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Abstract

The mosquito-borne Chikungunya virus (CHIKV) is a profound global threat due to its high

rate of contagion and the lack of vaccine or effective treatment. Suramin is a symmetric

polyanionic naphthylurea that is widely used in the clinical treatment of parasite infections.

Numerous studies have reported the broad antiviral activities of suramin; however, inhibition

effects against CHIKV have not yet been demonstrated. The aim of this study was thus to

investigate the antiviral effect of suramin on CHIKV infection and to elucidate the molecular

mechanism underlying inhibition using plaque reduction assay, RT-qPCR, western blot

analysis, and plaque assay. Microneutralization assay was used to determine the EC50 of

suramin in the CHIKV-S27 strain as well as in three other clinical strains (0611aTw,

0810bTw and 0706aTw). Time-of-addition was used to reveal the anti-CHIKV mechanism

of suramin. We also evaluated anti-CHIKV activity with regard to viral entry, virus release,

and cell-to-cell transmission. Cytopathic effect, viral RNA, viral protein, and the virus yield of

CHIKV infection were shown to diminish in the presence of suramin in a dose-dependent

manner. Suramin was also shown the inhibitory activities of the three clinical isolates. Sura-

min inhibited the early progression of CHIKV infection, due perhaps to interference with

virus fusion and binding, which subsequently prevented viral entry. Results of a molecular

docking simulation indicate that suramin may embed within the cavity of the E1/E2 heterodi-

mer to interfere with their function. Suramin was also shown to reduce viral release and cell-

to-cell transmission of CHIKV. In conclusion, Suramin shows considerable potential as a

novel anti-CHIKV agent targeting viral entry, extracellular transmission, and cell-to-cell

transmission.
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Introduction

Chikungunya fever is a mosquito-borne disease which causes fever and strong joint pain in

humans. Prior to 2005, only sporadic CHIKV outbreaks had been reported in Africa and South

Asia; however, in 2005–2006, a large outbreak with nearly a million suspected cases was reported

in the Indian Ocean region [1,2]. Furthermore, CHIKV has been suspected in almost 1 million

cases of disease in over 20 Caribbean and Central and South American countries since December

2013 [3–5]. Overall, millions of cases of CHIKV have been reported in over 50 countries.

Aedes spp. (particularly Aedes aegypti and Aedes albopictus) are the major vectors of

CHIKV. The viral incubation period is generally 2–12 days with major clinical symptoms that

include acute fever, maculopapular rash, headache, vomiting, myalgia, and chronic arthralgia.

In addition, many patients suffer severe joint pain from weeks or even months [6,7]. CHIKV

has been associated with endothelial, epithelial fibroblast cells [7,8], osteoblasts [9], muscle sat-

ellite cells [10], monocytes [11] and macrophages [12]. At present, no vaccines or antiviral

drugs have been developed for the treatment of CHIKV infection [13].

CHIKV is a plus sense, single-strand enveloped RNA virus classified into the genus Alpha-

virus of the family Togaviridae. The genome of CHIKV is approximately 11.8kb in size, com-

prising two open reading frames (OFRs), encoded nonstructural proteins (nsPs), and

structural proteins (E1, E2, E3, K6 and capsid) [7]. Alphavirus infection is established through

receptor-mediated endocytosis. The low-pH environment in the endosome induces an irre-

versible conformational change in glycoproteins and dissociation of the E2/E1 heterodimers

followed by E1 trimerization. This causes the release of viral RNA through the virion-endo-

some membrane fusion [14]. Following this, the nsPs are translated to form replicase com-

plexes for viral replication. E2 and E1 glycoproteins are initially synthesized in the ER and

modified in the Golgi apparatus. CHIKV can be spread through either extracellular transmis-

sion or cell-to-cell transmission [15] and glycoproteins also involved in [16–18]. Indeed, glyco-

proteins play a critical role in both early and late stages of CHIKV infection.

Suramin is a symmetrical hexasulfonated naphthylurea compound, which has obtained U.S.

Food and Drug Administration (FDA) approval for human use in the treatment of trypanoso-

miasis. The anti-neoplastic effects of suramin have been demonstrated, and the broad anti-viral

activities of this compound have been studied with regard to human T-cell lymphotropic virus

(HTLV-III) [19], HIV-1 [20], HSV-1 [21], HBV [22], HCV [23], dengue virus [24], encephalitis

B virus [25], SFTSV [26], norovirus [27], EV71 [28], and Rift Valley Fever Virus [29].

This study demonstrates the inhibitory effects of suramin on CHIKV infection. Our results

show that suramin blocks CHIKV fusion to host cells directly, primarily through the regulation

of the entry step in the CHIKV life cycle. Suramin was also shown to inhibit both extracellular

transmission and cell-to-cell transmission following initial CHIKV infection. These data sug-

gest that understanding the mechanism underlying the anti-viral effects of suramin in CHIKV-

human host interactions may facilitate the development of plausible treatments to deal with

CHIKV infection.

Materials and Methods

Cells, viruses and drugs

BHK-21 (ATCC: CCL-10) and U2OS cells (ATCC: HTB-96) were grown in Dulbecco’s modi-

fied Eagle medium (DMEM) (Invitrogen, catalog # 10564–011) supplemented with 5% heat

inactivated Fetal bovine serum (FBS) (Invitrogen, catalog # 10082–147) and antibiotics under

5% CO2 at 37°C. MRC-5 (ATCC: CCL-171) were grown in Minimum Essential medium

(MEM) (Invitrogen, catalog # 11095–080) supplemented with 5% FBS and antibiotics under
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5% CO2 at 37°C. Sf21 cells were cultured with Sf-900II serum-free medium (Invitrogen, cata-

log # 10902–096) containing 5% heat inactivated FBS and antibiotics at 27°C. Chikungunya

virus (ATCC: VR-64, strain S27-African prototype) (CHIKV-S27) and three clinical isolates,

0611aTw (Singapore/0611aTw/2006/FJ807896), 0810bTw (Malaysia/0810bTw/2008/

FJ807899) and 0706aTw (Indonesia/0706aTw/2007/FJ807897) were grown on BHK-21 cells

[30]. Recombinant baculoviruses (S-WT or control vector) were amplified from infected Sf21

cells [31]. Virus titers were determined using plaque assays or a tissue culture infectious dose

50 assay (TCID50). Suramin, purchased from Sigma-Aldrich (catalog # S2671), was freshly

dissolved in water to produce a stock solution (50mg/ml, 35mM), which was then stored at

-20°C until use.

Plaque assay and plaque reduction assay

BHK-21 cells were seeded in 6-well plates and incubated at 37°C overnight. In plaque assay,

the virus suspension was diluted 10-fold by DMEM containing 2% FBS. To infect BHK-21

cells, we added 0.4 ml viral dilutions to each well. In plaque reduction assay, BHK-21 cells were

infected with CHIKV-S27 at a multiplicity of infection (MOI) of 4×10−4 in the presence of sur-

amin at indicated concentrations. Following incubation at 37°C for 1 hour, the virus was

removed. The infected-cells were covered with 4.5 ml overlay medium containing 1% SeaPla-

que agarose (Lonza, catalog # 18104-0807-7) (Suramin at indicated concentrations was added

to overlay medium in plaque reduction assay). Cells were then incubated at 37°C for 2 days.

Finally, cells were fixed and stained using 1% crystal violet solution to count plaques and deter-

mine virus titers, which were presented as plaque-forming units per milliliter (pfu/ml) [32].

Quantitative real time RT-PCR

Total RNA or viral RNA was isolated using Trizol reagent (Invitrogen, catalog # 15596–026)

or the QIAamp Viral RNAMini Kit (Qiagen, catalog # 52906) in accordance with manufac-

turer’s instructions. Viral RNA and actin RNA were quantified using the QuantiTect SYBR

Green RT-PCR kit (Qiagen, catalog # 204243). Briefly, the primer sequences for CHIKV E1

were as follows: forward, 5’- GTCTGTTCTACACAAGTACAC -3’; reverse, 5’- ACGACA

CGCATAGCACCAC -3’. Actin was an internal control, and the primer sequences were as

follows: forward, 5’- ATTGCCGACAGGATGCAGAA -3’; reverse, 5’- GCTGATCCACA

TCTGCTGGAA -3’. After 30min at 50°C and 15min at 95°C, forty-five cycles of PCR (one

cycle consist of 15 sec at 95°C, 25 sec at 57°C and 10sec at 72°C) were performed using Roche

LightCycler 480 System. Melting curve analysis was performed to certify the specificity of

PCR products. Relative values were calculated using the ΔΔCt method, and each experiment

was performed in triplicate.

Western blot analysis

Total proteins were dissolved in Laemmli sample buffer and separated onto 10% SDS-PAGE

gel. Blotted membranes were incubated using rabbit anti-CHIKV antibodies [31] (1:1000) or

mouse anti-actin antibodies (1:1000; Cell Signaling, catalog # 3700). The membranes were then

incubated at a 1:2000 dilution with horseradish peroxidase (HRP)-conjugated goat anti-rabbit

IgG or anti-mouse IgG at room temperature for 1 hour. HRP was detected on the membrane

using a LumiFast Plus Chemiluminescence Detection Kit (T-Pro Biotechnology, catalog #

JT96-K002M) in accordance with manufacturer’s protocol. The UVP AutoChemi Image Sys-

tem was used to capture and process images.
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Microneutralization assay

BHK-21, U2OS or MRC-5 cells were seeded in 96-well plates, infected with the CHIKV-S27

strain at an MOI of 0.01 in the presence of suramin at indicated dosages, and incubated for 2

days. The cells were then fixed and stained using 0.1% crystal violet solution at room tempera-

ture for 5 minutes, whereupon the stained cells were washed three times [33]. The optical den-

sity at 570 nm (OD570) was measured using an Tecan Infinite 200 Pro multiplate reader. All

assays were performed at least triplicate. The concentration that achieved 50% of the maximal

effect (EC50) was calculated using GraphPad Prism Version 5.

Immunofluorescence assay (IFA)

Infected BHK-21 cells were fixed using an acetone/methanol mixture for 5 minutes and then

air-dried for 5 minutes. The cells were subsequently stained with rabbit anti-CHIKV E2 anti-

bodies (1:100) [31] or J2 anti-dsRNA IgG2a monoclonal antibodies (1:100; Scicons, catalog #

J2-1406) and incubated at room temperature for 1 hour. After washing with PBS, cells were

stained with Alexa Fluor 594-conjugated goat anti-rabbit IgG or anti-mouse IgG (1:500). The

cells were then completely covered with DAPI (300nM) for nuclear staining. Images were cap-

tured using the red-channel of an inverted fluorescence microscope, to investigate the occur-

rence of CHIKV infection.

Binding assay and Entry assay

Binding and entry assays were modified from two methods, plaque reduction assays and

focus forming unit reduction assay [34]. The plaque formation was used to evaluate the effects

of suramin on binding and entry, based on the fact that holding samples at 4°C can restrict

the entry of the virus. BHK-21 cells were infected with the CHIKV-S27 strain at a multiplicity

of infection (MOI) of 4×10−4 at 4°C (which permits binding but not entry) or at 37°C (which

facilitates virus entry / penetration) in the presence of suramin at indicated concentrations

before being incubated for 1 hour. The cells were then washed using DMEM to remove the

virus and suramin. The infected cells were covered with 4.5 ml of the medium supplemented

with 1% agarose prior to incubation at 37°C for 2 days. Finally, the cells were fixed and

stained using a 1% solution of crystal violet, and plaques were visualized and counted. The

percentage of viruses that succeeded in binding and entry was determined by comparing the

number of plaques between viral and control groups. The results were obtained from at least

three independent experiments.

CHIKV 26S mediated insect cell fusion inhibition assay

The CHIKV 26S mediated insect cell fusion inhibition assay was modified from the methods

outlined in [35]. Briefly, Sf21 cells were infected with either (1) S-WT recombinant baculovirus

for the expression of CHIKV full-length structure protein (26S) or (2) control baculovirus at

an MOI of 2 in Sf-900II SFM with 5% FBS. At 1 day post-infection (dpi), the culture medium

was replaced with Sf-900II SFM (pH 6.8) supplemented with 2% FBS. At 2 dpi, the infected

Sf21 cells were pretreated with suramin or CHIKV neutralization antibodies in the above alka-

line medium (pH 6.8) for 1 hour. Cell-cell fusion was subsequently triggered by Sf-900II SFM

(pH 5.8) containing 2% FBS and 100μg/ml cholesterol, and treated cells were incubated for 2–3

hrs. Cell fusion was observed using an inverted fluorescence microscope, measured using

Image J software, and quantified using the fusion index, as outlined in [35].
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Molecular docking

Docking simulations were performed using PatchDock to generate an ensemble of docked con-

formations, whereupon scoring functions were used to generate classes based on the dock

scores. We then ranked the best conformations [36].

TCID50 assay

BHK-21 cells were seeded on 96-well plates and infected with a series dilution of CHIKV sus-

pensions at 37°C for 4~5 days. TCID50 was determined by CHIKV-induced cytopathic effect

(CPE), which observed using an inverted microscope.

Virus stability assay

CHIKV supernatant was administered with suramin at indicated dosages and incubated at

37°C for 8 hours. Viral stability was determined by TCID50 assay.

Cell viability assay

Cell viability profiles were assessed using the WST-1 assay (Roche, catalog # 11644807001) in

accordance with manufacturer's protocol. The treated cells were measured absorbance at 440

nm using a Tecan Infinite 200 Pro multiplate reader. All cell viability assays were conducted at

least than triplicate, and data for treated cells were normalized using data from untreated cells.

In vivo toxicity test in zebrafish

The protocol for the zebrafish experiments in this study was approved by the Institutional Ani-

mal Care and Use Committee (IACUC) of the College of Medicine, National Taiwan Univer-

sity, and conformed to the criteria outlined in the Guide for the Care and Use of Laboratory

Animals of the National Institutes of Health. Toxicity tests were conducted as follows: Stock

solutions of suramin were diluted in embryo medium to prepare serial working concentrations.

Zebrafish embryos were exposed to suramin solution at the following dosages: 0.7, 7, 70, and

700 uM. Fertilized sphere stage embryos (4–5 h post fertilization, hpf) were kept in 24-well

plates at two embryos/well, where each well contained 2 ml of the test solution for 7 days and is

updated daily. After exposure, embryos were checked daily for survival, body length, malfor-

mation and hatch using a microscope. The hatching rate was expressed as the number of

embryos that had hatched, as compared with the control group. The survival rate was

expressed as the number of dead embryos as compared with the control group. Morphological

anomalies, including chorion with attached debris, delayed development, lack of spontaneous

movement at 1 to 7 dpf, pericardial edema, yolk sac edema, bent trunk, tail malformation, and

an uninflated swim bladder were observed under stereomicroscopes. The plates were held in

an incubator at 28°C photoperiod with a 14/10 h light/dark [37]. All zebrafish after completion

of the experiment using 0.5% tricaine (Sigma-Aldrich, catalog # MS-222) sacrificed, and all

efforts were made to minimize suffering.

Statistical analysis

The Student's t test and Kaplan-Meier test were used to analyze data. A p value of<0.05 was

considered significant. All statistical analyses were performed using GraphPad prism software.
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Results

Anti-CHIKV activity of suramin

Plaque reduction assays were used to verify the inhibition of suramin via plaque formation in

order to determine the effect of suramin on CHIKV infection. BHK-21 cells were commonly

used to investigate anti-CHIKV infection [38] because the plaque formation, CPE and cell-to-

cell transmission were easily observed. The laboratory-adapted CHIKV-S27 strain was utilized

to confirm the anti-viral effects. The results in Fig 1A show that suramin significantly suppressed

plaque formation from 44μM to 350μM, which demonstrates the anti-CHIKV activity of sura-

min. The anti-CHIKV ability of suramin underwent further validation by detecting the produc-

tion of viral capsid, quantifying the production of viral RNA by RT-qPCR, and determining the

yield of infectious progeny virus by plaque assay (Fig 1D and 1E). Our results demonstrate that

viral RNA, proteins, and virus yield were significantly reduced by corresponding concentrations

of suramin, which confirms the dose-dependent anti-CHIKV activity of suramin.

Anti-CHIKV activity of suramin on different CHIKV strains

We also investigated the antiviral effects of suramin on CHIKV-S27 strain and three clinically

isolated strains: 0611aTw, 0810bTw, and 0706aTw. Microneutralization assay was used to

examine the spectrum of anti-CHIKV effect provided by suramin. EC50 was used to define the

anti-CHIKV effect of suramin and 50% cytotoxicity concentration (CC50) was used to evaluate

cytotoxicity. Selectivity index (SI = CC50/EC50) values are presented in Table 1. U2OS and

MRC-5 separately belong to human osteosarcoma and human fibroblasts and also utilized to

determine the EC50 of suramin. The EC50 values of CHIKV strains were as follows: 8.8 μM to

28.9 μM (BHK-21 cells), 17.9 μM to 59.6 μM (U2OS cells) and 18.1 μM to 62.1 μM (MRC-5

cells). Those clinical isolates were including an E1-226V mutant strain, Malaysia 0810bTw,

which was close to Le Reunion epidemic strain. Suramin revealed broad potential application

in clinical CHIKV infection treatment. SI values of CHIKV-S27 on BHK-21, U2OS cells and

MRC-5 cells were>32.6,>39.1 and 19.3, respectively. These results demonstrate that suramin

also has significant inhibitory effects on clinical isolates including Le Reunion epidemic strain.

Suramin inhibits CHIKV infection in early stages

Time-of-addition assay was assessed to identify the stage of CHIKV infection affected by sura-

min. Suramin was added to BHK-21 cells at different time points from prior to viral infection

(-2 hour), viral adsorption (0 hour), in the early (2 hours) and late stages of viral infection (6h)

(Fig 2A). The endpoint of this analysis was 24 hours post-infection (hpi). Fig 2B illustrates how

suramin treatment significantly inhibited capsid production in the early stage of viral infection

(-2 and 0 hour). The same result was observed in E2 staining as well as in intracellular and

extracellular CHIKV RNA levels (Fig 2C–2E). We also observed that, under suramin treat-

ment, the size of the CHIKV-infected foci at -2 and 0 hour was restricted, the effects of which

were correlated with the dosage of suramin (Fig 2C). These findings indicate that suramin

affects CHIKV infection in the early stage of development.

Suramin disrupts virus binding and fusion by binding with viral
glycoproteins

Virus-receptor binding and low-pH-triggered membrane fusion reaction are two critical steps

associated with CHIKV entry. Lowering the temperature to 4°C was shown to permit virus

binding but not entry; therefore, we used temperature to differentiate the effects of virus
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Fig 1. Dose-dependent anti-CHIKV activity of suramin. (A) Plaque reduction assay. (B) Chemical structure of suramin. (C, D, E) BHK-21 cells were
infected by CHIKV-S27 strain at an MOI of 0.01 following incubation at 37°C for 1 h in the presence of indicated concentrations of suramin. The infected cells
were then incubated in fresh medium with corresponding concentrations of suramin for 24 hours. Total RNA, cell lysate and culture supernatant were
harvested. Data of viral RNA (C) were normalized with an internal control of actin, by RT-qPCR. Viral capsid protein (D) and internal control of actin were
determined byWestern blot analysis. The yield of CHIKV from the supernatant (E) was determined by plaque assay. CC refers to cell control and VC refers to

Treatment of Chikungunya Virus Using Suramin
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binding and entry [34]. At concentrations between 35μM and 350μM, suramin was shown to

influence virus binding at 4°C (Fig 3A), and significantly reduce virus entry at 37°C (Fig 3B).

We also used the CHIKV 26S mediated insect cell fusion assay to investigate the effects of

suramin on virus fusion. CHIKV 26S mediated cell fusion was triggered at pH 5.8; however,

this was not observed in the control group and the effect was suppressed by CHIKV neutraliz-

ing antibodies, which demonstrates that the fusion assay was CHIKV 26S specific. Suramin

was shown to suppress CHIKV 26S mediated cell fusion (Fig 3C) in a dose-dependent manner

(Fig 3D). The above evidence suggests that suramin interferes with virus entry via its effects on

virus fusion.

Suramin also possess minor effect during virus binding (Fig 3A). To figure out the interac-

tion between suramin and cell receptor, BHK-21 cells was pre-treated with suramin for 2 hours

incubation and then replaced to CHIKV for an hour incubation. The results compared to

CHIKV only and suramin co-treated groups by entry assay. Co-treated group shown signifi-

cant inhibition of CHIKV and Pre-treated group also reveal minor inhibition. It indicated that

suramin might also minor interact with cell receptor (Fig 3E).

E2 and E1 glycoproteins regulate virus entry in the early stages of CHIKV infection. E2 was

responsible to receptor binding and E1 was shown to form trimers that trigger membrane fusion.

This raised the question as to whether suramin interacts with CHIKV glycoproteins. We

employed the docking software, PatchDock, to predict the molecular docking of suramin and

the CHIKV envelope glycoprotein complex (PDB: 3N42). The highest Patchdock score (9266)

was obtained for the model in which suramin embedded within the cavity of the CHIKV enve-

lope glycoprotein complex between E1 domain IIand E2 domain C (Fig 4A and 4B). This implies

that suramin may reduce virus fusion and binding by being embedded within this cavity.

Suramin reduces extracellular transmission by interfering with the
release of the virus

The effects of suramin on inhibiting CHIKV entry have been proven; however, it also shown to

affect extracellular CHIKV RNA levels following virus entry (Fig 2E). Viral glycoproteins were

also shown to participate in the late stage of CHIKV infection. E1/E2 glycoproteins that accu-

mulated on the surface of host cells allowed virus budding and the release of virion particles.

virus control. Each data point was the mean ± SD of three independent experiments. Statistical significance was determined using the t-test compared with
the virus control. ***, p< 0.001; **, p< 0.01; *, p< 0.05.

doi:10.1371/journal.pone.0133511.g001

Table 1. Antiviral and cytotoxic activities of suramin against different CHIKV strains.

Cell
lines

EC50a (μM)

S27-African
prototype

Singapore/0611aTw/2006/
FJ807896

Malaysia/0810bTw/2008/
FJ807899

Indonesia/0706aTw/2007/
FJ807897

CC50b

(μM)
SIc

BHK-21 21.5±7.1 28.9±6.8 8.8±0.5 21.9±4.8 >700 >32.6

U2OS 17.9±9.5 59.6±11.9 43.8±6.1 36±9.6 >700 >39.1

MRC-5 18.1±4 62.1±5.7 54.1±11.8 54.3±4.7 ≒350 19.3

a The EC50s were determined using the microneutralization assay and were presented as means ± SD (n�3).
b The CC50s were determined using an WST-1 assay and were presented as means ± SD (n�3).
c The SI (selectively index) represented the ratio of CC50 to EC50 for S27-African prototype.

doi:10.1371/journal.pone.0133511.t001
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Fig 2. Time-of-addition assay. (A) Time points of suramin administration. BHK-21 cells were infected with CHIKV-S27 strain at an MOI of 0.1 and then
incubated for 1 h. Indicated concentrations of suramin were administered at prior to infection (-2h) as well as at 0, 2 and 6h post-infection with CHIKV. All
experiments were performed 24 hours after infection. CC refers to cell control and VC refers to virus control. (B) Expression of capsid protein was determined
by western blot analysis using an internal control of actin (bottom panel). (C) CHIKV E2 glycoprotein levels were determined by IFA. (D and E) Intracellular
and extracellular viral RNA levels were quantified by RT-qPCR performed in triplicate. The fold change was compared with the untreated virus control and
presented logarithmically. ***, p< 0.001; **, p< 0.01; *, p< 0.05.

doi:10.1371/journal.pone.0133511.g002
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Fig 3. Effect of suramin on CHIKV entry. (A) Binding assay at 4°C. (B) Entry assay at 37°C. The
percentage was determined by counting the number of plaque and normalized to that of the virus control
group. Each data point is the mean ± SD of at least three independent experiments. ***, p< 0.001; **, p<
0.01; *, p< 0.05. (C) CHIKV 26S-mediated insect cell fusion inhibition assay. Control vector at pH5.8 and
recombinant baculovirus S-WT at pH6.8 in parallel serving as a negative control. Cell-cell fusion was induced
in recombinant baculovirus S-WT-infected Sf-21 cells by treatment with acid (pH5.8). CHIKV neutralizing
antibodies (CHIKV Ab) or suramin (350μM) were used for pre-treatment and co-treatment at pH5.8 in order to
assess the effects on inhibiting fusion. Syncytia formation was examined under a fluorescence microscope
with an FITC channel (FITC: upper panels) or a bright field channel (BF: lower panels). (D) The percentage of
fusion index was calculated and then normalized to the untreated S-WT-infected group. Cell viability of
suramin was determined byWST-1 assays. (E) CHIKVMOI = 1, suramin pre-treated 2 hours (BHK-21 cell
pre-treated with suramin 2 hours and then washed and replaced to CHIKV (MOI = 1) for 1 hour incubation)
and suramin co-treated were analyzed by entry assay. The percentage was determined by counting the
number of plaque and normalized to that of the virus control group. Each data point is the mean ± SD of at
least three independent experiments. ***, p< 0.001; **, p< 0.01; *, p< 0.05.

doi:10.1371/journal.pone.0133511.g003
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Fig 4. Molecular docking of CHIKV envelope glycoprotein complex and suramin. (A and B) Molecular modeling of the interactions between CHIKV
envelope glycoprotein complex (PDB: 3N42) and suramin: Pink lines (E1 domain), Green lines (E2 domain), Blue lines (E3 domain), Yellow lines (hydrogen
bond). (B) The highest Patchdock score (9266) was obtained for the model in which suramin embedded within the cavity of the CHIKV envelope glycoprotein
complex between E1 and E2.

doi:10.1371/journal.pone.0133511.g004
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Acid bypass infection (pH5.3 for 3 min) allowed CHIKV to bypass the endocytic pathway and

enter the cytosol directly through the plasma membrane. Suramin was shown not to influence

intracellular CHIKV RNA levels; however, the extracellular CHIKV RNA decreased signifi-

cantly in a dose-dependent manner (Fig 5B). The yield of CHIKV progeny in the supernatant

was also determined according to TCID50. Under suramin treatment, extracellular CHIKV

titers reduced in a dose-dependent manner from 70 μM to 350 μM either at 5 or 8 hours (Fig

5C). That implies that suramin may reduce extracellular transmission by interfering with the

release of the virus. Nonetheless, whether the CHIKV yield decreased in supernatant resulted

from suramin disrupt virion stability. An examination of virus stability showed that incubation

with suramin for 8 hours did not affect CHIKV stability (Fig 5D). These findings indicate that

suramin suppresses the release of the virus but does not have any effect on its stability.

Fig 5. Effect of suramin after CHIKV entry. (A) Timeline of acid-bypass infection. BHK-21 cells infected with CHIKV-S27 strain at an MOI of 1 prior to
incubation at 37°C for 1 h. A 3-min DMEM pulse at pH5.3 permitted virus entry into the cytosol. The cells were then washed by PBS once. Afterward, the
medium was replaced with 2% FBS DMEM containing indicated concentrations of suramin followed by incubation for 5 hours or 8 hours. The supernatant
and cell lysate were collected for RT-qPCR and TCID50 assay. (B) The CHIKV RNA change between intracellular and extracellular at 8 hours. The fold
change of CHIKV RNA was relative to the untreated virus control (VC) and presented logarithmically. (C) The yield of extracellular CHIKV was determined by
TCID50 at 5 hours and 8 hours. (D) The virus suspension incubated in the presence of suramin at 37°C for 8 h and virus stability was determined by TCID50.
Each data point was the mean ± SD of at least three independent experiments. ***, p< 0.001; **, p< 0.01; *, p< 0.05.

doi:10.1371/journal.pone.0133511.g005
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Effect of suramin on cell-to-cell transmission

Time-of-addition experiments showed suramin might restrict the area over which CHIKV

spreads (Fig 2C). These results suggest that suramin might affect cell-to-cell transmission. We

employed CHIKV neutralizing antibodies to prevent extracellular transmission and the range

of CHIKV infection was detected by dsRNA staining. Suramin was shown to have a pro-

nounced effect on reducing the cell-to-cell transmission of CHIKV (Fig 6B). The cell count per

focus resulted in Fig 6C suggest that suramin inhibited cell-to-cell transmission in a dose-

dependent manner.

Discussion

Suramin is used for the treatment of trypanosomiasis and onchocerciasis. Previous study reveals

that suramin inhibits the replication of Venezuelan equine encephalitis virus by blocking the

loading of miRNA onto Ago2 [39]. However, we firstly demonstrated that suramin inhibits

CHIKV entry and transmission through binding onto E1/E2 glycoproteins. These findings were

firstly confirmed by reductions in plaque formation, viral RNA, proteins, and yield under sura-

min treatment. Furthermore, suramin was also shown to broadly inhibit 3 clinical isolates

including a 226V mutant strain, Malaysia 0810bTw, with EC50 values ranging from 8.8 μM to

62.1 μM. Cell viability assay revealed that the CC50 of suramin at 48 hours was more than

700 μM in BHK-21 cells and U2OS cells and about 350 μM inMRC-5 cells (S1A Fig). Suramin

was shown to be non-toxic to zebrafish following treatment with 700 μM. After exposure, the

embryos were no significant variation for survival, body length, malformation and hatch. (S1B

Fig). Pharmacokinetics data from previous studies revealed that serum concentrations of sura-

min in humans exceeded 70 μM (equal to 100μg/ml)[40]. This concentration is well within the

anti-viral active concentration range (EC50 of 8.8 to 62.1 μM), which is non-toxic in humans.

Suramin was shown to inhibit the early stage of enterovirus 71 infection by blocking binding

on the surface of virion [28]. In this study, early treatment with suramin (-2 and 0 hour) also

had a pronounced effect on the entry stages of CHIKV infection. However, we found that sura-

min affected on virus fusion better than virus binding. CHIKV fusion was associated with irre-

versible E1 trimer formation. Previous study indicated that 7 novel binding sites between E1

and E2 glycoproteins have been revealed for design of inhibitors that could alter the function of

the envelope proteins [41,42]. Molecular docking predicts that suramin may embed within the

cavity between E1 domain II and E2 domain C. These results help to elucidate the mechanism

by which suramin reduces CHIKV fusion and partial binding. Suramin also possessed minor

effect on cell receptor. Heparin and heparan sulfate had been reported involved CHIKV attach-

ment [43,44]. Suramin was an analogue of heparin [45,46], so might interact with receptor.

In time-of-addition assays, Suramin also revealed minor effect in the later stages of CHIKV

infection. By interfering with the release of CHIKV, suramin was shown to repress extracellular

transmission; however, the mechanism by which this occurs has yet to be elucidated. No effects

were observed with regard to the stability of CHIKV progeny after incubation with suramin for

8 hr. Alphavirus E1 and E2 proteins are crucial to virus entry and assembly, both of which are

associated with protein reorganization [47]. Specific E1 antibodies significantly decrease the

release of CHIKV, which implies that E1 may be involved in virus release [48]. Thus, the inter-

action of suramin and E1/E2 glycoproteins may also interfere with the process of viral release.

Previous study indicated that suramin is an inhibitor of norovirus RNA polymerase capable of

blocking virus replication [27]. However, following the administration of suramin, we did not

observe any difference in intracellular CHIKV RNA after CHIKV entry. Suramin bears

strongly hydrophilic polysulfonate groups, which might limit accessibility across cellular mem-

branes [49].
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Fig 6. Effect of suramin on cell-to-cell transmission. (A) The timeline illustrates cell-to-cell transmission assays. BHK-21 cells were infected with
CHIKV-S27 strain at an MOI of 4×10−4 for 1 hour. The medium was them replaced with virus-free medium in the presence of CHIKV neutralizing antibodies
(1:100) and suramin at indicated concentrations prior to incubation for 21 hours. Infected cells were stained using dsRNA antibodies (red) for the detection of
CHIKV infection and DAPI staining (blue) identified the cell nucleus for CHIKV-infected cell counting (B). (C) Quantification of the number of infected cells
(red) per focus (mean ± SD). The significance was calculated using a t-test and shown as * when 35, 70, 175 and 350μM suramin were compared to Mock,
as = when 70, 175 and 350μM suramin were compared to 35μM, as + when 175 and 350μMwere compared to 70μM, or as # when 350μMwas compared to
175μM. The significance is indicated as *, =, +, or # for p<0.05; **, ==, ++, or ## for p<0.01; or ***, ===, +++, or ### for p<0.001.

doi:10.1371/journal.pone.0133511.g006
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Many viruses including HIV, HSV, HCV, measles, and CHIKV [50–53] spread through

cell-cell transmission and viral glycoproteins have been shown to play a critical role regulating

cell-to-cell transmission [18]. Suramin significantly restricted the spreading of CHIKV from

cell to cell in a dose-dependent manner. This provides further evidence that the interaction

between suramin and CHIKV glycoproteins may affect cell-to-cell transmission.

In summary, this study demonstrated that suramin inhibits CHIKV infection by interfering

with viral entry (binding/fusion) as well as extracellular and cell-to-cell transmission. Molecu-

lar docking indicates suramin would embed within the cavity of the E1/E2 heterodimer, which

provides a possible interpretation for suramin targeting ingress and egress of CHIKV infection.

This makes suramin a new candidate drug to deal with CHIKV infection.

Supporting Information

S1 Fig. Toxicity of suramin. (A) Cytotoxicity assay. BHK-21, U2OS and MRC-5 cells were

treated with suramin at indicated concentrations. After incubation for 24 h and 48h, cell viabil-

ity was determined using WST-1 assay and was normalized with cell control. ���, p< 0.001; ��,

p< 0.01; �, p< 0.05. (B) Toxicity assay on zebrafish. Kaplan-Meier plot of survival in larvae

fish exposed to suramin (700uM to 0.7uM) for 7 days. n� 70 fish per treatment.
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