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Abstract
The agronomic use of charcoal from biomass pyrolysis (biochar) represents an interesting
option for increasing soil fertility and sequestering atmospheric CO2. However, before moving
toward large-scale biochar applications, additional research must evaluate all possible
land–atmosphere feedbacks. Despite the increasing number of studies investigating the effect
of biochar on soil physical, chemical and biological properties, only a few have been done on
surface albedo variations on agricultural lands. The present work had the aim of characterizing
the annual albedo cycle for a durum wheat crop in Central Italy, by means of a
spectroradiometer measurement campaign. Plots treated with biochar, at a rate of
30–60 t ha−1, showed a surface albedo decrease of up to 80% (after the application) with
respect to the control in bare soil conditions, while this difference tended to decrease during
the crop growing season, because of the prevailing effect of canopy development on the
radiometer response. After the post-harvesting tillage, the soil treated with biochar again
showed a lower surface albedo value (<20–26% than the control), while the measurements
taken in the second year after application suggested a clear decrease of biochar influence on
soil color. The modeling of the surface energy balance highlighted changes in the partitioning
of heat fluxes and in particular a substantial increase of ground heat fluxes on an annual basis.

Keywords: mitigation strategies, carbon sequestration, land-surface feedbacks,
geo-engineering

1. Introduction

The application of charred biomass residues (biochar) to
soils is considered one of the most promising strategies to
sustainably sequester atmospheric CO2 in agricultural soils
(Lehmann 2007, Woodward et al 2009, Sohi et al 2010).
Mitigation potentials of biochar were estimated to be as high
as 12% of current anthropogenic CO2 emissions (Woolf et al
2010), something that might be possibly achieved under a
win–win framework leading to a substantial enhancement

of soil fertility (Sohi et al 2010), increased crop yields and
renewable energy production (Lee et al 2010).

Most of the recent research on biochar focused on its
effect on plant productivity (Lehmann et al 2003, Yamato
et al 2006, Chan et al 2007, Rondon et al 2007, Van Zwieten
et al 2008, Baronti et al 2010, Vaccari et al 2011). Biochar
application consistently increased crop yields, but no unifying
mechanism to explain such an effect was found. The majority
of published papers agree that further studies are needed
before recommending large-scale biochar application as soil
amendment: the long-term stability of biochar in soil has
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not been fully demonstrated, the safety for human health not
fully assessed and the impact on the radiative balance not yet
evaluated (Meyer et al 2011).

It is well known that anthropogenic changes in land
surface properties have an impact on climate (Forster et al
2007, Bonan 2008, Jackson et al 2008). In particular, there is
evidence that the variation in surface albedo, which inevitably
follows changes in land use, is one of the most important
bio-geophysical drivers on climate (Myhre and Myhre 2003,
Kvalevåg et al 2010) altering the radiative balance and
consequently the partitioning of sensible, latent and heat soil
fluxes (DeFries et al 2002) with important impact on regional
climate (Georgescu et al 2009, 2011).

Indeed, the application of a black material to the soil
may have consequences on the amount of solar radiation
reflected back to space (albedo) and, as a consequence, on
soil sensible heat flux, surface temperature and evaporation.
A consistent decrease in albedo has already been reported
for charcoal production sites (Oguntunde et al 2008) and in
post-fire savannah (Scholes and Walker 1993), proclaiming
the need to better investigate the surface energy balance before
recommending large-scale application, as for other climate
change adaptation and mitigation strategies (Betts 2007).

Conceptually the net flux of radiation at Earth’s surface
is the sum of latent energy (LE), sensible energy (H) and soil
heat flux (G) or can be expressed by the equation (Peixoto and
Oort 1992):

Fsfc = F↓SW(1− α)− εσT4
sfc + F↓LW (1)

where Fsfc is the net radiation flux at the surface, F↓SW
is the incoming shortwave radiation, α is the albedo of
the surface, εσT4

sfc is the infrared radiation emitted by the
surface expressed with Stefan–Boltzmann law as a function of
surface temperature (T), and F↓LW is the incoming long-wave
radiation.

The expectation is that large-scale biochar application
will decrease surface albedo of bare agricultural soils,
producing a substantial modification of the surface energy
balance; this effect is expected to diminish with increasing
plant cover. The experiment described in this letter aimed
at the characterization of seasonal changes in albedo on a
durum wheat crop, (i) comparing different biochar application
rates versus a control, thus exploring the interplay between
changes in soil surface reflectance, crop growth and canopy
development in the control of surface albedo in realistic
field conditions and (ii) analyzing the influence of biochar
application on surface energy fluxes over the whole annual
cycle.

2. Materials and methods

The experiment was conducted during the 2009/10 growing
season in an experimental field near Pistoia (Tuscany, lat.
43◦56′N, long. 10◦54′E, 65 m asl) on a winter durum wheat
crop (Triticum durum cv. Neolatino). Hourly meteorological
parameters (rainfall, air temperatures, solar radiation) were
collected at an automatic weather station, installed close to
the experimental field. Total rainfall from August 2009 to

July 2010 was 1230 mm and the mean air temperature was
15 ◦C for the same period. The soil is a silty-loam (USDA,
soil classification).

A randomized block experiment with four replicates was
done in plots of 25 m2 each with three treatments: control
(C), biochar at a rate of 30 t ha−1 (B30) and biochar at a
rate of 60 t ha−1 (B60). Biochar was applied manually, before
crop sowing and incorporated in the top 10 cm with a rotary
hoeing tillage. Wheat was sown on 14th December 2009
with a density of 450 seeds m−2. A nitrogen–phosphate and
phosphorous fertilizer was distributed at sowing (22 kg ha−1

of N and 50 kg ha−1 of P2O5) and a second fertilization was
done in April, when ammonium nitrate was added at a rate of
100 kg N ha−1. Wheat was harvested on 6th July 2010.

The biochar applied was a commercial horticultural
charcoal provided by Lakeland Coppice Products, UK (carbon
content of 84%), obtained from coppiced woodlands (beech,
hazel, oak and birch) at a pyrolysis temperature of 500 ◦C;
details on the biochar are reported in Vaccari et al (2011). It
was crushed into particles of less than 1 cm before application
to the soil in order to increase the area–volume ratio and
enhance its expected effects on soil properties.

In parallel, the study made use of a previous experimental
layout established in 2008/09 with the same treatments and
doses (Cw; B30W; B60w) (Vaccari et al 2011) that was
re-seeded in 2009/10 without biochar application. Reflectance
measurements were thus also taken in plots in the second year
after biochar application.

Three destructive biomass samples were taken during the
wheat growing season at Zadoks scale (Zadoks et al 1974)
of: 32 (stem elongation or jointing, second node detectable),
50 (heading, first spikelet of head visible) and 91 (ripening,
kernel hard difficult to separate by fingernail). Total above
ground biomass (AGB) was oven-dried and weighed.

The surface albedo (α) was measured with an ASD
FieldSpec Pro spectroradiometer (ASD Inc, Boulder, CO,
www.asdi.com/), having an overall range of 350–2500 nm
and using three internal sensors with high signal-to-noise
ratio (SNR) to measure radiation: UV/VNIR (350–1050 nm),
SWIR1 (900–1850 nm) and SWIR2 (1700–2500 nm). The
spectral resolution of the spectrometer is 3 nm at 700 nm
and 10 nm at 1400/2100 nm. Integration time is set
automatically for each of the three arrays to optimize
incoming radiation levels in all three regions. Mainly due
to the absorption of atmospheric water vapor within the
measured spectral range, there are some intervals (1350–1460,
1790–1960 and 2250–2500 nm) where the SNR is very
small. Those wavelengths ranges were excluded for albedo
calculation. Assuming a Lambertian behavior of the surface,
the reflectance measurement is directly convertible into the
surface albedo value (Disney et al 2004).

Eight field measuring campaigns were conducted from
December 2009 to July 2010 on all experimental plots
to characterize different stages of the crop cycle: biochar
application, wheat emergence to harvest, post-harvesting
and tillage. The first measurement was taken after biochar
application (5th December 2009) and the last after soil
tillage operations that followed crop harvest (21st July 2010).
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The frequency of measurements was higher in the period
January–July to encompass the different stages of crop
development. All measurements, replicated three times for
each plot, were taken around noon on days with a clear sky.
On the same date the albedo measurements were also taken
in plots treated in 2008/2009 season. The measurements were
taken at the Nadir at about 100 cm above the soil or top of
the canopy; considering that the field of view (FOV) is 25◦,
each measurement covered a surface 0.15 m2. After each soil
measurement, data of sky reflectance in opposition to the sun
(with a solar Zenith angle of 45◦) were acquired to assess
the clearness of the atmosphere, and eventually reject the soil
measurement in case of a sky reflectance value higher than
0.25.

Analysis of variance was used to compare the treat-
ment effects on surface albedo values, using the Re-
peated Measures ANOVA model (R version 2.12.1). The
Student–Newman–Keuls test at significance level 0.05 was
used as means multiple comparison test.

Soil temperature at a depth of 5 cm was measured
hourly in C and B60 plots by mean of thermocouples (J-type)
connected to a CR10 datalogger (Campbell Scientific, Inc.)
during the first stages of the crop cycle (in March–April).

In order to evaluate the surface energy balance, the
simultaneous heat and water (SHAW) model was applied to
simulate heat and water transfer within a one-dimensional
profile that includes 11 soil layers and incorporates the effects
of plant cover (Flerchinger 2000). Measured soil texture, bulk
density and organic carbon content (Vaccari et al 2011) were
implemented in the model, while hydraulic characteristics
were estimated by the SHAW pedotransfer function.

AGB and hourly meteorological data (rainfall, air
temperature, solar radiation) were used to force the model
along the year to simulate sensible (H), latent (LE) and ground
(G) heat fluxes over the crop cycle and to represent the surface
radiation balance. Moreover, the model was initialized with α
values of control and treated plots at sowing. After the plow
(July), due to the mixing effect of the soil matrix with residues
and/or biochar, the model was re-calibrated with the albedo
measured after the tillage.

3. Results

Average values of surface albedo measurements for control,
B60 and B30 plots over the growing season are shown in
figure 1(a) for plots treated in 2009/2010 and figure 1(b) for
those treated in 2008/2009. Data on above ground biomass
are shown in figure 1(c). The comparison of measured and
modeled soil temperatures is shown in figure 2. SHAW model
outputs of simulated diurnal cycle of soil temperatures, H and
LE for the control treatment as well as the difference with B60
treatment are shown in figure 3.

The application of biochar on a winter durum wheat
crop in central Italy caused a significant decrease of surface
albedo before crop emergence and during the first crop
growth stages in the first year (figure 1(a)). Shortly after the
application, plots amended with biochar (B30 and B60) had
a low reflectance at all wavelengths while surface albedo was

about 1/3 that of the control (average α of B30 and B60 =
0.062± 0.001; control = 0.208± 0.004). The difference still
persisted at the time of the second measurement (11th March),
when plant cover was very limited and its contribution to the
overall surface reflectance was negligible (AGB lower than
1 t ha−1). Albedo effects decreased with crop growth and
tended to converge in response to crop growth and increasing
crop cover (figure 1(a)), although significant differences were
still observed at the beginning of April when above ground
biomass was about 1.5 t ha−1 (figure 1(c)). Differences in
surface albedo between the control, B30 and B60 plots were,
instead, not detectable later in the season until crop harvest
(figure 1(a)). When the plants had been removed from the soil
(post-harvest measurement), biochar effects on albedo were
again detectable and a significant difference persisted after the
soil tillage on 21st July .

In the second year after application biochar effects
on surface albedo were less appreciable and no significant
differences were observed at the April measurement, while
biochar effect on albedo totally disappeared after the second
tillage (figure 1(b)).

The observed enhancement of above ground biomass
in the biochar-amended plots (Vaccari et al 2011) did not
translate into a surface albedo difference in the final stages of
the crop cycle. The lack of biomass sampling during the first
stages of crop development did not enable it to be clarified
whether or not the presence of biochar caused a faster growth
during those stages nor to clarify the role of the observed
increased soil temperatures on early crop development.

The SHAW model adequately simulated variations in soil
temperature that were caused by changes in surface albedo
(figures 2(a) and (b)). The normalized RMSE (RMSE/Oavg×

100) between observed–simulated hourly data was 8.85% for
the control and 8.55% for the treated plots (B30 and B60)
and quite invariant with respect to the daily temperature cycle
(figure 2(c)). These results provided confidence in the model’s
ability to appropriately simulate key aspects of the soil’s
evolution after biochar application, allowing us to further
evaluate impacts on the surface energy balance. Simulations
showed that soil surface (5 cm depth) temperatures of treated
plots were higher than the control from January to March,
with higher differences observed in the central part of the
day in January–February (figure 3(b)) in coincidence with
anomaly on sensible (figure 3(d)) and latent (figure 3(f))
heat fluxes; from April there was a drop in modeled soil
temperatures in treated plots, compared to control plots,
suggesting a preeminent role of higher above ground biomass
in biochar-amended plots (Vaccari et al 2011) in enhancing
evapotranspiration, causing soil cooling (figure 3(b)). At this
stage of crop development, the influence of vegetation on soil
temperatures prevails over the warming effect associated to a
lower albedo. After the harvest, when the soil was bare, soil
temperatures were, again, substantially higher in the treated
plots.

The model also allowed the overall effects of the reflected
light reduction caused by biochar application on surface
energy balance to be quantified at different temporal scales.
Sensible (H), latent (LE) and soil (G) heat fluxes were all
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Figure 1. Surface albedo measurements: (a) α values of plots treated in 2009/2010; (b) α values of plots treated in 2008/2009 (re-seed
experiment). Error bars represent the 95% confidence error. Measurements with ∗∗ indicate that surface albedo values of control (C)
treatment are significantly different from both B30 and B60 (P < 0.05) and with ∗ only from B60. (c) Above ground biomass (t ha−1) in
B60, B30 and control plots in 2010.

Figure 2. Measured and modeled soil temperature data in the period 15 March–15 May for control (a) and B60 (b) plots, and (c) values of
RMSE (%) over the diurnal cycle for B60 (black line) and control (gray line) plots.

higher at both seasonal and annual scales (figures 3(d) and (f)
and table 1) but with differences in energy partitioning and
anomalies in the diurnal cycle. In particular a substantial

variation in LE diurnal cycle was observed in the post-harvest
period with treated plots tending to reach the evaporation
peak earlier than control plots (figures 3(f)). Net ground heat
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Figure 3. Simulated diurnal cycle of soil surface temperature (T) in ◦C, sensible (H) and latent heat (LE) fluxes in W m−2 for control plots
(C) ((a), (c), (e)) and differences between B60 and control plots (B60-C) ((b), (d), (f)) during year 2010.
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Table 1. Summary of surface energy balance components (in W m−2) for control and B60 treatments calculated with SHAW model in the
periods: January–March (JFM), April–June (AMJ), from seeding to harvest (crop) and on the full season (year). By convention, negative
values represent outgoing fluxes while positive values incoming fluxes.

JFM AMJ Crop Year

Net solar radiation (105 W m−2) C 1.31 3.68 5.27 8.70
B60 1.44 3.74 5.49 9.31
1 (%) 9.6 1.4 4.1 6.9

Long-wave radiation (105 W m−2) C −0.78 −0.99 −1.89 −3.71
B60 −0.81 −1.01 −1.96 −3.89
1 (%) 4.6 1.1 3.4 4.7

Sensible heat flux (H) (104 W m−2) C −0.87 −2.66 −4.06 −5.33
B60 −1.03 −2.67 −4.41 −7.19
1 (%) 17.1 0.6 8.7 34.9

Latent heat flux (LE) (105 W m−2) C −0.42 −2.22 −2.71 −4.23
B60 −0.49 −2.25 −2.81 −4.42
1 (%) 16 1.5 3.8 4.4

Net ground heat flux (G) (104 W m−2) C −0.25 −2.04 −2.58 −2.26
B60 −0.33 −2.10 −2.73 −2.82
1 (%) 28.3 3.1 5.9 24.6

flux of treated plots was 28% higher than the control from
germination to tillering (January–March) and 25% yearly,
while a lower increase (6%) was observed during the whole
crop cycle due to a dominant role of the vegetation shading
from stem elongation to harvest (April–June) (table 1).

4. Discussion and conclusions

The use of biochar as a strategy to mitigate anthropogenic
CO2 emission involves large amounts of a dark material,
with extremely low reflectivity being added to the soil.
According to Woolf et al (2010), realistic global scenarios of
C-sequestration, which promise to remove 0.49 G t C yr−1

from the atmosphere and sustainably store it in agricultural
soils, require the conversion of 5.1 G t of feedstock into
biochar every year. It is implicit that C-sequestration may
either be achieved by distributing such large amounts of
biochar over a large surface area using low application rates
per unit of land or by concentrating large quantities of biochar
on limited surfaces, thus intensifying unit applications. The
study by Vaccari et al (2011) showed that even very high
rates of biochar application (30–60 t ha−1) had no negative
effects on growth but rather stimulated wheat grain production
by more than 25%. When combined with other observations
made for the same species (Baronti et al 2010) the data
confirmed that yield stimulation is proportional, in wheat, to
the rate of biochar application.

Reflectance measurements taken in this experiment
confirmed that biochar application greatly affects soil albedo.
In the specific case of a conventionally managed winter durum
wheat cultivation, albedo may be decreased by up to 40%
over the entire crop season, from sowing to harvest, but
most of this reduction obviously occurs during the winter
months (January–March) before the development of the crop
canopy strongly limits the amount of radiation reaching the
soil surface (figure 1(a)). During this period the radiation is
low and often attenuated by cloudiness in temperate regions,

but nevertheless a change in surface reflectance translates
into a substantial increase in soil temperature. This may have
positive consequences on seed germination as well as on
crop establishment and early crop growth, especially where
minimum or no-tillage of soils is adopted; this agronomic
practice is known to increase surface albedo leading to
substantial soil cooling, compared to the more conventional
plowing (Licht and Al-Kaisi 2005).

Our study clearly showed that there was no detectable
difference in surface albedo in response to the doubling
of biochar application rate from 30 to 60 t ha−1. This
suggests the existence of saturation, leveling-off above a
certain biochar application threshold. This is somewhat
unsurprising on the basis of simple and obvious space/volume
considerations, but has important practical consequences as
it suggests that the use of large unit rates of biochar over
relatively small portion of land is relatively less impacting,
in radiative terms, than the use of small unit rates on a large
surface area. Above a certain threshold, the soil warming
potential of increasing doses of biochar does not increase
further, while carbon sequestration and yield stimulation both
continue to rise.

When seen within a wider crop management perspective,
an overall assessment of the biochar effect on albedo and
soil warming requires several components to be considered.
A wheat field giving a mean yield of 5 t ha−1 yr−1 of grain
produces approximately 6 t ha−1 yr−1 of straw, if 50% of
these residues could realistically be transformed into char via
pyrolysis, the net biochar yield of an average wheat crop
would be around 250 kg ha−1 yr−1. Accordingly, biochar
application rates of 30–60 t ha−1 would require the entire
biochar yield of 120–240 ha to be applied on a single
hectare. In this sense, the 40% reduction of albedo that was
observed at field scale in this experiment, would translate, in
a realistic operational context at farm scale, into a negligible
variation of albedo. Nevertheless, considering that even a
small alteration of the H and LE partitioning might lead to
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significant changes in global mean climate (Ban-Weiss et al
2011), the consequences of biochar application on complex
land–atmosphere feedbacks need to be further addressed.

Moreover, when considered at the scale of individual
fields or plots, changes in albedo caused by biochar, can
easily be compensated by changes in crop management that
may increase surface reflectance. The cultivation of plants
and varieties having leaves with higher reflectance is, for
instance, a credible option with large global surface cooling
potentials that have been estimated to range from 0.11 to
0.21 ◦C (Ridgwell et al 2009). The existence of glaucous
wheat cultivars with much higher albedo has been known for
a long time (Barber and Netting 1968) and their introduction
can be considered realistic (Yoshiya et al 2011). The
combined use of glaucous varieties and biochar could be
advantageous: darker soils in the winter before complete crop
cover are likely to be warmer and consequently promote seed
germination, crop establishment and early growth, while the
higher crop albedo in the spring may largely compensate for
wintertime soil warming.

Analysis of the energy balance model output allowed it
to be argued that, before full crop cover, biochar application
also stimulates evaporation rates. The increase in latent heat is
driven by higher soil temperature and occurs during the winter
months when the evaporative demand of the atmosphere is low
(table 1 and figure 3). As a consequence, the direct impact
of biochar on surface properties is likely to slightly increase
water losses but, as shown elsewhere, also have an overall
positive effect on plant water availability due to increased
water retention (Laird et al 2010).

A final issue to be considered is that increases in soil
temperatures associated to larger soil heat flux may have
a direct effect on soil organic matter decomposition and
respiration (Fang and Moncrieff 2001), particularly affecting
the recalcitrant soil organic pools that are more sensitive to
temperature (Craine et al 2010). There is substantial evidence
that the CO2 efflux is higher when the soil is warmer, but such
an effect may be transient in nature as substrate availability,
i.e. the labile fraction of the soil organic matter, rather than
microbial activity actually constrains soil respiration over
longer (seasonal) time scales. Nevertheless, soil warming
effects that are associated to changes in surface albedo, must
be included in the ongoing debate on the potential ‘priming’
effects of biochar application (Zimmerman et al 2011, Luo
et al 2011) in which a unifying mechanism driving soil
respiration has still to be found. Major et al (2010), for
instance, produced a review on the mechanisms involved in
biochar priming effect, but did not explicitly consider that
biochar applications also have a soil warming potential.

Our conclusion, supported by field-scale observations,
is that the impact of biochar application on land surface
properties is not negligible and substantially modifies surface
energy balance, thus suggesting direct impacts on crop
cycle and on soil carbon mineralization. Biochar application
strategies that can be implemented to mitigate greenhouse
gas emissions should consider the entire sequence of negative
and positive effects: biochar addition can certainly warm the
soil by reducing albedo but it is also likely to sequester

substantial amounts of atmospheric carbon in a recalcitrant
organic form in the soil and have a positive effect on plant
growth and crop yields. The net effect may vary with latitude
and land use and may be more critical where the impact
on surface albedo and on soil heat fluxes is supposed to be
more significant, like in areas with lower vegetation cover.
More research is therefore needed to further explore the
potentials of the technology, as well as the risks associated
to its use. In the short term, we envisage two areas of
urgent investigation: (i) the creation of a robust dose–response
function of biochar effects on surface albedo for different
soil types and different crop/soil management regimes and
(ii) the analysis of the effect of amplified soil warming on
local-to-regional atmospheric circulation, forcing Regional
Climate Models (RCMs) with modifications in surface albedo.

Acknowledgments

The authors acknowledge the Experimental Centre for
Vivaism (Ce.Spe.Vi), the Italian Biochar Association (ICHAR
www.ichar.org), and Francesco Sabatini, Giacomo Tagliaferri
and Alessandro Zaldei for support in the field work. This
work contributes to the EuroCHAR project (FP7-ENV-2010
ID-265179) and to FIRB-CASTANEA project.

References

Ban-Weiss G A, Bala G, Cao L, Pongratz J and Caldeira K 2011
Climate forcing and response to idealized changes in surface
latent and sensible heat Environ. Res. Lett. 6 034032

Barber H N and Netting A G 1968 Chemical genetics of β-diketone
formation in wheat Phytochemistry 7 2089–93

Baronti S, Alberti G, Delle Vedove G, Di Gennaro F, Fellet G,
Genesio L, Miglietta F, Peressotti A and Vaccari F P 2010 The
biochar option to improve plant yields: first results from some
field and pot experiments in Italy Ital. J. Agron. 5 3–11

Betts R 2007 Implications of land ecosystem-atmosphere
interactions for strategies for climate change adaptation and
mitigation Tellus B 59 602–15

Bonan G B 2008 Forests and climate change: forcings, feedbacks,
and the climate benefits of forests Science 320 1444–9

Chan K Y, Van Zwieten L, Meszaros I, Downie A and
Joseph S 2007 Agronomic values of greenwaste biochar as a
soil amendment Aust. J. Soil Res. 45 629–34

Craine J M, Fierer N and McLauchlan K K 2010 Widespread
coupling between the rate and temperature sensitivity of
organic matter decay Nature Geosci. 3 854–7

DeFries R S, Bounoua L and Collatz G J 2002 Human modification
of the landscape and surface climate in the next fifty years
Glob. Change Biol. 8 438–58

Disney M, Lewis P, Thackrah G, Quaife T and Barnsley M 2004
Comparison of MODIS broadband albedo over an agricultural
site with ground measurements and values derived from Earth
observation data at a range of spatial scales Int. J. Remote Sens.
25 5297–317

Fang C and Moncrieff J B 2001 The dependence of soil CO2 efflux
on temperature Soil Biol. Biochem. 33 155–65

Flerchinger G N 2000 The Simultaneous Heat and Water (SHAW)
model: User’s Manual Tech. Rep. NWRC 2000-10 (Boise, ID:
NW Watershed Research Center, USDA Agricultural Research
Center)

Forster P et al 2007 Changes in atmospheric constituents and in
radiative forcing Climate Change 2007: The Physical Science
Basis. Contribution of Working Group I to the Fourth

7

www.ichar.org
www.ichar.org
www.ichar.org
http://dx.doi.org/10.1088/1748-9326/6/3/034032
http://dx.doi.org/10.1088/1748-9326/6/3/034032
http://dx.doi.org/10.1016/S0031-9422(00)85661-7
http://dx.doi.org/10.1016/S0031-9422(00)85661-7
http://dx.doi.org/10.1111/j.1600-0889.2007.00284.x
http://dx.doi.org/10.1111/j.1600-0889.2007.00284.x
http://dx.doi.org/10.1126/science.1155121
http://dx.doi.org/10.1126/science.1155121
http://dx.doi.org/10.1071/SR07109
http://dx.doi.org/10.1071/SR07109
http://dx.doi.org/10.1038/ngeo1009
http://dx.doi.org/10.1038/ngeo1009
http://dx.doi.org/10.1046/j.1365-2486.2002.00483.x
http://dx.doi.org/10.1046/j.1365-2486.2002.00483.x
http://dx.doi.org/10.1080/01431160410001720180
http://dx.doi.org/10.1080/01431160410001720180
http://dx.doi.org/10.1016/S0038-0717(00)00125-5
http://dx.doi.org/10.1016/S0038-0717(00)00125-5


Environ. Res. Lett. 7 (2012) 014025 L Genesio et al

Assessment Report of the Intergovernmental Panel on Climate
Change ed S Solomon, D Qin, M Manning, Z Chen,
M Marquis, K B Averyt, M Tignor and H L Miller
(Cambridge: Cambridge University Press)

Georgescu M, Lobell D B and Field C B 2009 Potential impact of
US biofuels on regional climate Geophys. Res. Lett. 36 L21806

Georgescu M, Lobell D B and Field C B 2011 Direct climate effects
of perennial bioenergy crops in the United States Proc. Natl
Acad. Sci. USA 108 4307–12

Jackson R B et al 2008 Protecting climate with forests Environ. Res.
Lett. 3 044006
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