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Abstract—The Satisfied User Ratio (SUR) curve for a lossy
image compression scheme, e.g., JPEG, characterizes the proba-
bility distribution of the Just Noticeable Difference (JND) level,
the smallest distortion level that can be perceived by a subject.
We propose the first deep learning approach to predict such SUR
curves. Instead of the direct approach of regressing the SUR
curve itself for a given reference image, our model is trained on
pairs of images, original and compressed. Relying on a Siamese
Convolutional Neural Network (CNN), feature pooling, a fully
connected regression-head, and transfer learning, we achieved
a good prediction performance. Experiments on the MCL-JCI
dataset showed a mean Bhattacharyya distance between the
predicted and the original JND distributions of only 0.072.

Index Terms—Satisfied User Ratio, Just Noticeable Difference,
Convolutional Neural Network, Deep Learning
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I. INTRODUCTION

Image compression is typically used to meet constraints on

transmission bandwidth and storage space. The compressed

image quality is quantitatively determined by encoding pa-

rameters, e.g., Quality Factor (QF) in JPEG compression.

When images are compressed, artifacts such as blocking and

ringing appear at low bit rates. Viewers’ visual experience

may be degraded because of these artifacts. The Satisfied

User Ratio (SUR) is the fraction of viewers that do not

perceive any distortion when comparing the original image

to its compressed version. The SUR is important in many

real-world applications. Different applications need to satisfy

different percentages of users. E.g., at least 75% of customers

may need to be satisfied in entertainment applications whereas

the percentage may be different in other applications.

Determining the SUR for compressed images is a chal-

lenging task. The conventional method consists of three steps.

First, we collect a number of pristine images and artificially

distort them multiple times with increasing distortion levels,

using the image compression scheme. Next, for each of the

sequences of distorted images, we ask a group of subjects to

identify the smallest distortion level that they can perceive.

People cannot notice the distortion until it reaches a certain

minimum level. This Just Noticeable Difference (JND) level is

different from one person to another due to their physiological

and visual attention mechanisms. Finally, we obtain the overall

SUR for each image by statistical analysis such as a Gaussian

model. Following this procedure, several subjective quality

studies have resulted in JND-based image and video databases,

e.g., MCL-JCI [1], MCL-JCV [2], VideoSet [3], and SIAT-

JSSI [4]. However, subjective visual quality assessment studies

are time-consuming and expensive. In contrast, objective, i.e.,

algorithmic, SUR estimation can work in real-time and at no

extra cost.

In recent years, deep learning has made tremendous progress

in computer vision tasks such as image classification [5]

[6], object detection [7] [8], and Image Quality Assessment

(IQA) [9] [10]. Instead of carefully designing handcrafted

features, deep learning-based methods automatically discover

representations from raw image data that are most suitable for

the specific tasks, hence improve the performance significantly.

Inspired by these works, we propose a novel deep learning

approach to predict the SUR curve for compressed images.

The main contributions of our work are as follows:

1) We propose a deep learning architecture which can

predict the SUR of compressed images automatically.

To the best of our knowledge, this is the first work of

its kind.

2) We model the prediction of the SUR as a regression

problem. A key technical aspect of our model is the use

of a new type of full-reference IQA model for a different

purpose than quality assessment, in this case predicting

points on an SUR curve.

3) We improve the performance of our model by using

transfer learning from a similar prediction task. First,

we train the proposed architecture independently on a

compressed image quality assessment task and then fine-

tune it as our SUR-Net.

II. RELATED WORKS

Existing JND research can be classified into subjective

quality assessment studies and mathematical modeling. Jin et

al. [1] conducted a subjective test on JND for JPEG com-

pressed images and built a JND-based image dataset called

MCL-JCI. They found that humans can distinguish only a few

discriminative quality levels (5 to 7) for an image. A staircase

quality function for each image was then generated using

a Gaussian mixture model from the JND samples. Wang et978-1-5386-8212-8/19/$31.00 ©2019 IEEE



al. [2] conducted subjective tests on JND for compressed

videos using H.264/AVC coding. They built a JND-based

video dataset called MCL-JCV. They collected JND samples

from 50 subjects and generated a staircase quality function

for each video. Wang et al. [3] built a large-scale JND-

based video dataset called VideoSet. They adopted a binary

search procedure for locating the JND. They found the first

three JND levels and generated an SUR curve for each video

sequence. These generated JND-based datasets can be used as

benchmarks for future research.

Mathematical modeling focus on JND and SUR prediction.

Huang et al. [11] proposed a Support Vector Regression

(SVR)-based model to predict the mean JND value of HEVC

encoded videos. Wang et al. [12] first extracted a group of

handcrafted features from videos, including quality degrada-

tion features and spatial-temporal randomness features. Then

they used the features to train an SVR-based model to predict

the SUR. Wang et al. [13] extended the framework in [12]

to predict the second and third JND points. However, the

success of this approach highly depends on the ability to

design suitable features.

III. DEFINITIONS

We consider a lossy image compression scheme that pro-

duces a monotonically increasing distortion level as a function

of a discrete encoding parameter. In JPEG, for example, the

distortion may be the mean squared error and the parameter

may be n = 101−QF, where QF ∈ {1, . . . , 100} is the JPEG

quality factor. Thus, n = 1 gives the smallest and n = 100
the largest distortion level.

Definition 1 (First JND level). The first JND level for a

given image is a random variable whose value is the smallest

distortion level that can be perceived by an observer.

Definition 2 (SUR function and curve). The SUR function

is the complementary cumulative distribution function of the

first JND level. The graph of this function is called the SUR

curve.

The SUR function SUR gives the proportion of the popula-

tion for which the first JND level is greater than a given value.

That is, SUR(x) = Pr(JND > x) where JND is the first JND

level random variable.

Since the range of the first JND level is the finite set

{1, 2, . . . , N}, where N is the number of distortion levels,

the SUR function is a monotonically decreasing step function.

The SUR curve can be used to determine the highest

distortion level for which a given proportion of the population

is satisfied (in the sense that it cannot perceive it). If we set

this ratio to 0.75, as suggested in [12], we can define a first

JND level for the whole population as follows.

Definition 3 (75% JND). The 75% JND is the largest value

of the first JND level for which the SUR function is greater

than or equal to 0.75.

Finding the first JND level is time-consuming and expensive

as it requires subjective quality assessment tests to compare the

original image with its distorted versions. In Wang et al. [3],

a robust binary search algorithm is proposed to speed up the

procedure.

In [1], it was assumed that the JND distribution for an image

is a Gaussian mixture with N components. For simplicity, let

us assume that the first JND is normally distributed (N = 1)

with mean µ and variance σ2 (as in [2] for the case of video

coding). Then the SUR function is

Φ̄(x|µ, σ2) = 1−
∫ x

−∞

1√
2πσ2

e−
(s−µ)2

2σ2 ds (1)

where only the two parameters µ and σ2 need to be deter-

mined. Fig. 1 shows an SUR curve and the 75% JND under

the normality assumption.
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Fig. 1: Example of SUR curve and 75% JND. The data is

from the first source image in the MCL-JCI dataset [1].

IV. DEEP LEARNING FOR SUR PREDICTION

Let I1[0], I2[0], . . . , IK [0] be a large training set of K
pristine reference images. For each pristine image Ik[0], k ∈
{1, . . . ,K}, we associate the N distorted images Ik[n], n =
1, . . . , N corresponding to the N distortion levels n =
1, . . . , N .

Let SURk denote the SUR function of image Ik[0]. Our

objective is to find a deep regression model fθ parameterized

by θ such that:

fθ(Ik[0], Ik[n]) ≈ SURk(n), k = 1, . . . ,K, n = 1, . . . , N.

The architecture of the proposed deep regression model is

illustrated in Fig. 2. A pair of images, i.e., pristine and dis-

torted, are fed into a Siamese network that uses an InceptionV3

[5] CNN body with shared weights. The network body is

truncated, such that the global average pooling layer and the

final fully-connected layer are removed. Each branch of the

Siamese network yields feature maps with a depth of 2048. For

each feature map, we apply min, max, and average pooling in

the same size as the feature maps, yielding 2048-dimensional

global feature vectors fmin, fmax, and favg. Then we calculate

∆fmin, ∆fmax, and ∆favg, corresponding to feature vector

differences between the distorted images Ik[n] and the pristine

image Ik[0], e.g., ∆fmin = fmin(Ik[n]) − fmin(Ik[0]). By

concatenating global feature vectors fmin(Ik[0]), fmax(Ik[0]),



Fig. 2: Proposed architecture for SUR prediction.

favg(Ik[0]) from the pristine image and feature vector differ-

ences ∆fmin, ∆fmax, ∆favg, we obtain a 12,288-dimensional

vector. The latter is passed to three fully-connected (FC) layers

with 512, 256, and 128 neurons, respectively, where each FC

layer is followed by a dropout layer to avoid over-fitting. The

output layer is linear with one neuron to predict values on the

SUR curve. Given the training data:

{(Ik[0], Ik[n], SURk(n)) | k = 1, . . . ,K, n = 1, . . . , N},

our objective is to minimize the Mean Absolute Error (MAE)

loss function:

L =
1

KN

K∑

k=1

N∑

n=1

|fθ(Ik[0], Ik[n])− SURk(n)| . (2)

V. PREDICTION OF THE SUR CURVE AND THE JND

For any source image I[0], together with its distorted

versions I[1], . . . , I[n], a sequence of predicted satisfied user

ratios SUR(1), . . . , SUR(N) is obtained from the network.

Assuming that the JND is normally distributed, we estimate

the mean µ and variance σ2 by least squares fitting:

(µ̂, σ̂2) = argmin
µ,σ2

N∑

n=1

∣∣Φ̄(n|µ, σ2)− SUR(n)
∣∣2 . (3)

The fitted SUR curve is given by Φ̄(x|µ̂, σ̂2) as in Equa-

tion (1).

VI. EXPERIMENTAL RESULTS AND ANALYSIS

A. Setup

In our experiments, we used the MCL-JCI dataset [1] to

evaluate the performance of the proposed method. The dataset

contains 50 pristine images with a resolution of 1920× 1080.

Each pristine image was encoded 100 times by a JPEG encoder

with QF decreasing from 100 to 1, corresponding to distortion

levels 1 to 100. Thus, there are 5,050 images in total.

The annotation provided for the image sequences in MCL-

JCI and for each of the M = 30 participants of the study [1]

is the QF value corresponding to the first JND level (and

also those of the second, third, etc.). For each source image

Ik[0] (k = 1, . . . , 50) in the MCL-JCI dataset, we computed

the empirical SUR as an estimate of SURk(n) at each distor-

tion level n = 1, . . . , 100 by mn/M where mn is the number

of participants in the study whose first JND level was larger

than n. We then used (3) to fit the probabilistic SUR model

(1) to these empirical values and obtained the ground truth for

µ and σ. Finally, we sampled the fitted SUR model to derive

the target values SURk(n), k = 1, . . . , 50, n = 1, . . . , 100 for

the deep learning algorithm.

k-fold (k = 10) cross validation was used to evaluate

the performance. Specifically, the dataset was divided into

10 subsets, each containing five pristine images and all 500

distorted versions of them. Each time, one subset was kept

as a test set, and the remaining nine subsets were used for

training and validation. The overall result was the average of

10 test results.

The Adam optimizer [14] was used to train SUR-Net with

the default parameters β1 = 0.9, β2 = 0.999, and a custom

learning rate α. We set α = 10−5 and trained for 30 epochs.

In the training process, we monitored the MAE loss on the

validation set and saved the best performing model. Our

implementation used the Python Keras library with Tensorflow

as a backend [15] and ran on two NVIDIA Titan Xp GPUs,

where the batch size was set to 16.

B. Strategies to address over-fitting

The MCL-JCI dataset is relatively small and training our

model from scratch may be prone to over-fitting. Therefore,
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Fig. 3: (a) Histogram of JND error. (b) Histogram of the Bhattacharyya distance. (c) PSNR comparison between the ground

truth JND and predicted JND. The PLCC is 0.9755 and SROCC is 0.9619.
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(a) Best prediction.
(image 33)
Bhattacharyya distance = 0.0017,
|∆JND| = 0.35,
|∆PSNR| = 0.00 dB.
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(b) Second best prediction.
(image 40)
Bhattacharyya distance = 0.0018,
|∆JND| = 0.64,
|∆PSNR| = 0.09 dB.
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(c) Worst prediction.
(image 37)
Bhattacharyya distance = 0.2039,
|∆JND| = 23.40,
|∆PSNR| = 2.54 dB.
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(d) Second worst prediction.
(image 23)
Bhattacharyya distance = 0.2442,
|∆JND| = 10.48,
|∆PSNR| = 1.16 dB.

Fig. 4: Best two and worst two prediction results according to Bhattacharyya distance.

we applied transfer learning and data augmentation.

We downloaded 110,000 pristine images (100,000 for train-

ing and 10,000 for validation) from Pixabay [16]. Each image

was compressed using a random quality factor of the JPEG

encoder in Matlab R2018a. Then we used the full-reference

IQA metric from [17] to compute the objective quality scores

for all distorted images. SUR-Net was first trained to predict

these objective quality scores with input given by a distorted

image and its reference image (the pristine image). After five

epochs, we fine-tuned the pretrained network on the MCL-JCI

dataset to predict the SUR.

For data augmentation, each image of the MCL-JCI dataset

was split into four non-overlapping patches with a resolution of

960 × 540. We also cropped one patch of the same resolution

from the center of the image. The SURs for the patches were

set to be equal to those of their source images. With this data

augmentation, we had 25,250 annotated patches.

After training the network with this training set, SUR values

can be predicted. To predict the SUR of an entire image,

predictions for its five corresponding patches were generated

by the network and averaged.

C. Results and analysis

Three metrics were used to evaluate the performance of

SUR-Net: MAE of the 75% JND, MAE of the Peak Signal-

to-Noise Ratio (PSNR) at the 75% JND, and Bhattacharyya

distance [18] between the predicted and ground truth JND

(Gaussian) distributions.

Table I presents the detailed results for each image se-

quence. Fig. 3 shows the statistics. There are 19 images with a

very small 75% JND error (less than 5) and 36 images (72%)

with a 75% JND error less than 10 (Fig. 3(a)). 35 images

(70%) had a Bhattacharyya distance smaller than 0.1 (Fig.

3(b)). Fig. 3(c) compares the PSNR at ground truth JND and



TABLE I: Normal distribution model for the first JND levels in the 50 image sequences of the MCL-JCI dataset. Shown are

the mean µ and standard deviations σ, for both ground truth and SUR-Net, together with the 75% JND values and PSNR

at the 75% JND value. The Bhattacharyya distance is a measure for the divergence between the predicted and ground truth

distributions, ∆JND = ĴND − JND, and ∆PSNR = P̂SNR − PSNR.

Image Ground truth SUR-Net Bhattacharyya |∆JND| |∆PSNR|

k µ σ JND PSNR µ̂ σ̂ ĴND P̂SNR distance
1 75.50 7.18 70.66 32.79 84.54 14.55 74.72 32.24 0.1930 4.06 0.55
2 65.40 14.47 55.64 41.50 49.30 29.01 29.73 43.84 0.1740 25.91 2.33
3 70.93 13.76 61.65 32.81 76.70 12.16 68.50 32.21 0.0285 6.85 0.60
4 75.43 9.12 69.28 29.77 71.86 13.39 62.82 30.33 0.0482 6.46 0.56
5 71.53 8.62 65.72 32.82 71.69 15.41 61.29 33.30 0.0800 4.43 0.48
6 71.87 12.16 63.67 34.41 79.05 11.08 71.58 33.59 0.0499 7.91 0.82
7 60.30 17.27 48.65 31.36 71.61 14.69 61.70 30.20 0.0687 13.05 1.16
8 73.73 6.43 69.40 29.12 70.33 12.71 61.76 29.81 0.1225 7.64 0.69
9 80.63 5.89 76.66 28.70 79.15 8.69 73.29 29.20 0.0419 3.37 0.50

10 75.50 8.83 69.54 37.65 67.90 16.40 56.83 38.77 0.1320 12.71 1.12
11 65.87 10.30 58.92 35.01 74.18 12.18 65.96 34.44 0.0749 7.04 0.56
12 48.90 13.73 39.64 34.95 66.33 22.71 51.01 34.05 0.1685 11.37 0.89
13 76.57 6.79 71.99 36.20 72.85 14.16 63.30 37.19 0.1386 8.69 0.99
14 75.90 9.50 69.50 33.91 74.24 14.92 64.18 34.35 0.0516 5.32 0.43
15 74.33 12.29 66.05 27.50 82.22 10.42 75.19 26.73 0.0667 9.15 0.77
16 75.60 11.68 67.73 31.58 77.82 10.16 70.97 31.28 0.0099 3.24 0.30
17 81.17 8.94 75.13 29.73 79.24 9.21 73.03 29.93 0.0058 2.10 0.20
18 79.17 7.08 74.39 34.22 76.80 11.21 69.24 34.79 0.0591 5.16 0.58
19 75.17 9.20 68.96 30.39 72.47 13.53 63.35 31.02 0.0430 5.61 0.62
20 60.10 10.91 52.74 33.06 72.53 10.38 65.53 31.89 0.1710 12.78 1.16
21 64.63 11.57 56.83 30.19 76.27 8.35 70.64 28.74 0.1924 13.81 1.46
22 73.43 13.62 64.25 29.94 77.95 11.04 70.50 29.35 0.0275 6.25 0.58
23 78.80 4.79 75.57 27.04 73.68 12.74 65.09 28.21 0.2442 10.48 1.16
24 76.83 7.43 71.82 33.36 74.84 15.35 64.49 34.10 0.1250 7.34 0.74
25 75.63 9.37 69.31 29.89 78.83 11.46 71.10 29.67 0.0217 1.78 0.22
26 63.60 10.90 56.25 34.25 66.58 16.09 55.73 34.25 0.0429 0.52 0.00
27 82.20 7.80 76.94 30.29 81.69 9.76 75.11 30.56 0.0129 1.83 0.27
28 70.83 10.81 63.54 41.21 74.65 12.61 66.14 41.01 0.0192 2.60 0.20
29 74.67 7.25 69.78 36.75 80.55 9.35 74.24 36.38 0.0778 4.46 0.37
30 78.00 9.03 71.91 36.66 76.03 12.52 67.59 37.22 0.0302 4.32 0.56
31 74.83 10.39 67.83 34.65 74.42 13.97 64.99 34.98 0.0218 2.84 0.34
32 74.30 9.16 68.12 32.17 82.84 8.05 77.41 30.98 0.1268 9.29 1.19
33 79.17 7.43 74.15 33.27 79.25 8.07 73.80 33.27 0.0017 0.35 0.00
34 69.60 9.01 63.52 32.21 74.53 11.25 66.94 31.93 0.0415 3.42 0.29
35 76.20 10.29 69.26 32.09 78.12 10.09 71.31 31.85 0.0045 2.05 0.23
36 77.80 7.35 72.84 30.46 78.49 8.56 72.72 30.46 0.0067 0.12 0.00
37 52.07 18.73 39.43 31.17 72.64 14.55 62.83 28.62 0.2039 23.40 2.54
38 78.20 9.44 71.83 30.49 80.31 10.47 73.25 30.39 0.0083 1.42 0.11
39 73.80 12.27 65.53 35.24 70.64 17.23 59.02 35.93 0.0339 6.50 0.69
40 64.80 13.35 55.80 39.15 64.95 14.52 55.16 39.24 0.0018 0.64 0.09
41 79.43 9.82 72.81 28.36 83.33 9.02 77.25 27.90 0.0232 4.44 0.46
42 78.67 8.69 72.80 31.10 72.41 14.13 62.87 32.11 0.0925 9.93 1.01
43 67.67 12.21 59.43 36.80 75.32 11.77 67.39 36.05 0.0513 7.96 0.75
44 82.83 5.98 78.80 29.88 81.40 9.30 75.13 30.40 0.0515 3.67 0.52
45 53.67 15.83 42.99 45.55 54.22 19.29 41.21 45.66 0.0099 1.78 0.11
46 84.07 8.03 78.65 32.46 74.71 13.10 65.87 34.23 0.1505 12.78 1.77
47 69.10 14.89 59.06 36.70 77.19 11.32 69.56 35.63 0.0654 10.50 1.07
48 78.97 9.92 72.28 35.20 77.34 12.39 68.99 35.58 0.0149 3.29 0.37
49 76.73 11.00 69.32 37.45 81.78 8.69 75.92 36.88 0.0462 6.61 0.57
50 81.87 7.58 76.75 34.61 75.50 11.68 67.62 35.95 0.0975 9.13 1.34

Overall 0.0715 6.73 0.6869

predicted JND. The Pearson Linear Correlation Coefficient

(PLCC) and Spearman Rank Order Correlation Coefficient

(SROCC) were 0.9755 and 0.9619, respectively. Overall, the

mean values of the Bhattacharyya distance, |∆JND|, and

|∆PSNR| were 0.0715, 6.73, and 0.687, respectively.

Fig. 4 shows the best and worst predictions, sorted by

Bhattacharyya distance. The red dotted lines are ground truth

SUR curves, the green dotted lines show predictions, and the

blue curves are fitted SUR curves. The red and blue points

show the ground truth and predicted 75% JND, respectively.

The best prediction result was for image 33, with a 75% JND

error of 0.35, a Bhattacharyya distance of 0.0017, and a PSNR

difference at the 75% JND of less than 10−2 dB. The fitted

SUR curve is very close to the ground truth.

The prediction results for a few images were not as good.

This may be due to the fact that the size and diversity of the

training set were too small for the deep learning algorithm.

We expect that this problem can be overcome by training on

a large-scale JND dataset.



Transfer learning significantly improved performance mea-

sures. Disregarding transfer learning, hence only using the

pretrained weights from ImageNet [19], increased the mean of

the Bhattacharyya distance from 0.0715 to 0.272, the |∆JND|
from 6.73 to 18.1, and |∆PSNR| from 0.687 to 1.63.

D. Discussion and limitations

To the best of our knowledge, SUR-Net is the first deep

learning-based approach to predict the SUR for compressed

images. We predict the SUR of each distorted image rather

than the SUR curve of the source image, which is given

by N SUR points corresponding to N distorted versions.

Thereby, the size of the training set was increased by a factor

of N , which helps to train an effective deep learning model.

Cropping patches from the source images is a typical way in

data augmentation for deep learning. We cropped five patches

from each source image and set their SUR values equal to that

of the source images.

We conclude the discussion by mentioning limitations and

open problems. It remains a topic for future work to study

the effect of the patch size, number of patches, and the

SUR value for each patch. In this contribution, we used the

normality assumption about the first JND point on the QF

scale. However, an empirical test (β2 test [20]) showed that

only 29 of the 50 source images passed the normality test.

Thus, other models for the distribution of the JND may be

more suitable than the Gaussian.

VII. CONCLUSION

We proposed a deep learning approach to predict the

SUR curve for compressed images. First, pairs of images

(a reference and a distorted one) were fed into a Siamese

CNN. Second, features were extracted by feature pooling and

concatenation. Finally, connected layers were added to learn

a regression from image pairs to SUR values. The proposed

approach can be easily generalized to predict the SUR curves

for images compressed with other coders. As in [12], we

provided results for the 75% JND. Results for other satisfied

user ratios can be obtained in a similar way. Given a target

percentage of satisfied users, the predicted SUR curve can be

used to determine the JPEG quality factor QF that provides

a compressed image, which is indistinguishable from the

original for these users, thereby saving bit rate without the

need for subjective visual quality tests.
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