{k(k-1)}{1\cdot 2} \frac{\varepsilon_{43}\varepsilon_{32}}{\varepsilon^{2}} + \frac{k}{1} \frac{\varepsilon_{42}}{\varepsilon} \right] F_{2}(x) + \frac{k}{1} \frac{\varepsilon_{43}}{\varepsilon} \, F_{3}(x) + F_{4}(x) \right\}, \end{split}$$

$$\mathbf{F}_{i}(x+k\omega) = \varepsilon^{k} [k_{i-1} \mathbf{F}_{1}(x) + k_{i-2} \mathbf{F}_{2}(x) + \ldots + k_{j} \mathbf{F}_{i-j}(x) + \ldots + k_{1} \mathbf{F}_{i-1}(x) + \mathbf{F}_{i}(x)],$$

les quantités $k_{i-1}, k_{i-2}, \ldots, k_i$ étant des polynômes en k, de degrés respectifs $i-1, i-2, \ldots, 1$, et sans termes indépendants de k. Les coefficients des puissances de k dans ces polynômes sont toujours finis; ils peuvent être nuls. Ces formules seront utiles plus loin.

6. La façon simple dont se comportent les éléments du système S qui composent un groupe Φ , lorsqu'on y change x en $x + \omega$, va nous permettre d'obtenir leur forme analytique.

Soient μ fonctions uniformes $F_4(x)$, $F_2(x)$, ..., $F_{\mu}(x)$, possédant les propriétés suivantes :

$$\begin{split} F_1(x+\omega) &= \epsilon \quad F_1(x), \\ F_2(x+\omega) &= \epsilon_{21} \, F_1(x) + \epsilon \quad F_2(x), \\ F_3(x+\omega) &= \epsilon_{31} \, F_1(x) + \epsilon_{32} \, F_2(x) + \epsilon \, F_3(x), \\ & \dots \\ F_{\mu}(x+\omega) &= \epsilon_{\mu 1} \, F_1(x) + \epsilon_{\mu 2} \, F_2(x) + \dots + \epsilon_{\mu,\mu-1} \, F_{\mu-1}(x) + \epsilon \, F_{\mu}(x). \end{split}$$

La première est périodique de seconde espèce. Considérons la seconde. On a

$$\frac{\mathbf{F}_{2}(x+\omega)}{\mathbf{F}_{1}(x+\omega)} = \frac{\mathbf{F}_{2}(x)}{\mathbf{F}_{1}(x)} + \frac{\varepsilon_{21}}{\varepsilon},$$

équations différentielles linéaires à coefficients périodiques. de sorte que la fonction uniforme

$$\frac{\mathbf{F}_2(x)}{\mathbf{F}_1(x)} - \frac{\varepsilon_{21}}{\omega \varepsilon} x$$

ne changera pas par le changement de x en $x + \omega$. Je peux donc écrire

$$\frac{\mathbf{F}_{2}(x)}{\mathbf{F}_{1}(x)} - \frac{\mathbf{E}_{21}}{\omega \mathbf{E}} x = \mathbf{\theta}(x),$$

 $\theta(x)$ désignant une fonction périodique. En posant alors

$$\mathbf{F}_1(x)\,\theta(x)\equiv\varphi_{21}(x),\quad \frac{\varepsilon_{21}}{\omega\varepsilon}\,\mathbf{F}_1(x)\equiv\varphi_{22}(x),$$

on aura

$$F_2(x) = \varphi_{21}(x) + x \varphi_{22}(x),$$

 $\varphi_{21}(x)$ et $\varphi_{22}(x)$ étant des fonctions uniformes, périodiques de seconde espèce, de période ω et de multiplicateur ε , $\varphi_{22}(x)$ ne différant de $F_{1}(x)$ que par un facteur constant.

Si l'on passe à la troisième fonction $F_3(x)$, on a

$$\frac{\mathbf{F}_3(x+\omega)}{\mathbf{F}_1(x+\omega)} = \frac{\mathbf{F}_3(x)}{\mathbf{F}_1(x)} + \frac{\varepsilon_{32}}{\varepsilon} \frac{\mathbf{F}_2(x)}{\mathbf{F}_1(x)} + \frac{\varepsilon_{31}}{\varepsilon},$$

c'est-à-dire

$$\frac{\mathbf{F_3}(x+\omega)}{\mathbf{F_1}(x+\omega)} = \frac{\mathbf{F_3}(x)}{\mathbf{F_1}(x)} + \frac{\epsilon_{31}}{\epsilon} \left[\frac{\epsilon_{21}}{\omega \epsilon} \, x + \frac{\phi_{21}(x)}{\mathbf{F_1}(x)} \right] + \frac{\epsilon_{31}}{\epsilon} \cdot$$

On en conclura la périodicité de la fonction

$$\frac{\mathbf{F}_3(x)}{\mathbf{F}_1(x)} - x \left[\frac{\varepsilon_{32}}{\omega \varepsilon} \frac{\varphi_{21}(x)}{\mathbf{F}_1(x)} + \frac{2 \varepsilon \varepsilon_{31} - \varepsilon_{32} \varepsilon_{21}}{2 \omega \varepsilon^2} \right] - \frac{\varepsilon_{32} \varepsilon_{21}}{2 \omega^2 \varepsilon^2} \, x^2$$

et, par suite,

$$\mathbf{F}_{3}(x) = \mathbf{\varphi}_{31}(x) + x \, \mathbf{\varphi}_{32}(x) + x^{2} \, \mathbf{\varphi}_{33}(x),$$

 $\varphi_{31}(x)$, $\varphi_{32}(x)$, $\varphi_{33}(x)$ désignant des fonctions uniformes, périodiques de seconde espèce, de période ω et de multiplicateur ε . La fonction $\varphi_{33}(x)$ ne diffère de $F_4(x)$ que par un facteur constant, et $\varphi_{32}(x)$ est une combinaison linéaire de $\varphi_{24}(x)$ et de $F_4(x)$.

On aperçoit maintenant la loi qui régit la forme des fonctions F(x). Pour l'établir d'une manière générale, je la suppose démontrée pour

 $F_i(x)$, $F_2(x)$, ..., $F_{i-1}(x)$, et je vais prouver qu'elle subsiste à l'égard de $F_i(x)$.

Je fais, pour la symétrie des notations,

$$F_1(x) = \varphi_{11}(x)$$
.

On a

$$\mathbf{F}_{i}(x+\omega) = \varepsilon_{i1}\mathbf{F}_{1}(x) + \varepsilon_{i2}\mathbf{F}_{2}(x) + \ldots + \varepsilon_{i,i-1}\mathbf{F}_{i-1}(x) + \varepsilon\mathbf{F}_{i}(x).$$

D'ailleurs, on peut toujours poser

$$\mathbf{F}_{i}(x) = \varphi_{i_{1}}(x) + x \, \varphi_{i_{2}}(x) + \ldots + x^{i-1} \, \varphi_{i_{l}}(x),$$

les fonctions $\varphi_{i2}(x)$, $\varphi_{i3}(x)$, ..., $\varphi_{ii}(x)$ étant des fonctions uniformes, périodiques de seconde espèce, de même multiplicateur ε , qu'on a choisies arbitrairement; la fonction $\varphi_{ii}(x)$ doit seule être convenablement calculée; elle sera forcément uniforme, puisque $F_i(x)$ l'est; il s'agit simplement d'établir qu'elle sera périodique de seconde espèce, au multiplicateur ε , au moins pour certaine détermination de $\varphi_{i2}(x)$, $\varphi_{i3}(x)$, ..., $\varphi_{ii}(x)$.

Or nous avons

$$\mathbf{F}_{i}(x+\omega) = \varepsilon_{i_1}\varphi_{i_1} + \varepsilon_{i_2}(\varphi_{2i} + x\varphi_{2i}) + \ldots + \varepsilon[\varphi_{i_1}(x) + x\varphi_{i_2} + \ldots + x^{i-1}\varphi_{ii}],$$

et aussi

$$\mathbf{F}_{i}(x+\omega) = \varepsilon \left[\frac{\varphi_{i1}(x+\omega)}{\varepsilon} + (x+\omega) \varphi_{i2} + \ldots + (x+\omega)^{i-1} \varphi_{ii} \right].$$

Si, dans ces deux expressions, on égale les coefficients de x, x^2 , x^3 , ..., x^{i-1} , on obtient une équation identique et i-2 équations, faciles à écrire, susceptibles de déterminer φ_{i3} , φ_{i4} , ..., φ_{ii} en fonctions linéaires, homogènes, à coefficients constants, des quantités φ dont le premier indice est inférieur à i. Ces valeurs étant uniformes, périodiques de seconde espèce, de même multiplicateur ε , on peut supposer qu'elles coıncident avec les expressions des fonctions arbitraires φ_{i3} , φ_{i4} , ..., φ_{ii} , et regarder les i-2 équations comme satisfaites. Les parties restantes des deux valeurs de $F_i(x+\omega)$ doivent alors être identiques, ce qui donne

$$\varepsilon_{i1}\varphi_{i1} + \varepsilon_{i2}\varphi_{21} + \ldots + \varepsilon\varphi_{i1}(x) = \varphi_{i1}(x+\omega) + \omega\varepsilon\varphi_{i2} + \ldots + \omega^{l-1}\varepsilon\varphi_{ii}.$$

ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES A COEFFICIENTS PÉRIODIQUES.

Déterminons la fonction périodique de seconde espèce φ_{i_2} par l'équation

$$\varepsilon_{i1}\varphi_{11} + \varepsilon_{i2}\varphi_{21} + \ldots + \varepsilon_{i,i-1}\varphi_{i-1,1} = \omega \varepsilon \varphi_{i2} + \ldots + \omega^{i-1}\varepsilon \varphi_{ii},$$

ce qui est permis; il restera

$$\varphi_{i_1}(x+\omega) = \varepsilon \varphi_{i_1}(x),$$

et, par conséquent, la fonction uniforme $\varphi_{ii}(x)$ est périodique de seconde espèce, au multiplicateur ε .

.On voit aussi que les fonctions φ sont des combinaisons linéaires de celles d'entre elles dont le second indice est 1.

On a en particulier

$$\varphi_{ii} = \frac{\varepsilon_{i,i-1}}{(i-1)\omega\varepsilon} \varphi_{i-1,i-1}$$

et, par suite,

$$\varphi_{ii} = \frac{\varepsilon_{i,i-1} \varepsilon_{i-1,i-2} \dots \varepsilon_{32} \varepsilon_{21}}{(i-1)(i-2)\dots 2 \cdot 1(\omega \varepsilon)^{i-1}} \varphi_{11},$$

de sorte que les fonctions φ_{i_1} , φ_{22} , ..., $\varphi_{\mu,\mu}$ ne différent mutuellement que par des facteurs constants. Si φ_{ii} est identiquement nul, il en est de même de $\varphi_{i+1,i+1}$, $\varphi_{i+2,i+2}$, ..., $\varphi_{\mu,\mu}$.

D'où cette proposition:

Lorsque μ fonctions uniformes $F_1(x), F_2(x), \ldots, F_{\mu}(x)$ possèdent les propriétés en question, quand on γ change x en $x + \omega$, elles sont de la forme

où les fonctions $\varphi(x)$ sont uniformes, périodiques de seconde espèce, de période ω et de même multiplicateur ε . Ces fonctions $\varphi(x)$ peuvent s'exprimer en fonctions linéaires, homogènes, à coefficients constants, de celles d'entre elles dont le second indice est ε , et en particulier φ_{ε} , φ_{ε} , ..., $\varphi_{\mu\mu}$, dont les deux indices sont égaux, ne diffèrent mutuellement que par des facteurs constants.

Et, par conséquent :

Les éléments du système fondamental S qui composent chacun des groupes $\Phi_1, \Phi_2, \ldots, \Phi_n$ sont de la forme précédente, le multiplicateur dans chaque groupe Φ étant la racine correspondante ε de l'équation fondamentale.

III. - Sur un système fondamental de même forme que S.

7. Soit $F_i(x)$ une fonction périodique de seconde espèce, de période ω et de multiplicateur ε_i , satisfaisant à l'équation différentielle P=0. Le multiplicateur ε_i est, par conséquent (n° 1), une racine de l'équation fondamentale. Posant

$$y = \mathbf{F}_1(x) \int z \, dx$$

dans l'équation P = 0, on obtient la transformée d'ordre m - 1,

$$Q(z) = \frac{d^{m-1}z}{dx^{m-1}} + q_1 \frac{d^{m-2}z}{dx^{m-2}} + \ldots + q_{m-1}z = 0.$$

J'observe en premier lieu que, comme la proposée, cette transformée a ses coefficients uniformes, périodiques, de période ω , et son integrale générale uniforme.

C'est en effet ce qui résulte, $F_{+}(x)$ étant uniforme, de la simple inspection des coefficients q:

$$\begin{split} q_1 &= \frac{1}{\mathbb{F}_1(x)} \bigg[m \, \frac{d \, \mathbb{F}_1(x)}{dx} + p_1 \, \mathbb{F}_1(x) \bigg] \,, \\ q_2 &= \frac{1}{\mathbb{F}_1(x)} \bigg[\frac{m(m-1)}{1 \cdot 2} \, \frac{d^2 \, \mathbb{F}_1(x)}{dx^2} + (m-1) p_1 \, \frac{d \, \mathbb{F}_1(x)}{dx} + p_2 \, \mathbb{F}_1(x) \bigg] \,, \end{split}$$

et de cette remarque, à savoir que Q = 0 admet les m-1 solutions distinctes,

$$\frac{d}{dx}\frac{f_2(x)}{F_1(x)}, \frac{d}{dx}\frac{f_3(x)}{F_1(x)}, \dots, \frac{d}{dx}\frac{f_m(x)}{F_1(x)},$$

 $F_1(x)$, $f_2(x)$, $f_3(x)$, ..., $f_m(x)$ désignant un système fondamental d'intégrales de P = 0.

Je dis ensuite que, si ε_1 , ε_2 , ε_3 , ..., ε_m sont les m racines de l'équa-

ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES A COEFFICIENTS PÉRIODIQUES.

tion fondamentale $\Delta = 0$, les m-1 racines de l'équation fondamentale relative à Q seront les quotients $\frac{\varepsilon_2}{\varepsilon_1}, \frac{\varepsilon_3}{\varepsilon_1}, \dots, \frac{\varepsilon_m}{\varepsilon_1}$.

Supposons en effet que l'on ait

$$F_{1}(x + \omega) = \varepsilon_{1} F_{1}(x),$$

$$f_{2}(x + \omega) = L_{21} F_{1}(x) + L_{22} f_{2}(x) + \ldots + L_{2m} f_{m}(x),$$

$$\vdots$$

$$f_{m}(x + \omega) = L_{m1} F_{1}(x) + L_{m2} f_{2}(x) + \ldots + L_{mm} f_{m}(x),$$

le déterminant des constantes L différant de zéro. On a alors

$$\Delta = (\varepsilon_1 - \varepsilon) \begin{vmatrix} \mathbf{L}_{22} - \varepsilon & \dots & \mathbf{L}_{2m} \\ \dots & \dots & \dots \\ \mathbf{L}_{m2} & \dots & \mathbf{L}_{mm} - \varepsilon \end{vmatrix}.$$

Or divisons les premiers membres des équations précédentes par $F_{\iota}(x+\omega)$, et les seconds par l'expression identique ε_{ι} $F_{\iota}(x)$, puis dérivons par rapport à x; nous obtiendrons

$$\frac{d}{dx}\frac{f_2(x+\omega)}{F_1(x+\omega)} = \frac{\mathbf{L}_{22}}{\varepsilon_1}\frac{d}{dx}\frac{f_2(x)}{F_1(x)} + \ldots + \frac{\mathbf{L}_{2m}}{\varepsilon_1}\frac{d}{dx}\frac{f_m(x)}{F_1(x)},$$

$$\vdots$$

$$\frac{d}{dx}\frac{f_m(x+\omega)}{F_1(x+\omega)} = \frac{\mathbf{L}_{m2}}{\varepsilon_1}\frac{d}{dx}\frac{f_2(x)}{F_1(x)} + \ldots + \frac{\mathbf{L}_{mm}}{\varepsilon_1}\frac{d}{dx}\frac{f_m(x)}{F_1(x)}.$$

Il en résulte que l'équation fondamentale relative à Q peut s'écrire en multipliant son premier membre par ε_1^{m-1} ,

$$\begin{vmatrix} \mathbf{L}_{22} - \mathbf{\epsilon}_1 \mathbf{\epsilon} & \dots & \mathbf{L}_{2m} \\ \dots & \dots & \dots \\ \mathbf{L}_{m2} & \dots & \mathbf{L}_{mm} - \mathbf{\epsilon}_1 \mathbf{\epsilon} \end{vmatrix} = \mathbf{0},$$

ce qui démontre la proposition.

Si en particulier l'équation $\Delta=0$ a plusieurs racines égales à ϵ_1 , l'équation fondamentale relative à Q aura au moins une racine égale à l'unité, de sorte qu'il existera certainement une intégrale de Q=0, admettant la période ω .

8. Je cherche maintenant les propriétés de l'intégrale

$$\int \zeta(x) dx,$$

lorsqu'elle est uniforme, $\zeta(x)$ désignant une fonction uniforme, périodique de seconde espèce, de période ω et de multiplicateur ε .

Supposant d'abord $\varepsilon = 1$, auquel cas $\zeta(x)$ est périodique de première espèce, je représente par H(x) une quelconque des intégrales de $\zeta(x) dx$. On a

$$\frac{d\mathbf{H}(x)}{dx} = \zeta(x),$$

et aussi

$$\frac{d H(x + \omega)}{dx} = \zeta(x + \omega) = \zeta(x).$$

Donc $H(x + \omega)$ et H(x) different par une constante

$$\mathbf{H}(x+\omega) = \mathbf{H}(x) + \mathbf{C}.$$

J'en déduis la forme analytique de H(x). Si je pose en effet

$$\mathbf{H}(x) - \frac{\mathbf{C}x}{\omega} = h(x),$$

la fonction h(x) sera évidemment uniforme et périodique. Donc l'intégrale H(x) est de la forme

$$\mathbf{H}(x) = h(x) + \alpha x,$$

h(x) étant une fonction uniforme, périodique, de période ω et z une constante, qui d'ailleurs peut être nulle.

Supposant en second lieu $\varepsilon \neq 1$, si je représente encore par H(x) une quelconque des intégrales de $\zeta(x) dx$, j'ai aussi

$$\frac{d\mathbf{H}(x)}{dx} = \zeta(x).$$

Or on a

$$\frac{d H(x + \omega)}{dx} = \zeta(x + \omega) = \varepsilon \zeta(x).$$

Les fonctions $\mathrm{H}(x+\omega)$ et $\epsilon\,\mathrm{H}(x)$ ont donc même dérivée. J'en conclus

$$H(x + \omega) = \varepsilon H(x) + C.$$

Telle est la propriété d'une intégrale quelconque.

L'intégrale indéfinie sera H(x) + C', C' étant une constante arbi-

éQUATIONS DIFFÉRENTIELLES LINÉAIRES A COEFFICIENTS PÉRIODIQUES. traire, et l'on aura

$$\mathbf{H}(x+\omega) + \mathbf{C}' = \varepsilon \mathbf{H}(x) + \mathbf{C} + \mathbf{C}' = \varepsilon [\mathbf{H}(x) + \mathbf{C}'] + \mathbf{C} - \mathbf{C}'(\varepsilon - 1).$$

Si donc on prend comme valeur de C'

$$C' = \frac{C}{\varepsilon - 1}$$

valeur admissible, puisque a diffère de l'unité, et si l'on pose

$$H(x) + C' = l(x),$$

l'intégrale particulière l(x) jouira de la propriété

$$l(x + \omega) = \varepsilon l(x).$$

Par conséquent :

Lorsque $\zeta(x)$ est vraiment de seconde espèce, on peut toujours déterminer la constante d'intégration de telle sorte que l'intégrale uniforme $\int \zeta(x) dx$ soit aussi périodique de seconde espèce, la période et le multiplicateur étant les mêmes que pour $\zeta(x)$.

9. On sait que l'on obtient un système fondamental d'intégrales y_1, y_2, \ldots, y_m de l'équation différentielle P = 0 quand on déduit ces intégrales les unes des autres par des substitutions successives $y = y_1 \int z \, dx$. Il est clair qu'on peut choisir les solutions successives z de manière à tomber exactement sur le système fondamental S. Mais je vais me borner, en utilisant les propositions précédentes, à diriger le calcul en vue d'un système de même forme que S, forme qui est la seule chose intéressante à obtenir.

Examinons d'abord le cas où les m racines $\varepsilon_1, \varepsilon_2, ..., \varepsilon_m$ de l'équation fondamentale $\Delta = 0$ sont distinctes.

Soient $F_1(x)$, $F_2(x)$, ..., $F_m(x)$ les éléments du système S, qui sont alors m fonctions périodiques de seconde espèce, de multiplicateurs $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_m$.

Dans P = 0, posons

$$v = \mathbf{F}_1(x) \int z \, dx.$$

Nous obtenons une équation en z, Q = o remplissant les mêmes $(n^o 7)$ conditions que P = o, et la nouvelle équation fondamentale a pour racines $(n^o 7)$ les quotients $\frac{\varepsilon_2}{\varepsilon_1}, \frac{\varepsilon_3}{\varepsilon_1}, \dots, \frac{\varepsilon_m}{\varepsilon_1}$.

Soient $R_2(x)$, $R_3(x)$, ..., $R_m(x)$ les solutions de Q = 0, qui constituent le système S pour cette équation, telles que

$$\mathbf{R}_i(x+\omega) = \frac{\varepsilon_i}{\varepsilon_1} \mathbf{R}_i(x) \quad (i=2,3,\ldots,m).$$

Prenons $z = R_2(x)$. L'intégrale $\int R_2(x) dx$ est uniforme, puisque $F_1(x) \int R_2(x) dx$ est une solution de P = 0. On peut donc (n° 8), en choisissant convenablement la constante d'intégration, prendre

$$\int R_2(x) dx = l(x),$$

l(x) étant une fonction périodique de seconde espèce, de multiplicateur $\frac{z_2}{z_1}$. On aura alors

$$y = \mathbf{F}_1(x) l(x),$$

et, par conséquent, l'intégrale y de P = 0 est une fonction périodique de seconde espèce, de multiplicateur ε_2 . Elle est donc de même forme que $F_2(x)$.

Dans Q = 0, posons de même

$$z = \mathbf{R}_2(x) \int t \, dx.$$

La nouvelle équation fondamentale aura pour racines les quotients $\frac{\varepsilon_3}{\varepsilon_2}, \frac{\varepsilon_4}{\varepsilon_2}, \cdots, \frac{\varepsilon_m}{\varepsilon_3}$, et, en opérant comme précédemment, j'obtiendrai pour z une fonction périodique de seconde espèce, de multiplicateur $\frac{\varepsilon_2}{\varepsilon_1} \times \frac{\varepsilon_3}{\varepsilon_2}$ ou $\frac{\varepsilon_3}{\varepsilon_1}$, et, par suite, pour $y = F_1(x) \int z \, dx$, une fonction de multiplicateur $\frac{\varepsilon_3}{\varepsilon_1} \times \varepsilon_4$ ou ε_3 , qui sera donc de même forme que $F_3(x)$.

Et ainsi de suite.

Examinons maintenant le cas où l'équation fondamentale a des racines multiples. Soient ε_1 , ε_1 , ..., ε_4 , $\varepsilon_{\mu+1}$, ..., ε_m ses racines, dont μ sont égales à ε_i .

Désignons par $F_1(x)$, $F_2(x)$, ..., $F_{\mu}(x)$, ..., $F_m(x)$ les éléments du système S, dont les μ premiers constituent le groupe Φ_i répondant à la racine ϵ_i .

Dans P = o, je pose

$$y = \mathbf{F}_1(x) \int z \, dx.$$

La nouvelle équation fondamentale a pour racines (n° 7) μ — t fois l'unité et les quotients $\frac{\varepsilon_{\mu+1}}{\varepsilon_1}, \frac{\varepsilon_{\mu+2}}{\varepsilon_1}, \dots, \frac{\varepsilon_m}{\varepsilon_1}$. Soient $R_2(x), R_3(x), \dots, R_{\mu}(x), \dots, R_m(x)$ les éléments qui constituent le système S pour l'équation Q = o en z. Le premier $R_2(x)$ est une fonction périodique de première espèce. Prenons $z = R_2(x)$. L'intégrale $\int R_2(x) dx$ étant uniforme, on a (n° 8)

$$\int R_2(x) dx = h_2(x) + a_2 x;$$

 $h_2(x)$ étant une fonction uniforme, périodique, et α_2 une constante. Par suite

$$y = \mathbb{F}_1(x) \left[h_2(x) + \alpha_2 x \right].$$

L'intégrale y de P = o est donc de même forme que

$$\mathbf{F}_{2}(x) = \varphi_{21}(x) + x \varphi_{22}(x).$$

Dans Q = 0, posons de même

$$z = \mathbf{R}_2(x) \int t \, dx.$$

La nouvelle équation fondamentale aura pour racines $\mu - 2$ fois l'unité et les quotients $\frac{\varepsilon_{\mu+1}}{\varepsilon_1}$, $\frac{\varepsilon_{\mu+2}}{\varepsilon_1}$, \cdots , $\frac{\varepsilon_m}{\varepsilon_1}$, c'est-à-dire les mêmes racines que la précédente, sauf l'unité, une fois de moins.

En opérant comme plus haut, j'aurai

$$z = \mathbf{R}_2(x) [h_3(x) + a_3 x],$$

 $h_{\mathfrak{d}}(x)$ étant périodique et $\alpha_{\mathfrak{d}}$ constant. Par suite

$$y = F_1(x) \int R_2(x) [h_3(x) + a_3 x] dx.$$

Ann. de l'Éc. Normale. 2º Série. Tome XII. - FÉVRIER 1883.

65

Or on a

$$\int \mathbf{R}_{2}(x) \left[h_{3}(x) + \mathbf{z}_{3} x \right] dx = \int \mathbf{R}_{2}(x) h_{3}(x) dx + \mathbf{z}_{3} \int \mathbf{R}_{2}(x) x dx.$$

La première intégrale, $R_2(x) h_3(x)$ étant périodique, est de la forme

$$\int R_2(x) h_3(x) dx = h_1(x) + \alpha_1 x.$$

Quant à la seconde, si l'on prend

$$\int \mathbf{R}_2(x) \, dx = h_2(x) + \alpha_2 x,$$

on voit que l'intégration par parties

$$\int \mathbf{R}_{2}(x) x dx = x \left[h_{2}(x) + \mathbf{x}_{2} x \right] - \int \left[h_{2}(x) + \mathbf{x}_{2} x \right] dx$$

fera connaître sa forme. On trouve ainsi, pour l'intégrale y de $P=\alpha$, une expression de même forme que

$$\mathbf{F}_{3}(x) = \varphi_{31}(x) + x\varphi_{32}(x) + x^{2}\varphi_{33}(x).$$

On peut continuer de la même façon, et l'on obtient successivement des intégrales de P = o ayant respectivement les mêmes formes que $F_4(x), F_5(x), \ldots, F_{\mu}(x)$, puis que $F_{\mu+1}(x), \ldots, F_m(x)$.

Dans tous les cas, on peut donc par ce procédé construire un système fondamental de même forme que le système S.

IV. – Propriété caractéristique des intégrales de P(y) = 0.

10. Nous avons obtenu la forme analytique des m éléments qui constituent un système fondamental particulier S. Celle d'une solution quelconque en résulte. Si nous faisons d'abord une combinaison linéaire des éléments d'un même groupe Φ , corrélatif de la racine ε d'ordre μ , nous obtenons un polynôme entier en x, de degré $\mu-1$ au plus, dont les coefficients sont des fonctions périodiques de seconde espèce, de même multiplicateur ε . Pour avoir une solution quelconque,

ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES A COEFFICIENTS PÉRIODIQUES.

il suffit de combiner ensuite tous ces polynômes, relatifs aux différents groupes Φ . Par conséquent :

Si $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$ sont les racines distinctes de l'équation fondamentale, d'ordres respectifs $\mu_1, \mu_2, \ldots, \mu_n$, l'intégrale générale est la somme de n polynômes entiers en x, à coefficients uniformes, périodiques de seconde espèce; les degrés de ces polynômes sont généralement $\mu_1 - 1, \mu_2 - 1, \ldots, \mu_n - 1$, et les multiplicateurs, constants dans chacun d'eux, sont respectivement $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$.

Cette intégrale peut aussi se mettre sous la forme

$$\psi_{11}(x) + x\psi_{12}(x) + \ldots + x^{\mu_1-1}\psi_{1\mu_1}(x),$$

$$+ \psi_{21}(x) + x\psi_{22}(x) + \ldots + x^{\mu_2-1}\psi_{2\mu_2}(x),$$

$$+ \ldots ,$$

$$+ \psi_{n1}(x) + x\psi_{n2}(x) + \ldots + x^{\mu_{n}-1}\psi_{n\mu_{n}}(x),$$

où les $\psi(x)$ désignent des fonctions uniformes, périodiques de seconde espèces, de période ω , celles dont lé premier indice est i ayant pour multiplicateur ε_i .

La forme analytique obtenue pour les éléments du système fondamental S est caractéristique des équations différentielles linéaires qui remplissent les conditions imposées à P=o. Car, plus généralement, on démontre ce théorème réciproque :

Soient $f_1(x)$, $f_2(x)$, ..., $f_m(x)$ m fonctions uniformes, lineairement indépendantes : si les nouvelles valeurs $f_1(x+\omega)$, $f_2(x+\omega)$, ..., $f_m(x+\omega)$ qu'acquièrent ces m fonctions, lorsqu'on y change x en $x+\omega$, peuvent s'exprimer en fonctions lineaires, homogènes, à coefficients constants, des valeurs primitives, ces m fonctions satisfont à une equation différentielle lineaire, homogène, d'ordre m, à coefficients uniformes et périodiques, de période ω .

Supposons, en effet, que l'on ait

$$f_1(x + \omega) = A_{11} f_1(x) + A_{12} f_2(x) + \ldots + A_{1m} f_m(x),$$

$$f_2(x + \omega) = A_{21} f_1(x) + A_{22} f_2(x) + \ldots + A_{2m} f_m(x),$$

$$\ldots,$$

$$f_m(x + \omega) = A_{m1} f_1(x) + A_{m2} f_2(x) + \ldots + A_{mm} f_m(x),$$

le déterminant des constantes A étant différent de zéro. Écrivons que

les fonctions $f_1(x)$, $f_2(x)$, ..., $f_m(x)$ satisfont à une équation telle que

$$\frac{d^m y}{dx^m} + p_1 \frac{d^{m-1} y}{dx^{m-1}} + p_2 \frac{d^{m-2} y}{dx^{m-2}} + \ldots + p_m y = 0.$$

Nous aurons ainsi, pour déterminer les m inconnues p_1, p_2, \ldots, p_m , m équations du premier degré dont le déterminant n'est pas nul. Résolvons ces équations, nous obtenons pour p_i le quotient de deux déterminants. Or ils sont uniformes; en outre, si l'on change x en $x + \omega$ dans cette fonction, ses deux termes sont multipliés par un même déterminant, celui des constantes A. Donc p_i est bien une fonction uniforme et périodique, de période ω .

V. - Théorèmes divers.

11. On a vu que, dans le cas le plus général, un élément du système fondamental S est de la forme

$$\mathfrak{D}(x) = \gamma_1(x) + x\gamma_2(x) + \ldots + x^{\eta-1}\gamma_{\eta}(x),$$

les fonctions $\chi(x)$ étant uniformes, périodiques de seconde espèce, de période ω et de même multiplicateur ε . Je dirai, pour abréger, que ε est le multiplicateur de l'expression $\mathfrak{P}(x)$, et que les fonctions $\chi(x)$ en sont les coefficients.

On voit aisément que :

Si une expression $\mathfrak{D}(x)$ est identiquement nulle, tous ses coefficients sont identiquement nuls.

On a, en effet, en divisant par ε^k ,

$$\chi_1(x) + (x + k\omega)\chi_2(x) + (x + k\omega)^2\chi_3(x) + \ldots + (x + k\omega)^{\eta-1}\chi_\eta(x) = 0,$$

quel que soit l'entier k; donc le polynôme en ${
m V}$

$$\chi_{\mathbf{1}}(x) + V \chi_{\mathbf{2}}(x) + V^{\mathbf{2}} \chi_{\mathbf{3}}(x) + \ldots + V^{\eta-1} \chi_{\mathbf{1}}(x)$$

a une infinité de racines, et par suite tous ses coefficients sont nuls. Plus généralement:

Si la somme de plusieurs expressions $\mathfrak{P}(x)$, à multiplicateurs différents, est identiquement nulle, chacune d'elles est identiquement nulle.

ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES A COEFFICIENTS PÉRIODIQUES.

Soit, en effet,

$$\mathfrak{Q}_1(x) + \mathfrak{Q}_2(x) + \ldots + \mathfrak{Q}_k(x) = 0$$

une pareille identité, ε_1 , ε_2 , ..., ε_k étant les multiplicateurs des k expressions. Supposons que ces expressions ne soient pas identiquement nulles, et désignons alors par $\chi_{i\eta_i}(x)$, $\chi_{2\eta_i}(x)$, ..., $\chi_{k\eta_k}(x)$ les coefficients des plus hautes puissances de x dans $\mathfrak{P}_4(x)$, $\mathfrak{P}_2(x)$, ..., $\mathfrak{P}_k(x)$. Dans l'identité, changeons successivement x en $x + \omega$, $x + 2\omega$, ..., $x + (k-1)\omega$. Nous aurons en tout k équations, d'où nous déduirons

$$\begin{vmatrix} \mathfrak{P}_{1}(x) & \dots & \mathfrak{P}_{k}(x) \\ \mathfrak{P}_{1}(x+\omega) & \dots & \mathfrak{P}_{k}(x+\omega) \\ \dots & \dots & \dots & \dots \\ \mathfrak{P}_{1}[x+(k-1)\omega] & \dots & \mathfrak{P}_{k}[x+(k-1)\omega] \end{vmatrix} = 0.$$

Or, si l'on développe ce déterminant, en l'ordonnant par rapport aux puissances de x, on le met facilement sous la forme

$$\chi_1(x) + x \chi_2(x) + \ldots + x^{\eta-1} \chi_{\eta}(x),$$

les fonctions $\chi(x)$ étant périodiques de seconde espèce, de même multiplicateur égal au produit $\varepsilon_1 \varepsilon_2 \dots \varepsilon_k$. Donc, d'après le théorème précédent, chacune de ces fonctions doit être identiquement nulle, et en particulier $\chi_{\eta}(x)$. Or cela est impossible, car on a

$$\gamma_{\eta}(x) = \begin{vmatrix}
1 & 1 & \dots & 1 \\
\varepsilon_1 & \varepsilon_2 & \dots & \varepsilon_k \\
\varepsilon_1^2 & \varepsilon_2^2 & \dots & \varepsilon_k^2 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\varepsilon_1^{k-1} & \varepsilon_3^{k-1} & \dots & \varepsilon_k^{k-1}
\end{vmatrix} \gamma_{1\eta_1}(x) \gamma_{2\eta_2}(x) \dots \gamma_{k\eta_k}(x),$$

c'est-à-dire un produit de facteurs dont aucun n'est nul par hypothèse.

Les deux théorèmes qui précèdent donnent lieu aux conséquences suivantes:

Si deux expressions $\mathfrak{P}(x)$ sont identiques, leurs coefficients sont identiques chacun à chacun.

Si deux sommes d'expressions $\mathfrak{Q}(x)$ à multiplicateurs différents sont identiques, les expressions qui composent ces deux sommes sont identiques

chacune à chacune, et, par conséquent, les coefficients de ces expressions sont les mêmes.

12. Si l'on applique ces propositions aux intégrales de l'équation différentielle P(y) = 0, on en tire ces conséquences :

Une intégrale ne peut se mettre que d'une seule manière sous la forme du n° 10.

Si l'expression

$$\psi_1(x) + x \psi_2(x) + \ldots + x^{i-1} \psi_i(x),$$

supposée de la forme $\mathfrak{R}(x)$, à multiplicateur ε , est une intégrale, ε est une racine de l'équation fondamentale, et cette expression est une combinaison linéaire des éléments du système S qui composent le groupe Φ , corrélatif de la racine ε .

Étant donnée une intégrale, si on la met sous la forme d'une somme d'expressions $\mathfrak{P}(x)$, de telle sorte que les multiplicateurs de deux termes quelconques soient différents, chaque terme $\mathfrak{P}(x)$ de l'intégrale ainsi ordonnée sera aussi une intégrale.

Nous allons même voir que, dans ce terme, le coefficient de la plus haute puissance de x est lui-même une solution.

13. Cette dernière propriété résulte du théorème suivant :

Si l'expression

$$\psi_1(x) + x \psi_2(x) + \ldots + x^{i-1} \psi_i(x),$$

supposée de la forme $\mathfrak{D}(x)$, est une intégrale de P = 0, il en est de même du coefficient $\psi_i(x)$ de la plus haute puissance de x.

Ce théorème est évident dans le cas d'un élément complet du système fondamental S, puisque alors $(n^o 6) \psi_i(x)$ ne diffère de $\varphi_{ii}(x)$ que par un facteur constant. On peut le démontrer pour tous les cas et a priori par un raisonnement analogue à celui du n^o 11. Mais je vais le déduire d'une proposition beaucoup plus générale.

Si l'expression

$$\mathbf{F}(x) = \psi_1(x) + x \psi_2(x) + x^2 \psi_3(x) + \ldots + x^{i-1} \psi_i(x),$$

supposée de la forme $\mathfrak{A}(x)$, est une intégrale de l'équation P = 0, il en

sera de même des i-1 dérivées successives de cette intégrale, prises en considérant les coefficients $\psi(x)$ comme des constantes.

J'emploierai la caractéristique ∂ pour représenter ces dérivées $\frac{\partial \mathbf{F}}{\partial x}$, $\frac{\partial^2 \mathbf{F}}{\partial x^2}$, ..., $\frac{\partial^{l-1} \mathbf{F}}{\partial x^{l-1}}$.

Puisque F(x) est solution, $F(x+k\omega)$ l'est aussi, et il en est de même de

$$\varepsilon^{-k} \mathbf{F}(x+k\omega) = \psi_1(x) + (x+k\omega) \psi_2(x) + (x+k\omega)^2 + \ldots + (x+k\omega)^{l-1} \psi_l(x),$$

quel que soit le nombre entier k, ε désignant le multiplicateur de F(x). Or on a évidemment

$$\varepsilon^{-k}\mathbf{F}(x+k\omega) = \mathbf{F}(x) + \frac{k\omega}{1}\frac{\partial\mathbf{F}}{\partial x} + \frac{(k\omega)^2}{1\cdot 2}\frac{\partial^2\mathbf{F}}{\partial x^2} + \ldots + \frac{(k\omega)^{i-1}}{1\cdot 2\cdot \ldots (i-1)}\frac{\partial^{i-1}\mathbf{F}}{\partial x^{i-1}},$$

et cette expression satisfaisant à P = 0 pour une infinité de valeurs de $k\omega$, les dérivées $\frac{\partial F}{\partial x}$, $\frac{\partial^2 F}{\partial x^2}$, ..., $\frac{\partial^{i-1} F}{\partial x^{i-1}}$ sont nécessairement des intégrales.

Ainsi, les expressions

$$\frac{\partial \mathbf{F}}{\partial x} = \psi_2(x) + 2x \psi_3(x) + \ldots + (i-1) x^{i-2} \psi_i(x),$$

$$\frac{1}{1 \cdot 2} \frac{\partial^2 \mathbf{F}}{\partial x^2} = \psi_3(x) + 3x \psi_4(x) + \ldots + \frac{(i-1)(i-2)}{1 \cdot 2} x^{i-3} \psi_i(x),$$

$$\frac{1}{1 \cdot 2 \dots (i-2)} \frac{\partial^{i-2} \mathbf{F}}{\partial x^{i-2}} = \psi_{i-1}(x) + (i-1) x \psi_i(x),$$

$$\frac{1}{1 \cdot 2 \dots (i-1)} \frac{\partial^{i-1} \mathbf{F}}{\partial x^{i-1}} = \psi_i(x)$$

sont des solutions.

On voit qu'en particulier $\psi_i(x)$ est une intégrale.

14. Appliquons la proposition générale qui précède à l'un des éléments du système fondamental S, par exemple à

$$\mathbf{F}_{i}(x) = \varphi_{i1}(x) + x \varphi_{i2}(x) + \ldots + x^{l-1} \varphi_{ii}(x).$$

On voit d'abord que, quand même cet élément ne serait pas complet, c'est-à-dire quand même $\varphi_{ii}(x)$ serait identiquement nul, le coefficient

de la plus haute puissance de x qui figure réellement dans $F_i(x)$ est une intégrale. On voit ensuite que $\frac{\partial F_i}{\partial x}$, $\frac{\partial^2 F_i}{\partial x^2}$, ..., $\frac{\partial^{i-1} F_i}{\partial x^{i-1}}$ sont des solutions. Il en résulte (n° 12) que, si Φ désigne le groupe, corrélatif de la racine ε , auquel appartient l'élément $F_i(x)$, ces dérivées sont des combinaisons linéaires des éléments $F_i(x)$, $F_2(x)$, ..., $F_{\mu}(x)$ du groupe Φ .

Je vais prouver que $\frac{\partial^j \mathbf{F}_i}{\partial x^j}$ s'obtient en combinant uniquement les i-j éléments $\mathbf{F}_4(x)$, $\mathbf{F}_2(x)$, ..., $\mathbf{F}_{i-j}(x)$:

$$\frac{\partial^{j} \mathbf{F}_{i}}{\partial x^{j}} = \mathbf{C}_{1} \mathbf{F}_{1}(x) + \mathbf{C}_{2} \mathbf{F}_{2}(x) + \ldots + \mathbf{C}_{i-j} \mathbf{F}_{i-j}(x) \quad (j = 1, 2, 3, \ldots, i-1).$$

Cela peut paraître évident, au moins lorsqu'aucune des fonctions $\varphi_{11}(x), \varphi_{22}(x), \ldots, \varphi_{\mu\mu}(x)$ n'est identiquement nulle. Mais la méthode que je vais employer permettra au besoin de calculer $C_1, C_2, \ldots, C_{i-j}$. On a, d'une part,

$$\begin{aligned} \mathbf{F}_{i}(x+k\omega) &= \varepsilon^{k} \bigg[\mathbf{F}_{i}(x) + \frac{k\omega}{1} \frac{\partial \mathbf{F}_{i}}{\partial x} + \dots \\ &+ \frac{k^{j}\omega^{j}}{1 \cdot 2 \dots j} \frac{\partial^{j} \mathbf{F}_{i}}{\partial x^{j}} + \dots + \frac{k^{i-1}\omega^{i-1}}{1 \cdot 2 \dots (i-1)} \frac{\partial^{i-1} \mathbf{F}}{\partial x^{i-1}} \bigg], \end{aligned}$$

k désignant un nombre entier arbitraire. D'autre part, les formules du n° 5 donnent

$$\mathbf{F}_{i}(x + k\mathbf{\omega}) = \varepsilon^{k} [k_{i-1} \mathbf{F}_{1}(x) + k_{i-2} \mathbf{F}_{2}(x) + \dots + k_{1} \mathbf{F}_{i-1}(x) + \dots + k_{1} \mathbf{F}_{i-1}(x) + \mathbf{F}_{i}(x)],$$

où k_{i-1} , k_{i-2} , ..., k_j , ..., k_i désignent des polynômes en k, de degrés marqués respectivement par les indices. Égalons les deux expressions de $F_i(x+k\omega)$, et nous aurons, quel que soit l'entier k,

$$\frac{k\omega}{r} \frac{\partial \mathbf{F}_{i}}{\partial x} + \ldots + \frac{k^{j}\omega^{j}}{1 \cdot 2 \cdot \ldots \cdot j} \frac{\partial^{j} \mathbf{F}_{i}}{\partial x^{j}} + \ldots + \frac{k^{i-1}\omega^{i-1}}{1 \cdot 2 \cdot \ldots \cdot (i-1)} \frac{\partial^{i-1} \mathbf{F}_{t}}{\partial x^{i-1}} \\
= k_{i-1} \mathbf{F}_{1}(x) + k_{i-2} \mathbf{F}_{2}(x) + \ldots + k_{j} \mathbf{F}_{i-j}(x) + \ldots + k_{1} \mathbf{F}_{i-1}(x).$$

Pour calculer $\frac{\partial^j \mathbf{F}_i}{\partial x^j}$, il suffit alors d'égaler $\frac{\omega^j}{1.2.3...j} \frac{\partial^j \mathbf{F}_i}{\partial x^j}$ au coefficient de k^j dans le second membre. Or les polynômes $k_{i-1}, k_{i-2}, \ldots, k_i$ con-

$$\frac{\partial^{j} \mathbf{F}_{i}}{\partial x^{j}} = \mathbf{C}_{1} \mathbf{F}_{1}(x) + \mathbf{C}_{2} \mathbf{F}_{2}(x) + \ldots + \mathbf{C}_{i-j} \mathbf{F}_{i-j}(x).$$

Les constantes C sont toujours finies.

On trouve, en particulier,

$$\begin{split} \frac{\partial F_2}{\partial x} &= \frac{\varepsilon_{21}}{\omega \varepsilon} \, F_1(x), \\ \frac{\partial F_3}{\partial x} &= \frac{2 \, \varepsilon_{31} \, \varepsilon - \varepsilon_{32} \, \varepsilon_{21}}{2 \, \omega \varepsilon^2} \, F_1(x) + \frac{\varepsilon_{32}}{\omega \varepsilon} \, F_2(x), \\ \frac{\partial^2 F_3}{\partial x^2} &= \frac{\varepsilon_{32} \, \varepsilon_{21}}{2 \, \omega^2 \, \varepsilon^2} \, F_1(x), \\ \frac{\partial F_4}{\partial x} &= \frac{2 \, \varepsilon_{43} \, \varepsilon_{32} \, \varepsilon_{21} - 3 \, \varepsilon_{43} \, \varepsilon_{31} \, \varepsilon - 3 \, \varepsilon_{42} \, \varepsilon_{21} \, \varepsilon + 6 \, \varepsilon_{41} \, \varepsilon^2}{6 \, \omega \, \varepsilon^3} \, F_1(x) \\ &\quad + \frac{2 \, \varepsilon_{42} \, \varepsilon - \varepsilon_{43} \, \varepsilon_{32}}{2 \, \omega \varepsilon^2} \, F_2(x) + \frac{\varepsilon_{43}}{\omega \varepsilon} \, F_3(x), \\ \frac{\partial^2 F_4}{\partial x^2} &= \frac{\varepsilon_{43} \, \varepsilon_{31} \, \varepsilon + \varepsilon_{42} \, \varepsilon_{21} \, \varepsilon - \varepsilon_{43} \, \varepsilon_{32} \, \varepsilon_{21}}{\omega^2 \, \varepsilon^3} \, F_1(x) + \frac{\varepsilon_{43} \, \varepsilon_{32}}{\omega^2 \, \varepsilon^2} \, F_2(x), \\ \frac{\partial^3 F_4}{\partial x^3} &= \frac{\varepsilon_{43} \, \varepsilon_{32} \, \varepsilon_{21}}{\omega^3 \, \varepsilon^3} \, F_1(x). \end{split}$$

Remarquons que, les coefficients de x^{i-j-i} devant être identiques (n° 11) dans les deux membres de l'égalité

$$\frac{\partial^f \mathbf{F}_t}{\partial x^j} = \mathbf{C}_1 \, \mathbf{F}_1(x) + \mathbf{C}_2 \, \mathbf{F}_2(x) + \ldots + \mathbf{C}_{t-f} \, \mathbf{F}_{t-f}(x),$$

on aura

$$(i-1)(i-2)...(i-j)\varphi_{ii}(x) = C_{i-j}\varphi_{i-j,i-i}(x),$$

et, par suite,

$$C_{i-j} = \frac{\varepsilon_{i,i-1} \varepsilon_{i-1,i-2} \varepsilon_{i-2,i-3} \dots \varepsilon_{i-j+1,i-j}}{(\omega \varepsilon)^j},$$

à cause de (n° 6) la formule

$$\varphi_{ii}(x) = \frac{\varepsilon_{i,i-1} \varepsilon_{i-1,i-2} \dots \varepsilon_{i-j+1,i-j}}{(i-1)(i-2)\dots(i-j)(\omega \varepsilon)^j} \varphi_{i-j,i-j}(x).$$

Ann. de l'Éc. Normale. 2º Série. Tome XII. - MARS 1883.

15. On vient de voir que,

$$\mathbf{F}_{i}(x) = \varphi_{i_{1}}(x) + x \varphi_{i_{2}}(x) + \ldots + x^{i-1} \varphi_{ii}(x)$$

étant un élément du groupe Φ d'intégrales, les solutions $\frac{\partial \mathbf{F}_i}{\partial x^i}$, $\frac{\partial^2 \mathbf{F}_i}{\partial x^{i-1}}$, ..., $\frac{\partial^{i-1} \mathbf{F}_i}{\partial x^{i-1}}$ sont de la forme

$$\begin{split} \frac{\partial \mathbf{F}_{i}}{\partial x} &= \mathbf{C}_{11} \, \mathbf{F}_{1}(x) + \mathbf{C}_{12} \, \mathbf{F}_{2}(x) + \ldots + \mathbf{C}_{1,i-1} \, \mathbf{F}_{i-1}(x), \\ \frac{\partial^{2} \mathbf{F}_{i}}{\partial x^{2}} &= \mathbf{C}_{21} \, \mathbf{F}_{1}(x) + \mathbf{C}_{22} \, \mathbf{F}_{2}(x) + \ldots + \mathbf{C}_{2,i-2} \, \mathbf{F}_{i-2}(x), \\ \frac{\partial^{i-2} \mathbf{F}_{i}}{\partial x^{i-2}} &= \mathbf{C}_{i-2,1} \, \mathbf{F}_{1}(x) + \mathbf{C}_{i-2,2} \, \mathbf{F}_{2}(x), \\ \frac{\partial^{i-1} \mathbf{F}_{i}}{\partial x^{i-1}} &= \mathbf{C}_{i-1,1} \, \mathbf{F}_{1}(x). \end{split}$$

Cherchons à quelle condition on pourra remplacer les éléments $F_i(x)$, $F_2(x)$, ..., $F_{i-1}(x)$ respectivement par $\frac{\partial^{i-1}F_i}{\partial x^{i-1}}$, $\frac{\partial^{i-2}F_i}{\partial x^{i-2}}$, ..., $\frac{\partial F_i}{\partial x}$, sans que le système total cesse d'être fondamental. Comme l'on sait, la condition est que le déterminant des coefficients C diffère de zéro, c'està-dire

$$C_{1,i-1} C_{2,i-2} \dots C_{i-2,2} C_{i-1,1} \neq 0$$
.

Or, ce produit se calcule facilement, $C_{j,i-j}$ n'étant autre chose que le coefficient de $F_{i-j}(x)$ dans l'expression linéaire de $\frac{\partial^j F_i}{\partial x^j}$, coefficient qui a été calculé au numéro précédent :

$$C_{j,i-j} = \frac{\varepsilon_{i,i-1} \varepsilon_{i-1,i-2} \dots \varepsilon_{i-j+1,i-j}}{(\omega \varepsilon)^j} \quad (j=1,2,3,\dots,i-1).$$

La condition devient alors, après réductions,

$$\varepsilon_{i,i-1} \varepsilon_{i-1,i-2} \varepsilon_{i-2,i-3} \ldots \varepsilon_{32} \varepsilon_{21} \not\simeq 0,$$

ce que l'on peut aussi écrire

$$\varphi_{ii}(x)\neq 0$$

à cause (n° 6) de la formule

$$\varphi_{ii}(x) = \frac{\varepsilon_{i,i-1}\varepsilon_{i-1,i-2}\dots\varepsilon_{32}\varepsilon_{21}}{(i-1)(i-2)\dots2.1(\omega\varepsilon)^{l-1}}\,\varphi_{11}(x).$$

Par conséquent :

Lorsque la fonction $\varphi_{ii}(x)$ n'est pas identiquement nulle, ou, ce qui est la même chose, lorsque le produit $\varepsilon_{i,i-1} \varepsilon_{i-1,i-2} \dots \varepsilon_{32} \varepsilon_{21}$ n'est pas nul, on peut, dans le groupe des intégrales $F_1(x)$, $F_2(x)$, ..., $F_{i-1}(x)$, ..., $F_{i+1}(x)$, remplacer les i-1 premières par $\frac{\partial^{i-1}F_i}{\partial x^{i-1}}$, $\frac{\partial^{i-2}F_i}{\partial x^{i-2}}$, ..., $\frac{\partial F_i}{\partial x}$, sans que le système total cesse d'être fondamental.

Il faut observer, en outre, d'après une remarque faite au n° 5, que les propriétés du groupe en question sont conservées.

Par exemple, si aucune des constantes $\varepsilon_{\mu,\mu-1}$, $\varepsilon_{\mu-1,\mu-2}$, ..., ε_{32} , ε_{24} n'est nulle, c'est-à-dire si la fonction $\varphi_{\mu\mu}(x)$ n'est pas identiquement zéro, le groupe entier des éléments $F_{1}(x)$, $F_{2}(x)$, ..., $F_{\mu}(x)$ pourra se remplacer par le groupe simple

$$\frac{\partial^{\mu-1}F_{\mu}(x)}{\partial x^{\mu-1}}, \quad \frac{\partial^{\mu-2}F_{\mu}(x)}{\partial x^{\mu-2}}, \quad \dots, \quad \frac{\partial F_{\mu}}{\partial x}, \quad F_{\mu}.$$

On peut donc substituer à certains éléments d'un même groupe un groupe partiel plus simple, où les relations qui existent entre les fonctions $\varphi(x)$ sont mises en évidence, chaque solution, dans ce groupe partiel, se déduisant de la dernière par dérivation. Nous sommes ainsi conduits à étudier la distinction des groupes d'intégrales en sous-groupes.

VI. - Sous-groupes d'intégrales.

16. Étant donnée une équation différentielle linéaire et homogène, à coefficients uniformes, on sait qu'à tout point singulier correspondent des groupes d'intégrales, de forme particulière. Chacun de ces groupes donne lieu à son tour à des groupes partiels, indépendants les uns des autres, de telle façon que les relations qui lient entre eux les coefficients uniformes des puissances du logarithme ont lieu chacune à l'intérieur d'un même groupe partiel. De plus, les éléments d'un groupe partiel affectent une forme analytique qui permet d'apercevoir ces relations à leur simple inspection.

C'est cette distinction des groupes d'intégrales fondamentales en

groupes partiels que M. Hamburger a faite le premier (1), en appliquant un procédé publié par M. Jordan en 1871 (2).

Or la méthode de M. Hamburger peut s'utiliser d'une manière entièrement analogue dans le cas actuel de l'équation P(y) = 0, à coefficients périodiques. Je vais l'appliquer, en me bornant à exposer succinctement les résultats.

17. Soit ε_1 une racine d'ordre de multiplicité μ_1 de l'équation fondamentale $\Delta=0$.

Supposons que, pour $\varepsilon = \varepsilon_i$, tous les déterminants mineurs, jusqu'à l'ordre $\lambda - 1$ inclusivement, soient nuls dans Δ , sans que tous ceux d'ordre λ le soient. On démontre qu'il existe alors λ intégrales distinctes $g_1(x)$, $g_2(x)$, ..., $g_{\lambda}(x)$, satisfaisant aux conditions

$$g_i(x+\omega) = \varepsilon_1 g_i(x) \quad (i=1,2,3,\ldots,\lambda).$$

Si donc $\lambda = \mu_i$, ces λ fonctions périodiques de seconde espèce, de même multiplicateur ε_i , sont toutes les intégrales qui répondent à la racine ε_i , et nous disons qu'elles constituent μ_i groupes partiels d'un élément.

Si $\lambda \neq \mu_1$, dans le système fondamental $f_1(x), f_2(x), \ldots, f_m(x)$, qui a servi à écrire $\Delta = 0$, remplaçons λ éléments par les fonctions g(x), de manière que le nouveau système $g_1(x), g_2(x), \ldots, g_{\lambda}(x), f_{\lambda+1}(x), \ldots, f_m(x)$ soit aussi fondamental, et formons le déterminant Δ pour ce dernier système : il est de la forme $(\varepsilon_1 - \varepsilon)^{\lambda} \Delta'$, Δ' étant un déterminant d'ordre $m - \lambda$, et l'on a $(n^{\circ} 2)$

$$\Delta = (\epsilon_1 - \epsilon)^{\lambda} \Delta'$$
.

Done λ est moindre que μ_t .

Cela étant, ε_1 sera racine $\mu_1 - \lambda$ fois de l'équation $\Delta' = 0$. Supposons que pour $\varepsilon = \varepsilon_1$ tous les déterminants mineurs jusqu'à l'ordre $\lambda' - 1$ inclusivement soient nuls dans Δ' , sans que tous ceux d'ordre λ' le soient. On prouve que dans ce cas λ' est au plus égal à λ , et il existe λ' intégrales distinctes $g_1'(x), g_2'(x), \ldots, g_{k'}'(x)$, satisfaisant aux conditions

$$g'_i(x + \omega) = \varepsilon_1 g'_i(x) + \gamma_i [g_1(x), g_2(x), \dots, g_k(x)] \quad (i = 1, 2, 3, \dots, \lambda'),$$

⁽¹⁾ Journal de Crelle, t. 76.

⁽²⁾ Sur la résolution des équations différentielles linéaires (Comptes rendus, t. LXXIII).

 $\gamma_1, \gamma_2, \ldots, \gamma_{\lambda'}$ désignant des fonctions linéaires, homogènes, à coefficients constants, et linéairement indépendantes, de $g_1(x), g_2(x), \ldots, g_{\lambda}(x)$.

Si alors $\lambda + \lambda' = \mu_1$, nous avons les μ_1 intégrales qui répondent à la racine ϵ_1 , savoir

$$g'_1(x), g'_2(x), \ldots, g'_{n}(x), \gamma_1, \gamma_2, \ldots, \gamma_{n'}$$
 et $\gamma_{n'+1}, \gamma_{n'+2}, \ldots, \gamma_n$

les $\lambda - \lambda'$ dernières étant les $\lambda - \lambda'$ autres combinaisons linéaires de $g_1(x), g_2(x), \ldots, g_{\lambda}(x)$, qui ne sont en relation linéaire ni entre elles, ni avec $\gamma_1, \gamma_2, \ldots, \gamma_{\lambda'}$. Nous disons que ces μ_1 intégrales constituent λ' groupes partiels de deux éléments

dont les propriétés sont

$$g'_i(x+\omega) = \varepsilon_1 g'_i(x) + \gamma_i(x), \quad \gamma_i(x+\omega) = \varepsilon_1 \gamma_i(x),$$

et $\lambda - \lambda'$ groupes partiels de un élément

$$\gamma_{\lambda'+1}(x), \ \gamma_{\lambda'+2}(x), \ \ldots, \ \gamma_{\lambda}(x),$$

tels que

$$\gamma(x+\omega) = \varepsilon_1 \gamma(x)$$
.

Si $\lambda + \lambda' \neq \mu_1$, dans le système fondamental $g_1(x), g_2(x), \ldots, g_{\lambda}(x), f_{\lambda+1}(x), \ldots, f_m(x)$, remplaçons $\lambda + \lambda'$ éléments par les λ fonctions $\gamma(x)$ et les λ' fonctions g'(x), de manière que le nouveau système $\gamma_1, \gamma_2, \ldots, \gamma_{\lambda}, g'_1, g'_2, \ldots, g'_{\lambda'}, f_{\lambda+\lambda'+1}(x), \ldots, f_m(x)$ soit aussi fondamental, et formons le déterminant Δ pour ce dernier système : il est de la forme $(\varepsilon_1 - \varepsilon_1^{\lambda+\lambda'}\Delta'', \Delta'')$ étant un déterminant d'ordre $m - (\lambda + \lambda')$, et l'on a

$$\Delta = (\,\epsilon_1 - \epsilon\,)^{\lambda + \lambda'}\,\Delta''.$$

Done $\lambda + \lambda'$ est moindre que μ_1 .

Cela étant, ε_i sera racine $\mu_i - (\lambda + \lambda')$ fois de l'équation $\Delta'' = 0$. Soit λ'' le nombre analogue pour Δ'' aux nombres λ et λ' . On prouve que λ'' est au plus égal à λ' , et, si $\lambda + \lambda' + \lambda''' = \mu_i$, il y a μ_i intégrales répondant à la racine ε_i , et constituant λ'' groupes partiels de trois éléments,

 $\lambda' - \lambda''$ groupes partiels de deux éléments, et $\lambda - \lambda'$ groupes partiels de un élément.

Si $\lambda + \lambda' + \lambda'' \neq \mu_1$, on reconnaîtra qu'il lui est inférieur, et l'on continuera de la même façon jusqu'à ce que l'on soit arrivé au nombre λ^{∞} , tel que $\lambda + \lambda' + \lambda'' + \ldots + \lambda^{\infty} = \mu_1$.

Dans la série λ , λ' , λ'' , ..., $\lambda^{(a)}$, chaque nombre sera au plus égal au précédent, et l'on aura alors un groupe de μ_1 intégrales, répondant à la racine ϵ_1 , et se distinguant en λ groupes partiels de la manière suivante :

$Y_{(x)}$	groupes partiels de	x 1	éléments.
$\lambda^{(x-1)} - \lambda^{(x)}$	»	x	, w
$\lambda' - \lambda''$))	2 .))
$\lambda - \lambda'$	»	ţ))

Les ν intégrales $G_1(x)$, $G_2(x)$, ..., $G_{\nu}(x)$, qui composent un des groupes partiels de ν éléments, satisfont aux relations

$$\begin{aligned} G_{1}(x+\omega) &= \varepsilon_{1} G_{1}(x), \\ G_{2}(x+\omega) &= G_{1}(x) + \varepsilon_{1} G_{2}(x), \\ G_{3}(x+\omega) &= G_{2}(x) + \varepsilon_{1} G_{3}(x), \\ &\cdots &\cdots &\cdots \\ G_{2}(x+\omega) &= G_{2-1}(x) + \varepsilon_{1} G_{2}(x). \end{aligned}$$

Les nombres λ sont, d'ailleurs, bien déterminés, d'après l'énoncé final du n° 2, et entièrement indépendants du système fondamental $f_1(x), f_2(x), \ldots, f_m(x)$ choisi arbitrairement au début.

18. M. Casorati a montré récemment (4) comment, en précisant le procédé de M. Hamburger, on peut énoncer les conclusions précédentes sous une forme plus simple, que M. Stickelberger a obtenue par une autre voie. Il est possible de rattacher directement au déterminant Δ et le nombre des groupes partiels, et le nombre des éléments qui composent chacun d'eux. Il suffit pour cela d'utiliser convenablement la notion des diviseurs élémentaires de M. Weierstrass.

Soit, en effet, $l^{(i)}$ l'exposant de la plus haute puissance de ε_i — ε par

⁽¹⁾ Comptes rendus, t. XCII, nos 4 et 5.

laquelle sont divisibles à la fois tous les déterminants mineurs d'ordre i, dans le déterminant Δ , auquel cas $l^{(\lambda)} = 0$ et $l = \mu_1$. On a nécessairement

$$l > l' > l'' \dots > l^{(\lambda-1)}$$

et, si l'on pose

$$l-l'=w, \quad l'-l''=w', \quad \dots, \quad l^{(\lambda-2)}-l^{(\lambda-1)}=w^{(\lambda-2)}, \quad l^{(\lambda-1)}=w^{(\lambda-1)},$$

les nombres w, w', w'', ..., $w^{(\lambda-1)}$ sont tous positifs. M. Weierstrass appelle diviseurs élémentaires du déterminant Δ , relatifs au facteur $\varepsilon_1 - \varepsilon$, les puissances

$$(\epsilon_1 - \epsilon)^{w}, (\epsilon_1 - \epsilon)^{w'}, \ldots, (\epsilon_1 - \epsilon)^{w(\lambda - 1)},$$

dont les $\lambda - i$ dernières, multipliées entre elles, donnent $l^{(i)}$.

Or les déterminants Δ et Δ , du n° 2 possèdent les mêmes diviseurs élémentaires. La démonstration même de M. Hamburger (†), relative aux propriétés communes à ces deux déterminants, le fait voir. Cela posé, M. Casorati établit que la conclusion de M. Hamburger revient à la proposition suivante:

Soit ε_i une racine, d'ordre de multiplicité μ_i , de l'équation fondamentale $\Delta = 0$, et soit

$$(\epsilon_1-\epsilon)^{\imath\nu},\ (\epsilon_1-\epsilon)^{\imath\nu^1},\ \ldots,\ (\epsilon_1-\epsilon)^{\imath\nu^{(\lambda-1)}}$$

la suite des diviseurs élémentaires du déterminant Δ , relatifs au facteur $\varepsilon_1 - \varepsilon_2$; le groupe des μ_1 intégrales qui répondent à la racine ε_1 donne lieu à autant de groupes partiels qu'il y a de diviseurs dans la suite précédente, et chaque groupe partiel contient un nombre d'éléments égal à l'exposant du diviseur qui lui correspond.

Par exemple, si $\lambda = \tau$, il y a un seul groupe partiel de μ_i éléments. Si $\lambda = \mu_i$, il y a μ_i groupes partiels, chacun d'un élément.

19. En opérant comme l'a fait M. Hamburger dans sa recherche analogue (2), on trouve sans peine la forme analytique des v intégrales

⁽¹⁾ Journal de Crelle, t. 76, p. 115, 116 et 117.

⁽²⁾ Journal de Crelle, t. 76, p. 122 et 123.

uniformes $G_1(x)$, $G_2(x)$, ..., $G_{\nu}(x)$ qui composent un groupe partiel de ν éléments et qui satisfont aux conditions

$$G_{i}(x+\omega) = G_{i-1}(x) + \varepsilon_{1} G_{i}(x) \quad (i = 1, 2, 3, ..., \gamma).$$

Si l'on désigne par g(x) une expression de la forme $\mathfrak{P}(x)$ du n° 11,

$$g(x) = \varpi_1(x) + x \varpi_2(x) + x^2 \varpi_3(x) + \ldots + x^{\nu-1} \varpi_{\nu}(x),$$

de degré $\nu-1$, $\varpi_{\nu}(x)$ n'étant pas identiquement nul, on obtient les expressions suivantes :

$$G_{1}(x) = \varepsilon_{1}^{\nu-1} \delta^{\nu-1} g(x),$$
 $G_{2}(x) = \varepsilon_{1}^{\nu-2} \delta^{\nu-2} g(x),$
 $G_{3}(x) = \varepsilon_{1}^{\nu-3} \delta^{\nu-3} g(x),$
 \dots
 $G_{\nu-1}(x) = \varepsilon_{1} \delta g(x),$
 $G_{\nu}(x) = g(x),$

 $\partial^i g(x)$ représentant la différence d'ordre i de g(x) pour l'accroissement ω de x, mais en changeant x en $x + \omega$, seulement en dehors des coefficients $\varpi(x)$, ces coefficients restant invariables.

20. Je vais substituer au groupe partiel $G_1(x)$, $G_2(x)$, ..., $G_v(x)$ un groupe partiel équivalent, de forme analytique plus commode dans les applications, vu que chaque élément se déduira du dernier par simple dérivation.

Les conditions

$$G_i(x+\omega) = G_{i-1}(x) + \varepsilon_1 G_i(x),$$

auxquelles satisfont les fonctions G(x), étant un cas particulier des conditions du n° 6.

$$\mathbf{F}_{i}(x+\omega) = \varepsilon_{i_{1}} \mathbf{F}_{1}(x) + \varepsilon_{i_{2}} \mathbf{F}_{2}(x) + \ldots + \varepsilon_{i,i-1} \mathbf{F}_{i-1}(x) + \varepsilon \mathbf{F}_{i}(x),$$

auxquelles satisfaisaient les μ fonctions F(x), on voit déjà $(n^o 6)$ que $G_{\nu}(x)$ est de la forme

$$G_{\nu}(x) = g(x) = \varpi_1(x) + x \, \varpi_2(x) + \ldots + x^{\nu-1} \, \varpi_{\nu}(x).$$

les fonctions $\varpi(x)$ étant périodiques de seconde espèce, de même multiplicateur ε_i ; en outre, la relation

$$\varphi_{ii} = \frac{\varepsilon_{l,i-1} \cdot \varepsilon_{l-1,i-2} \dots \varepsilon_{32} \cdot \varepsilon_{21}}{(i-1)(i-2)\dots 2 \cdot 1 \cdot (\omega \varepsilon)^{l-1}} \cdot \varphi_{11}$$

du n° 6 montre que $\varpi_{\nu}(x)$ n'est pas identiquement nul, car ici ε_{24} , $\varepsilon_{32}, \ldots, \varepsilon_{\nu,\nu-1}$ sont égaux à l'unité. Nous retrouvons ainsi la forme de $G_{\nu}(x)$ mentionnée plus haut.

Mais raisonnons actuellement sur le groupe partiel G(x) comme on a raisonné au n° 14 sur le groupe des F(x); nous voyons que l'intégrale $\frac{\partial^f G_v(x)}{\partial x^f}$, c'est-à-dire la dérivée prise en considérant les coefficients $\varpi(x)$ comme des constantes, est une combinaison linéaire de $G_1(x)$, $G_2(x)$, ..., $G_{v-j}(x)$. D'autre part, $\varpi_v(x)$ n'est pas identiquement nul. On peut donc (n° 15), sans que le système total cesse d'être fondamental, substituer au groupe partiel $G_1(x)$, $G_2(x)$, ..., $G_v(x)$ le groupe partiel $\frac{\partial^{v-1} G_v(x)}{\partial x^{v-1}}$, $\frac{\partial^{v-2} G_v(x)}{\partial x^{v-2}}$, ..., $\frac{\partial G_v(x)}{\partial x}$, $G_v(x)$.

C'est à ce nouveau groupe partiel que je donnerai spécialement le nom de sous-groupe. Il a ce caractère que ses éléments se déduisent tous du dernier par dérivation. Si dans un élément de ce sous-groupe on change x en $x + \omega$, sa nouvelle valeur ne s'exprimera plus uniquement à l'aide de cet élément et du précédent, comme cela avait lieu pour les G(x), mais en fonction linéaire de cet élément et de tous les précédents, par des formules faciles à écrire. A chacun des groupes partiels obtenus plus haut, correspond un sous-groupe, et inversement. La forme générale d'un sous-groupe de ν éléments est

$$\frac{\partial^{\nu-1} g(x)}{\partial x^{\nu-1}} = 1.2.3...(\nu - 1) \, \overline{w}_{\nu}(x),
\frac{\partial^{\nu-2} g(x)}{\partial x^{\nu-2}} = 1.2.3...(\nu - 2) \left[\overline{w}_{\nu-1}(x) + (\nu - 1) x \, \overline{w}_{\nu}(x) \right],
\frac{\partial^{\nu-3} g(x)}{\partial x^{\nu-3}} = 1.2.3...(\nu - 3) \left[\overline{w}_{\nu-2}(x) + (\nu - 2) x \, \overline{w}_{\nu-1}(x) + \frac{(\nu - 1)(\nu - 2)}{1.2} x^2 \, \overline{w}_{\nu}(x) \right],
\frac{\partial g(x)}{\partial x} = \overline{w}_{2}(x) + 2x \, \overline{w}_{3}(x) + ... + (\nu - 1) x^{\nu-2} \, \overline{w}_{\nu}(x),
g(x) = \overline{w}_{1}(x) + x \, \overline{w}_{2}(x) + x^{2} \, \overline{w}_{3}(x) + ... + x^{\nu-1} \, \overline{w}_{\nu}(x),$$

les fonctions $\sigma(x)$ étant périodiques de seconde espèce, de même multiplicateur, la dernière $\sigma_{\nu}(x)$ n'étant pas identiquement nulle.

J'ai obtenu les sous-groupes en utilisant les considérations des nos 14 et 15, qui me sont propres. Mais il est clair qu'on peut les déduire des

expressions trouvées au n° 19 pour les éléments d'un groupe partiel. Il suffit de remarquer que $\delta^i g(x)$ est une combinaison linéaire des dérivées $\frac{\partial^i g(x)}{\partial x^i}$, $\frac{\partial^{i+1} g(x)}{\partial x^{i+1}}$, ..., $\frac{\partial^{i-1} g(x)}{\partial x^{i-1}}$.

21. Je termine ce sujet par une remarque concernant une intégrale de la forme

$$\psi_1(x) + x \psi_2(x) + x^2 \psi_3(x) + \ldots + x^{i-1} \psi_i(x),$$

les fonctions $\psi(x)$ étant périodiques de seconde espèce de même multiplicateur ε .

Cette intégrale est forcément (n° 12) une combinaison linéaire des éléments des sous-groupes qui répondent à la racine ε de l'équation fondamentale $\Delta = 0$. Mais je dis qu'elle contiendra tout au plus ceux de ces éléments où le plus haut exposant de x est inférieur à x, c'est-à-dire les x premiers éléments de chaque sous-groupe, tels que

$$\frac{\partial^{\nu-1}g(x)}{\partial x^{\nu-1}}$$
, $\frac{\partial^{\nu-2}g(x)}{\partial x^{\nu-2}}$, ..., $\frac{\partial^{\nu-i}g(x)}{\partial x^{\nu-i}}$.

Si, en effet, elle contenait d'autres éléments, soient

$$\overline{w}_{11}(x) + x\overline{w}_{12}(x) + \ldots + x^{i-1+j}\overline{w}_{1,i+j}(x),$$

$$\overline{w}_{21}(x) + x\overline{w}_{22}(x) + \ldots + x^{i-1+j}\overline{w}_{2,i+j}(x),$$

ceux de ces derniers où le plus haut exposant de x est le plus grand. On aurait, en identifiant.

$$C_1 \varpi_{1,i+1}(x) + C_2 \varpi_{2,i+1}(x) + \ldots = 0,$$

ce qui est impossible, car aucune des fonctions $\sigma_{i,i+j}(x)$, $\sigma_{2,i+j}(x)$, ..., qui terminent les éléments des sous-groupes, n'est identiquement nulle, et de plus ces fonctions sont linéairement indépendantes, puisqu'elles sont, à des facteurs constants près, des éléments des sous-groupes.

VII. - Conclusions.

22. Nous avons reconnu (nº 4) que:

L'équation différentielle P(y) = 0 admet toujours comme intégrale au moins une fonction périodique de seconde espèce.

Nous avons même constaté que:

P=0 admet comme intégrales linéairement indépendantes au moins autant de fonctions périodiques de seconde espèce que l'équation fondamentales a de racines distinctes, c'est-à-dire qu'il γ a de groupes Φ .

Si, en particulier, l'équation fondamentale n'a que des racines simples, P = 0 admet m solutions périodiques de seconde espèce distinctes.

Il est facile d'évaluer exactement, et dans tous les cas, le nombre des intégrales distinctesqui sont périodiques de seconde espèce.

Si je considère les m intégrales qui composent l'ensemble des sous-groupes répondant aux diverses racines de l'équation fondamentale $\Delta = 0$, j'observe que, parmi elles, les premières de chaque sous-groupe et celles-là seulement sont des fonctions périodiques de seconde espèce. On peut donc conclure déjà que P = 0 admet comme solutions distinctes au moins autant de fonctions périodiques de seconde espèce qu'il y a de sous-groupes.

Je dis maintenant que P=0 n'en admet pas davantage. Soient en effet β le nombre total des sous-groupes, et $\gamma_1, \gamma_2, \ldots, \gamma_{\beta}$ les premiers éléments de chacun d'eux. Une intégrale périodique de seconde espèce est forcément (n° 21) une combinaison linéaire de $\gamma_1, \gamma_2, \ldots, \gamma_{\beta}$ tout au plus. Or, avec β quantités, on ne peut former plus de β combinaisons linéaires distinctes; donc il n'existe pas plus de β intégrales périodiques linéairement indépendantes.

D'où cette proposition:

L'équation P = 0 admet comme intégrales distinctes exactement autant de fonctions périodiques de seconde espèce qu'il existe de sous-groupes.

Supposons que la racine ϵ , de $\Delta=0$ annule tous les déterminants mineurs de Δ jusqu'à l'ordre λ exclusivement; à cette racine correspondent alors (n° 17) λ sous-groupes. D'où cet énoncé, équivalent au précédent :

Soient $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$ les n racines distinctes de l'équation fondamentale $\Delta = 0$; si λ_i désigne l'ordre à partir duquel les déterminants mineurs de Δ cessent d'être tous nuls pour $\varepsilon_1 = \varepsilon_i$, la somme $\lambda_1 + \lambda_2 + \ldots + \lambda_n$ est le nombre exact des fonctions périodiques de seconde espèce, linéairement indépendantes, qui satisfont à P = 0.

23. On déduit de là que :

Pour que P = o admette comme intégrales distinctes m fonctions périodiques de seconde espèce, il faut et il suffit qu'il existe m sous-groupes.

Ou encore:

Pour que P=0 admette comme intégrales distinctes m fonctions périodiques de seconde espèce, il faut et il suffit que chaque racine de $\Delta=0$ annule tous les mineurs de Δ jusqu'à l'ordre égal au degré de multiplicité de cette racine exclusivement.

Les mêmes propositions s'énoncent aussi simplement à l'aide des diviseurs élémentaires de M. Weierstrass.

24. Les multiplicateurs des solutions périodiques sont les racines de l'équation fondamentale.

Une ou plusieurs de ces racines pouvant être égales à l'unité, il peut y avoir des solutions périodiques de première espèce.

Si à chacune des racines ε_1 , ε_2 , ..., ε_n de l'équation fondamentale correspond un seul sous-groupe, c'est-à-dire si le nombre des sous-groupes est égal au nombre des groupes Φ , c'est-à-dire encore (n° 17), si $\lambda_1 = \lambda_2 = \ldots = \lambda_n = 1$, les solutions périodiques, qui sont alors au nombre de n, ont des multiplicateurs distincts, égaux respectivement à ε_1 , ε_2 , ..., ε_n . Sinon, plusieurs solutions périodiques auront même multiplicateur. La condition pour qu'elles aient toutes le même serait que l'équation fondamentale eût toutes ses racines égales entre elles. En particulier :

Pour que P = 0 admette comme intégrales distinctes m fonctions périodiques de première espèce, il faut et il suffit que les éléments du déterminant Δ soient tous nuls pour $\epsilon = 1$.

25. L'équation P = 0 ayant $\lambda_1 + \lambda_2 + \ldots + \lambda_n$ solutions périodiques de seconde espèce distinctes, et n'en ayant pas davantage, admet $m - (\lambda_1 + \lambda_2 + \ldots + \lambda_n)$ solutions distinctes non périodiques, et, dans tout système fondamental d'intégrales, il y en a au moins ce nombre. Si l'on considère le système fondamental que constituent les éléments de tous les sous-groupes, on voit que les solutions non périodiques, dans ce système, au nombre de $m - (\lambda_1 + \lambda_2 + \ldots + \lambda_n)$, affectent la forme de polynômes entiers en x, ayant pour coefficients des fonctions

ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES A COEFFICIENTS PÉRIODIQUES.

périodiques de seconde espèce. Dans chaque polynôme, les coefficients périodiques ont le même multiplicateur, qui est d'ailleurs une racine de l'équation fondamentale.

26. Observons enfin que les fonctions périodiques de seconde espèce s'expriment à l'aide des fonctions de première.

Soit, en effet, f(x) une fonction uniforme, telle que

$$\hat{\mathcal{F}}(x+\omega) = \varepsilon \hat{\mathcal{F}}(x).$$

Posons $\varepsilon = e^{\omega r}$ et prenons pour r une quelconque des valeurs de $\frac{\log \varepsilon}{\omega}$. La fonction $e^{-rx} \hat{f}(x)$ admet évidemment la période ω . Si je la désigne par $\theta(x)$, on a

$$\vec{\mathfrak{F}}(x) = e^{rx} \theta(x),$$

et, par conséquent :

Une fonction uniforme, périodique de seconde espèce, de période ω et de multiplicateur ε , est de la forme $e^{rx}\theta(x)$, r désignant une quelconque des valeurs de $\frac{\log \varepsilon}{\omega}$, et $\theta(x)$ une fonction uniforme, périodique de première espèce, de période ω .

Pour deux fonctions périodiques de seconde espèce, à même période et à même multiplicateur, les deux quantités r différeront ou de zéro ou d'un multiple de $\frac{2\pi}{\omega}\sqrt{-1}$; si les multiplicateurs sont distincts, la différence des quantités r ne sera ni nulle, ni un multiple de $\frac{2\pi}{\omega}\sqrt{-1}$.

De là les conséquences suivantes :

Si l'équation fondamentale n'a que des racines simples, les éléments du système S sont de la forme

$$e^{r_i x} \theta^{(i)}(x)$$
 $(i=1, 2, 3, ..., m),$

les différences mutuelles des quantités r_i ne pouvant être ni nulles, ni un multiple de $\frac{2\pi}{\omega}\sqrt{-1}$.

Si l'équation fondamentale a des racines multiples, les ν éléments du système S qui composent le groupe Φ répondant à la racine $\varepsilon = e^{\omega r}$

d'ordre y. sont de la forme

$$e^{rx} [\theta_{11}(x),$$
 $e^{rx} [\theta_{21}(x) + x \theta_{22}(x)],$
 $e^{rx} [\theta_{31}(x) + x \theta_{32}(x) + x^2 \theta_{33}(x)],$
....,
 $e^{rx} [\theta_{u1}(x) + x \theta_{u2}(x) + x^2 \theta_{u3}(x) + ... + x^{\mu-1} \theta_{u\mu}(x)],$

les différences mutuelles des quantités r_1, r_2, \ldots, r_n , relatives aux différents groupes, ne pouvant être ni nulles, ni un multiple de $\frac{2\pi}{\omega}\sqrt{-1}$. Les fonctions périodiques $\theta(x)$, appartenant à un même groupe, sont d'ailleurs des combinaisons linéaires de celles d'entre elles dont le second indice est l'unité, et en particulier $\theta_{11}(x), \theta_{22}(x), \ldots, \theta_{\mu\mu}(x)$ ne différent mutuellement que par des facteurs constants.

Les éléments qui constituent un sous-groupe de v éléments, déduit du groupe Φ , seront de la forme

$$\frac{\partial^{\nu-1}g(x)}{\partial x^{\nu-1}} = 1 \cdot 2 \cdot 3 \dots (\nu - 1) e^{\nu x} \theta_{\nu}(x),$$

$$\frac{\partial^{\nu-2}g(x)}{\partial x^{\nu-2}} = 1 \cdot 2 \cdot 3 \dots (\nu - 2) e^{\nu x} [\theta_{\nu-1}(x) + (\nu - 1) x \theta_{\nu}(x)],$$

$$\frac{\partial g(x)}{\partial x} = e^{\nu x} [\theta_{2}(x) + 2x \theta_{3}(x) + \dots + (\nu - 1) x^{\nu-2} \theta_{\nu}(x)],$$

$$g(x) = e^{\nu x} [\theta_{1}(x) + x \theta_{2}(x) + x^{2} \theta_{3}(x) + \dots + x^{\nu-1} \theta_{\nu}(x)],$$

la fonction périodique $\theta_{\nu}(x)$ n'étant pas identiquement nulle.

VIII. — Cas où
$$P(y) = 0$$
 est à coefficients constants.

27. Lorsque les coefficients p_1, p_2, \ldots, p_m de l'équation différentielle proposée sont des constantes, ils peuvent être considérés comme périodiques, de période arbitraire. De là la possibilité de retrouver, par les considérations précédentes, la forme analytique des solutions, bien connue dans ce cas. Pour y arriver, on peut suivre différentes voies.

Soit ω une quantité quelconque. Regardons p_1, p_2, \ldots, p_m comme périodiques, de période ω . Je me bornerai à examiner le cas où

équations différentielles linéaires à coefficients périodiques. 87 l'équation fondamentale $\Delta = 0$, relative à la période ω , n'a que des racines simples ε_1 , ε_2 , ..., ε_m .

P = o admet alors comme intégrales distinctes m fonctions périodiques de seconde espèce, de période ω et de multiplicateurs respectifs $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_m$. Désignons par F(x) l'une d'elles, telle que

$$\mathbb{F}(x+\omega) = \varepsilon \mathbb{F}(x).$$

Les coefficients constants p pouvant être considérés comme possédant aussi les périodes quelconques ω' , ω'' , ..., les fonctions $F(x + \omega')$, $F(x + \omega'')$, ... sont aussi des intégrales. Or on a

$$F(x + \omega' + \omega) = \varepsilon F(x + \omega'), \quad F(x + \omega'' + \omega) = \varepsilon F(x + \omega''), \dots$$

Ces intégrales prennent donc le même multiplicateur ε que F(x), lorsqu'on y change x en $x + \omega$. D'où (n° 12) les égalités

$$F(x + \omega') = \varepsilon' F(x), \quad F(x + \omega'') = \varepsilon'' F(x), \ldots,$$

 ϵ' , ϵ'' , ... étant des constantes; et, par conséquent, la fonction F(x) est périodique de seconde espèce à période arbitraire. Elle est donc de la forme

$$\mathbf{F}(x) = \mathbf{C} e^{\rho x}$$

C et \rho désignant des constantes. A cause de

$$F(x + \omega) = \varepsilon F(x)$$
,

on aura

$$e^{\omega \rho} = \varepsilon$$
,

c'est-à-dire que ρ est une des valeurs de $\frac{\log \epsilon}{\omega}$.

Si donc l'équation $\Delta = 0$ n'a que des racines simples, P = 0 admet m solutions distinctes de la forme

$$e^{\varrho_1 x}, e^{\varrho_2 x}, \ldots, e^{\varrho_m x},$$

les différences mutuelles des quantités ρ ne pouvant être ni nulles, ni un multiple de $\frac{2\pi}{100}\sqrt{-1}$.

Les fonctions périodiques désignées par $\theta(x)$ au n° 26 sont ici de la forme $Ce^{\frac{2k\pi x}{\alpha}\sqrt{-1}}$.

On sait que les quantités p sont les racines de l'équation algébrique

$$\rho^m + p_1 \rho^{m-1} + \ldots + p_{m-1} \rho + p_m = 0$$

qu'on appelle ordinairement l'équation caractéristique. On voit donc que l'équation caractéristique a pour racines les logarithmes, divisés par ω, des racines de l'équation fondamentale relative à la période ω.

Dans le cas considéré, où $\Delta = o$ n'a que des racines simples, l'équation caractéristique a aussi ses racines distinctes. Mais cette dernière peut n'avoir que des racines simples, $\Delta = o$ ayant des racines multiples. C'est ce qui a lieu lorsque, parmi les différences mutuelles des racines de l'équation caractéristique, il y a des multiples entiers de $\frac{2\pi}{\omega}\sqrt{-1}$.

Dans ce travail, j'ai considéré une équation différentielle linéaire, homogène, P = o, à coefficients uniformes, et admettant une période ω , l'intégrale générale étant supposée uniforme. J'ai obtenu la forme analytique des solutions. Les équations à coefficients constants rentrant dans le type P = o, on peut retrouver par cette voie les expressions connues de leurs intégrales. L'équation de Lamé, qu'ont mise en lumière les profondes recherches de M. Hermite, et, en général, la classe importante des équations à coefficients doublement périodiques, récemment étudiées par M. Picard, rentrent aussi dans le type P = 0, et constituent le cas intermédiaire entre le cas des coefficients à une seule période et celui des coefficients constants. Ces équations possèdent donc un système fondamental d'intégrales tel que S, et la question de déterminer la forme de leurs solutions revient à trouver la forme plus particulière qu'affectent les fonctions périodiques désignées par $\theta(x)$, lorsque les coefficients p admettent une seconde période ω' . Posé dans ces termes, le problème a une solution facile, que je me propose d'exposer ultérieurement.