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ABSTRACT

Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfvén waves and magneto-sonic
waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in
uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and
cannot be classified as pure Alfvén or magneto-sonic waves. However, vorticity is a quantity unequivocally related
to Alfvén waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on
a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density
profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as
surface Alfvén waves at a true discontinuity in density. Contrary to the classic Alfvén waves in a uniform plasma
of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is
replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform
density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the
radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with
phase velocities between the internal and the external Alfvén velocities can be considered as surface Alfvén waves.
On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.
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1. INTRODUCTION

Alfvén waves were predicted 70 years ago by H. Alfvén
in a short paper entitled “Existence of Electromagnetic-
Hydrodynamic Waves” (Alfvén 1942). Alfvén’s prediction was
initially met with disbelief and was accepted only years later
(Fälthammar & Dessler 2006). Alfvén waves are ubiquitous in
magnetized plasmas, in fusion plasma physics, geophysics, as-
trophysics, and solar physics (see a recent review by Gekelman
et al. 2011).

Alfvén waves are a particular class of magnetohydrodynamic
(MHD) waves. MHD waves have become a subject of intense
research in solar physics, largely because observations clearly
show that they are ubiquitous in the solar atmosphere (e.g.,
Tomczyk et al. 2007; De Pontieu et al. 2007; McIntosh et al.
2011). A pioneering theory paper on MHD waves is the paper by
Edwin & Roberts (1983) on MHD waves on an axisymmetric
magnetic cylinder of piecewise constant density and constant
straight magnetic field (see also, e.g., Wentzel 1979b; Spruit
1982). The paper by Edwin & Roberts (1983) has paved the
way for new research as observations brought to light new
information on MHD waves that was unknown in the 1980s. For
MHD waves in the solar corona Figure 4 of Edwin & Roberts
(1983) is often used as reference frame. In this figure a variety
of MHD waves are displayed. Fast and slow waves are present
but Alfvén waves are apparently absent from the diagram. The
question then arises, where are the Alfvén waves?

Compression and vorticity are key quantities for characteriz-
ing MHD waves. In a uniform plasma of infinite extent MHD
waves have non-zero compression and zero vorticity in case
of magneto-sonic waves, or zero compression and non-zero
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vorticity in case of Alfvén waves. The basic characteristics of
the classic Alfvén wave are that its motions are vortical and the
total pressure in the plasma remains constant during the passage
of the wave. For an inhomogeneous medium, however, the total
pressure, in general, couples with the dynamics of the motion,
and the assumption of neglect of pressure perturbations becomes
invalid (Hasegawa & Uberoi 1982). However, that does not
mean that the concept of Alfvén waves is obsolete. In general in
an inhomogeneous plasma, MHD waves have mixed properties
which can be traced back to the properties of the classic slow,
fast, and Alfvén waves in a homogeneous plasma of infinite
extent. The degree to which the classic properties are present in
a given MHD wave depends on the background through which
the MHD wave propagates. The phenomenon of MHD waves
with mixed properties or coupled waves can lead to damping
and was discussed by, e.g., Chen & Hasegawa (1974), Tirry &
Goossens (1996), Goossens & de Groof (2001), Goossens et al.
(2002a, 2002b, 2011), De Groof & Goossens (2002), Terradas
et al. (2008b), Cally & Goossens (2008), Pascoe et al. (2010,
2011), and Cally & Andries (2010), among many others.

An MHD wave on an axisymmetric one-dimensional cylin-
drical plasma is characterized by two wavenumbers, i.e., the
azimuthal wavenumber, m, and the axial wavenumber, kz. In
addition, modes can have different nodes in the radial direction
and this number of nodes can be used to further classify the
modes. The term fundamental radial mode used here refers to
waves that have no nodes in the radial part of the eigenfunction.
The main objective of this paper is to show that the funda-
mental radial modes of the non-axisymmetric MHD waves with
phase velocities between the internal, vA,i, and the external, vA,e,
Alfvén velocities are surface Alfvén waves. These modes were
originally called fast waves by Edwin & Roberts (1983), and
the adjective “fast” became widely used in papers that followed
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the nomenclature of Edwin & Roberts (1983). Goossens et al.
(2009) investigated the forces that drive these waves and found
that the magnetic tension force always dominates the pressure
force. In addition, Goossens et al. (2009) showed that compres-
sion is small in the particular case of thin tubes (TTs). Hence,
these waves have not the typical properties of fast magneto-sonic
waves and behave more as Alfvén waves. This lead Goossens
et al. (2009) to call these waves Alfvénic. The adjective Alfvénic
was used in order to point out that pure Alfvén waves as de-
scribed by Alfvén (1942) can only exist in a uniform plasma of
infinite extent. Goossens et al. (2011) reconsidered these waves
in their section on quasi-modes and decided to call them surface
Alfvén waves.

In the present paper, we continue the theoretical investigation
of the nature of the waves. We are concerned with vorticity since
it is a quantity that is unequivocally related to Alfvén waves.
Pure Alfvén waves in a homogeneous medium are the sole waves
that represent vorticity perturbations and any spatial distribution
of vorticity can be represented by means of Alfvén waves.
Here we shall argue clearly that, in a piecewise homogeneous
model, whether it is in the planar or cylindrical case, the
Alfvén surface waves have zero vorticity everywhere except
at the discontinuity where all vorticity is concentrated. They
are hence appropriately termed “Alfvén” surface waves and
complement the pure Alfvén waves which are bound to the
separate homogeneous regions. In view of their properties, the
fundamental radial eigenmodes in a magnetic cylinder with
m �= 0 and phase velocities in the range vA,i to vA,e can be
considered as surface Alfvén waves. As a matter of fact, Wentzel
(1979b) was more ambitious and called all MHD waves with
phase velocities between vA,i and vA,e surface Alfvén waves.
However, since the radial overtones have an oscillatory spatial
behavior in the internal plasma we prefer to keep the term surface
to the fundamental radial modes only. In addition we note that
Ionson (1978) called the surface waves Alfvénic probably to
distinguish them from the pure Alfvén waves as described by
Alfvén (1942).

The current paper is relevant to the recent discussion in
the solar physics community on the nature of the observed
ubiquitous, transverse waves (Tomczyk et al. 2007; De Pontieu
et al. 2007; Okamoto et al. 2007; McIntosh et al. 2011). The
original authors of these papers all claimed the detection of the
Alfvén waves in the solar corona. This claim was challenged
by Van Doorsselaere et al. (2008) who argued that the waves
should be interpreted as fast kink (m = 1) waves following
the nomenclature of Edwin & Roberts (1983). The results of
Goossens et al. (2009) and the present paper show that these
waves are actually surface Alfvén waves.

This paper is organized as follows. In Section 2, we briefly
review the properties of Alfvén waves and slow and fast
magneto-sonic waves in a uniform plasma of infinite extent
with a constant magnetic field. Then we try to understand how
the properties of the MHD waves known for uniform plasmas
of infinite extent are modified when the plasma is no longer
uniform and/or confined to a finite volume. First, in Section 3
this is done for the case of surface Alfvén waves in a true
discontinuity in the Alfvén velocity. Later, in Section 4 we
extend our investigation to the case of MHD waves in non-
uniform magnetic cylinders and show that the properties of
the radially fundamental non-axisymmetric transverse waves
in cylinders are remarkably similar to those of surface Alfvén
waves in a true discontinuity. Finally, Section 5 contains our
discussion and the relevant conclusions of this work. Those

readers interested in our results but who do not wish to go in
detail through the mathematical derivations will probably find
useful the summary and discussion of Section 5.

2. MHD WAVES IN A UNIFORM PLASMA
OF INFINITE EXTENT

The basic equations for the discussion of linear ideal MHD
waves superimposed on a static plasma are

ρ
∂v

∂t
= −∇p′ +

1

µ
(∇ × B

′) × B

+
1

µ
(∇ × B) × B

′,

∂ B
′

∂t
= ∇ × (v × B),

∂p′

∂t
+ v · ∇p = −γp∇ · v,

∂ρ ′

∂t
+ v · ∇ρ = −ρ∇ · v, (1)

where p, ρ, and B are the equilibrium plasma pressure, density,
and magnetic field, respectively. We take p and ρ uniform and
B straight and constant, namely B = B 1z. In addition, p′, ρ ′,
v, and B

′ are the Eulerian perturbations of the plasma pressure,
density, velocity, and magnetic field, respectively, γ is the
adiabatic index, and µ is the magnetic permittivity. Equations (1)
assume that there are no equilibrium flows. For incompressible
motions we have to replace the third equation of Equations (1)
with

∇ · v = 0, (2)

and treat the plasma pressure perturbation, p′, as an unknown
function in addition to the three unknown components of
velocity.

In what follows we shall find it convenient to use the
Lagrangian displacement, ξ , so that for a static plasma up to
linear order

v =
∂ξ

∂t
, (3)

and the Eulerian perturbation of total pressure, P ′ = p′ + p′
m,

where p′ is the perturbation of the gas pressure and p′
m =

B · B
′/µ is the perturbation of the magnetic pressure.

With the use of the Lagrangian displacement, ξ , one may
integrate the induction equation, the energy equation, and
the continuity equation at once and use these expressions to
eliminate all other variables from the momentum equation so
that it takes the form:

ρ
∂2ξ

∂t2
= F(ξ ). (4)

Here F is the force operator as derived first by Bernstein et al.
(1958; see also Frieman & Rotenberg 1960; Goedbloed 1983).

We consider a uniform plasma of infinite extent. We study
linear planar harmonic waves and put the wave variables
proportional to the factor

exp(ik · r − iωt), (5)

where k = (kx, ky, kz)
t is the wave vector, r = (x, y, z) is the

position vector, and ω is the frequency. Variables that catch the
basic physics of the waves (see, e.g., Thompson 1962; Goossens
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2003) are the component of the displacement parallel to the
equilibrium magnetic field, ξz, the compression, Y, and the
component of vorticity along the magnetic field, Z. Y and Z
are defined as

Y = k · ξ = −i∇ · ξ ,

Z = (k × ξ ) · 1z = −i (∇ × ξ )z . (6)

With the use of these variables the equations that govern the
waves are

ω2ξz − kzv
2
s Y = 0,

k2v2
Akzξz +

(

ω2 − k2
(

v2
s + v2

A

))

Y = 0,
(

ω2 − ω2
A

)

Z = 0. (7)

Here k2 = k2
x + k2

y + k2
z , v2

s = γp/ρ is the square of the

speed of sound, v2
A = B2/µρ is the square of the Alfvén

velocity, and ωA = kzvA is the Alfvén frequency. The system
of Equations (7) is decoupled into two subsystems. The first
two equations involve the variables ξz and Y but not Z. They
are the equations that define the (slow and fast) magneto-sonic
waves. These waves have compression and a component of
velocity parallel to the magnetic field, but no vorticity. The third
equation only contains Z. It defines the Alfvén waves. Alfvén
waves have vorticity but no compression and no component of
velocity parallel to the magnetic field.

2.1. Alfvén Waves

The dispersion relation of Alfvén waves is obtained from
Equations (7) with ξz = 0, Y = 0, and Z �= 0. Thus, the
dispersion relation of Alfvén waves is

ω = ωA = kzvA. (8)

An Alfvén wave exists for any wave vector k, but its frequency
only depends on the component of k parallel to the equilibrium
magnetic field. The frequency is degenerate with respect to the
components kx and ky of the wave vectors in planes normal
to the equilibrium magnetic field lines. Since frequency only
depends on kz, the group velocity, vgr, is always directed along
the equilibrium magnetic field and is equal to vA, while the
phase velocity, vph, is by definition directed along the wave
vector k, namely vph = vA cos(θ )1k , where θ is the angle that k

makes with B, and 1k and 1B are the unit vectors in the direction
of k and B, respectively. Alfvén waves are anisotropic in the
extreme. We recall that in our discussion so far no particular
choice has been made for k and the wave vector is general.

2.2. Magneto-sonic Waves

The dispersion relation for the slow and fast magneto-sonic
waves is readily obtained by imposing that the subsystem in
Equations (7) for the variables ξz and Y has a non-trivial solution.
The result is

ω2
f,sl =

k2
(

v2
s + v2

A

)

2

⎡

⎣1 ±

(

1 −
4ω2

c

k2
(

v2
s + v2

A

)

)1/2
⎤

⎦ ,

ω2
c =

v2
s

v2
s + v2

A

ω2
A (9)

where the ± sign corresponds to the fast/slow magneto-sonic
waves, respectively, and ωc is the cusp frequency. Subscripts

“f” and “sl” denote quantities related to fast and slow waves,
respectively. Let β denote the ratio of the plasma pressure to the
magnetic pressure. Then in the approximation β → 0 (vs = 0),
the slow waves disappear from the scene, i.e., ωsl = 0. Fast
waves still remain in the zero-β approximation with frequency
ωf = kvA. On the contrary, for vs → ∞ fast waves are removed
to infinite frequencies and a particular form of slow waves
remain with ωsl = ωA.

2.3. Forces and Motions

It is instructive to write the equation of motion as

ρ
∂2ξ h

∂t2
= −∇hP

′ + T h,

ρ
∂2ξz

∂t2
= −

∂p′

∂z
, (10)

where T h is (the horizontal component of) the magnetic tension
force and ∇h and ξ h = (ξx, ξy, 0)t are the gradient operator and
the displacement, respectively, in horizontal planes perpendicu-
lar to the constant vertical magnetic field. The component of the
displacement parallel to the magnetic field, ξz, is solely driven
by plasma pressure and unaffected by magnetic forces. With the
temporal and spatial dependence specified by Equation (5), and
kh = (kx, ky, 0)t Equations (10) can be written as

−ρω2ξ h = −ikhP
′ + T h

T h = −ρω2
Aξ h,

ρω2ξz = ikzp
′. (11)

The force in horizontal planes due to total pressure, Π, is

Π = −ikhP
′ = −ρ

(

ω2 − ω2
A

)

ξ h. (12)

Hence the ratio of the horizontal components of total pressure
force to the corresponding components of the magnetic tension
force is

Λ(ω2) =
ω2 − ω2

A

ω2
A

=
ω2

ω2
A

− 1. (13)

Equation (13) is general and applies to Alfvén waves with
ω2 = ω2

A, fast waves with ω2 = ω2
f and to slow waves with

ω2 = ω2
sl.

For the Alfvén waves Λ(ω2
A) = 0 so that the only restoring

force is the magnetic tension force. The displacements are
incompressible and confined to horizontal planes since ξz =
0. For the Alfvén waves the displacement ξ = ξ h and is
perpendicular to the horizontal wave vector kh so as to make
compression zero and vorticity maximal. Alfvén waves are
highly anisotropic and totally insensitive to the value of the
sound speed of the plasma.

On the contrary, magneto-sonic waves involve both the
total pressure force and the magnetic tension force. It is now
appropriate to consider the relative importance of horizontal
compression kh · ξ h and longitudinal compression kzξz, which
can be readily derived from the first line of Equation (7):

kh · ξ h

kzξz

=
ω2 − k2

zv
2
s

k2
zv

2
s

=
ω2

k2
zv

2
s

− 1. (14)

Equation (14) is again applicable to fast waves with ω2 = ω2
f

and to slow waves with ω2 = ω2
sl. For Alfvén waves with
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ω2 = ω2
A, it is largely irrelevant as both the denominator

and the numerator vanish and no compression is involved at
all. The equation tells us that the coupling of the longitudinal
compression to the perpendicular compression depends on the
sound speed. For fast waves the ratio is positive while it is
negative for slow waves. This means that compression, Y (the
sum of the denominator and numerator of (14)), is maximized
for fast waves and reduced for slow waves. If the sound speed is
small, the longitudinal dynamics decouples and is irrelevant to
the perpendicular dynamics. The slow waves vanish and there
are no longitudinal motions in the fast waves. On the contrary,
if the sound speed is large, the above ratio approaches −1,
illustrating the perfect coupling in an incompressible medium.
The fast waves are banned to infinity while for the slow modes
ω2

sl → ω2
A so that the dynamics in the perpendicular direction is

dominated by the magnetic tension force.

3. MHD WAVES ON A TRUE DISCONTINUITY

In the previous section, we have studied the properties of
Alfvén waves and magneto-sonic waves in a uniform plasma of
infinite extent. In that configuration, Alfvén waves are strikingly
different from fast waves.

Let us now see how a deviation from the uniform plasma
of infinite extent adds new complexity. First, consider a mag-
netic field that is still straight and unidirectional throughout
space and let all equilibrium variation depend only on one
cartesian coordinate x which is directed perpendicular to the
equilibrium magnetic field. Now the wave variables can be put
proportional to exp (ikyy + ikzz − iωt), but the functional de-
pendence on x must remain unspecified. The relevant equations
become

ρ
(

ω2 − ω2
A

)dξx

dx
= K2P ′,

ρ
(

ω2 − ω2
A

)

ξx =
dP ′

dx
,

ρ
(

ω2 − ω2
A

)

ξy = ikyP
′,

ρ
(

v2
s + v2

A

)(

ω2 − ω2
c

)

ξz = ikzv
2
s P

′, (15)

where

K2 = −
ω4 −

(

v2
s + v2

A

)(

ω2 − ω2
c

)(

k2
y + k2

z

)

(

v2
s + v2

A

)(

ω2 − ω2
c

) , (16)

is a function of x.
We may combine the first two equations in Equations (15) into

a second-order ordinary differential equation for P ′, namely

ρ
(

ω2 − ω2
A

) d

dx

(

1

ρ
(

ω2 − ω2
A

)

dP ′

dx

)

= K2P ′. (17)

From Equations (15) we can also compute the components of
vorticity, ∇ × ξ , in the z-direction as

(∇ × ξ ) · 1z = ikyP
′ d

dx

(

1

ρ
(

ω2 − ω2
A

)

)

. (18)

We shall use these equations in the following subsections.
Here we will first consider an equilibrium consisting of two

uniform plasmas separated by a sharp discontinuity in the Alfvén
velocity. The discontinuity coincides with the plane x = x0.

For simplicity, we take a constant magnetic field along the
z-direction. Thus, the discontinuity in the Alfvén velocity is
introduced by a discontinuity in density as

ρ(x) =

{

ρi, if, x � x0,
ρe, if, x > x0,

(19)

where both ρi and ρe are constants and ρi �= ρe. The MHD waves
of this plasma configuration have been studied before (see, e.g.,
Wentzel 1979a; Roberts 1981). The aim here is to point out the
differences between classic Alfvén waves and surface Alfvén
waves.

The basic equations (7) are valid at both sides of the interface
and K2 (whenever it is negative) in Equation (17) must be
identified with −k2

x used earlier. The only difference is, hence, in
the boundary conditions. In particular, the solutions at both sides
of the discontinuity need to be matched together by ensuring
continuity of both total pressure P ′ and normal displacement
ξx . The interaction between the two media allows for solutions
in that range where K2 > 0. In that case solutions are given by

P ′(x) = Ai,e exp (±Ki,e(x − x0)). (20)

Thus, whenever K2 > 0, the modes correspond to surface waves
decaying away from the surface and their existence crucially
involves the interaction between the two media. In contrast, the
classical slow and fast waves discussed earlier correspond to
solutions in the domain where K2 < 0.

3.1. Classic Alfvén Waves

Let us first retrieve the classic Alfvén waves by requiring
P ′ = 0 and ξz = 0 everywhere. Hence, p′ = 0 and since
∇ · ξ = 0, ρ ′ = 0. We find two different solutions under these
conditions. The first solution has frequencies ω2 = ω2

A,i and
motions satisfying

(∇ × ξ ) · 1z �= 0, for, x � x0,
(∇ × ξ ) · 1z = 0, for, x > x0.

(21)

The second solution has frequencies ω2 = ω2
A,e and motions

satisfying

(∇ × ξ ) · 1z = 0, for, x � x0,
(∇ × ξ ) · 1z �= 0, for, x > x0.

(22)

Hence, classic Alfvén waves with different Alfvén frequencies
ω2

A,i and ω2
A,e are confined to the half spaces x � x0 and x > x0,

respectively.

3.2. Surface Alfvén Waves

Let us now turn to the motions that do involve P ′ �= 0. We
have argued above that the classical slow and fast waves are
related to the domain where K2 < 0 while if K2 > 0 the
modes are surface waves relying on the interaction between
the two media. The roots of K2 as a function of frequency
are easily determined as they correspond to the fast and slow
frequencies (9) with kx = 0. Additionally, K2 changes sign
at the cusp frequency. This allows us to easily identify the
frequency ranges for the (classical) slow and fast modes and
of the surface modes. Now consider two important limiting
cases. In the incompressible limit the slow frequencies collapse
to the Alfvén frequency and the fast frequencies are banned
to infinity, hence only surface type solutions remain and in
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fact K2 ≈ (k2
z + k2

y). Similarly, in what is called the limit of

“nearly perpendicular propagation” (k2
y ≫ k2

z ) where K2 ≈ k2
y .

Wentzel (1979a) already remarked that the incompressibility
condition is a good approximation when k2

y ≫ k2
z . Furthermore,

the latter approximation is highly relevant to thin cylindrical
tubes considered further in this paper. In both cases, a solution
to the dispersion relation expressing the matching of ξx and P ′

at x = x0 is found as

ω2 =
ρiω

2
A,i + ρeω

2
A,e

ρi + ρe

≡ ω2
k. (23)

The frequency lies in between the internal and external Alfvén
frequency and, hence, by Equation (13) Λ cannot be very large
at neither side of the discontinuity. In fact, if the magnetic field
is constant, −1 < Λ < 1 so that the perpendicular dynamics is
always dominated by the tension force.

One might be tempted to classify the wave as either fast
or slow, since there is compression involved. In that case, the
ratio defined in Equation (14) must be taken into account. In
the incompressible limit we would then necessarily be dealing
with a slow mode, while in a cold plasma it would need
to be interpreted as a fast mode. However, in the limit of
nearly perpendicular propagation the perpendicular dynamics
is completely insensitive to the sound speed. The mode is
dominated by the perpendicular dynamics and the sound speed
just influences to what extent this couples to longitudinal
motions as well. The insensitivity to the sound speed and the
dominance of tension as a driving force is a strong argument to
call these modes Alfvénic.

Let us now focus on vorticity. From Equation (18) we can
evaluate the z-component of vorticity of the surface Alfvén
wave. To do so we note that ρ(ω2 − ω2

A) is a piecewise constant
in our equilibrium and can be expressed as

1

ρ
(

ω2 − ω2
A

) =
ρi + ρe

ρiρe

1

ω2
A,e − ω2

A,i

(1 − 2H (x − x0)), (24)

where H (x − x0) is the Heaviside function defined as

H (x − x0) =

{

1, if, x > x0,
0, if, x < x0.

(25)

Thus it is straightforward to write the expression for (∇×ξ )·1z as

(∇ × ξ ) · 1z = −2ikyP
′ ρi + ρe

ρiρe

1

ω2
A,e − ω2

A,i

δ(x − x0), (26)

where δ(x − x0) is the delta function defined as

δ(x − x0) =

{

1, if, x = x0,
0, if, x �= x0.

(27)

Equation (26) shows that the surface Alfvén wave is differ-
ent from the classic Alfvén wave. For the classic Alfvén wave
(∇ × ξ ) · 1z is different from zero everywhere in the appro-
priate half space x < x0 or x > x0. The surface Alfvén wave
has (∇ × ξ ) · 1z = 0 everywhere except at the discontinuity
x = x0.

When the true discontinuity in vA is replaced with a contin-
uous variation from vA,i to vA,e, then the interval [ωA,i, ωA,e] is
filled with the continuous spectrum of shear Alfvén waves. Each

magnetic surface, i.e., a surface of constant vA, now oscillates at
its local Alfvén frequency. The frequency of the surface Alfvén
wave is in the Alfvén continuous spectrum and gets damped
by resonant absorption. This happens primarily at the resonant
position, xA, where the local Alfvén frequency equals the fre-
quency of the surface wave (see, e.g., Tataronis & Grossmann
1973; Grossmann & Tataronis 1973; Ionson 1978; Hasegawa &
Uberoi 1982; Goedbloed 1983; Hollweg 1987b, 1987a; Hollweg
& Yang 1988; Ruderman & Goossens 1993, 1996; Ruderman
et al. 1995). Vorticity is no longer confined to a single surface
but is spread out over the whole region of non-uniformity as
indicated by Equation (18).

4. MHD WAVES IN A MAGNETIC CYLINDER

In the present section, we are interested in MHD waves
superimposed on a one-dimensional straight cylinder. First we
consider a piecewise constant density as in Edwin & Roberts
(1983). Later we replace the jump in density with a continuous
variation of density. The properties of kink MHD waves in
one-dimensional straight cylinders were discussed by Goossens
et al. (2009). As for the case of a true discontinuity, here
we give special attention to vorticity. We shall show that the
surface Alfvén waves in a true discontinuity and the radially
fundamental MHD waves with phase velocities between vA,i

and vA,e in a cylinder have strikingly similar properties.

4.1. General Theory

The equilibrium configuration is a straight cylinder. We use
cylindrical coordinates, namely r, ϕ, and z, for the radial, az-
imuthal, and longitudinal coordinates, respectively. The equi-
librium quantities are functions of r only. Since the background
model is independent of the spatial coordinates ϕ and z, and of
time, t, the perturbed quantities are put proportional to

exp (i(mϕ + kzz − ωt)), (28)

where m is the azimuthal wave number, kz is the longitudinal
wave number, and ω is the frequency as before. Since the
background is variable in the radial direction there is not really
a radial wave number. Alternatively, we can use the number
of nodes in the radial part of the eigenfunctions to distinguish
between radial fundamental and overtone modes. The equations
for linear MHD motions superimposed on a one-dimensional
cylindrical equilibrium model can be found in, e.g., Appert
et al. (1974), Sakurai et al. (1991), Goossens et al. (1992), and
Goossens et al. (1995). For a straight and constant magnetic field
the equations for linear displacements on a one-dimensional
cylindrical equilibrium model take the following simplified
form:

D
d(rξr )

dr
= −C2rP

′,

dP ′

dr
= ρ

(

ω2 − ω2
A

)

ξr ,

ρ
(

ω2 − ω2
A

)

ξϕ =
im

r
P ′,

ρ
(

ω2 − ω2
c

)

ξz = ikz

v2
s

v2
s + v2

A

P ′, (29)

where all quantities have the same meaning as in previous
sections. We recall that now the equilibrium quantities are
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functions of r. The coefficient functions D and C2 are

D = ρ
(

v2
s + v2

A

)(

ω2 − ω2
A

)(

ω2 − ω2
c

)

,

C2 = ω4 −
(

v2
s + v2

A

)(

ω2 − ω2
c

)

(

m2

r2
+ k2

z

)

. (30)

Since Appert et al. (1974), it is well known that the system
formed by Equations (29) has mobile regular singularities at
the positions r = rA and r = rc where ω = ωA(rA) and
ω = ωc(rc). This leads to the definition of Alfvén and slow
(or cusp) continuous parts, namely

[min ωA, max ωA], [min ωc, max ωc], (31)

with singular eigensolutions (see, e.g., Goedbloed 1983; Sakurai
et al. 1991; Goossens et al. 1995; Tirry & Goossens 1996).
For a straight field, the ϕ- and z-directions are the directions
of constant Alfvén velocity perpendicular and parallel to the
magnetic field lines, respectively. The r-direction is normal to
the surfaces of constant Alfvén velocity. Hence, for a straight
field ξϕ = ξ⊥ is the characteristic quantity for the Alfvén
waves and ξz = ξ‖ for the slow waves, where ‖ and ⊥ denote
the directions parallel and perpendicular to the equilibrium
magnetic field, respectively. ξr characterizes the fast magneto-
sonic waves.

For an equilibrium with a straight magnetic field, the Eulerian
perturbation of total pressure P ′ is the quantity that produces
waves with mixed Alfvén and magneto-sonic properties. The
coupling function, CA, is

CA =
mB

r
P ′. (32)

The coupling function CA was introduced by Sakurai et al.
(1991) and Goossens et al. (1992), and its role was discussed
by, e.g., Goossens (2008) and Goossens et al. (2011).

The two first-order differential equations in Equations (29)
can be rewritten as a second-order ordinary differential equation
for P ′ as

ρ
(

ω2 − ω2
A

)

r

d

dr

[

r

ρ
(

ω2 − ω2
A

)

dP ′

dr

]

=

[

m2

r2
− Γ(ω2)

]

P ′,

(33)
where Γ(ω2) is defined as

Γ(ω2) =

(

ω2 − k2
zv

2
s

)(

ω2 − ω2
A

)

(

v2
s + v2

A

)(

ω2 − ω2
c

) . (34)

Note that Equation (11) is applicable here also with ξ h =
ξr1r + ξϕ1ϕ and kh = −1r i(d/dr) + (m/r)1ϕ . Equations (12)
and (13) remain valid so that we have a simple expression for
Λ to decide on the relative contributions of pressure and tension
forces.

Recall that the component of vorticity parallel to the equilib-
rium magnetic field, (∇ × ξ ) · 1z, is unequivocally related to
Alfvén waves. Alfvén waves have (∇ × ξ ) · 1z �= 0 everywhere
in an infinite and uniform plasma, while surface Alfvén waves
in a true discontinuity have (∇ × ξ ) ·1z �= 0 at the discontinuity
only. Hence, for comparison with these previous cases and for
later use, it is instructive to derive an equation for this quantity:

(∇ × ξ ) · 1z = i
m

r
P ′ d

dr

(

1

ρ
(

ω2 − ω2
A

)

)

. (35)

Note that this equation is formally equivalent to Equation (18)
derived for waves on a true discontinuity if in Equation (18)
ky is replaced by m/r and the derivative in x is replaced by a
derivative in r.

4.2. Piecewise Uniform Plasma

Here we consider the case studied by Edwin & Roberts
(1983), i.e., the case of a piecewise constant density profile.
The general situation in which the density varies continuously
is considered later. We assume the following density profile,

ρ(r) =

{

ρi, if, r � R,
ρe, if, r > R,

(36)

where both ρi and ρe are constants and R denotes the radius
of the cylinder. Subscripts i and e refer to internal and external
plasmas, respectively. We focus on the case ρi � ρe. Thus, there
is a jump in density, namely ρi − ρe, at the cylinder boundary.

We rewrite Equations (33) and (35) when the density ρ and
the local Alfvén frequency ωA are both constants, namely

1

r

d

dr

(

r
dP ′

dr

)

=

[

m2

r2
− Γ(ω2)

]

P ′, (37)

ρ
(

ω2 − ω2
A

)

(∇ × ξ ) · 1z = 0. (38)

Equation (37) is Equation (5) of Edwin & Roberts (1983).
Equation (38) is Equation (3b) of Edwin & Roberts (1983) when
the dependency of Equation (28) for the perturbed variables is
used.

Note that Equation (33) and, a fortiori, Equation (37) are very
reminiscent of Equation (17) in the Cartesian geometry. In the
incompressible limit Γ → −k2

z and the analogy is clear if one
identifies m/r with ky as done earlier. But, more importantly, if
one considers “TTs,” the right-hand side coefficient is dominated
by (m/r)2 (in the domain of interest, i.e., r ≈ R), which is
analogous to the limit of “nearly perpendicular propagation”
considered in the Cartesian case. In particular, we conclude
again that Equation (37) thus becomes ignorant of and insensible
to the value of the sound speed. Furthermore, the solutions
decay away from the discontinuity surface, indicative of surface
wave behavior. Nodes are only found in the solutions at radial
distances r ≫ R, far away from the domain of interest.

4.2.1. Classic Alfvén Waves

Edwin & Roberts (1983) concentrated on obtaining solutions
to their Equation (5), our Equation (37), for a piecewise
uniform cylindrical plasma and did not consider further their
Equation (3b), our Equation (38). Let us now focus on the
solutions to Equation (38) and investigate what has happened to
the classic Alfvén waves when we move from an infinite uniform
plasma to a cylindrical plasma with a piecewise constant density.

First we consider the extreme case that ρi = ρe so that the
plasma is uniform. In that case ω2

A is a constant and we have a
solution of the system of Equations (29) for any m, namely

ω2 = ω2
A (39)

with

ξϕ �= 0, ξr �= 0, ξz = 0,

P ′ = 0,
dP ′

dr
= 0, ∇ · ξ = 0. (40)

6



The Astrophysical Journal, 753:111 (12pp), 2012 July 10 Goossens et al.

The only constraint is that the waves described by Equations (39)
and (40) have to satisfy is ∇ · ξ = 0. This can be done in many
ways. The only restoring force is the magnetic tension force
T = −ρω2

A(ξr1r + ξϕ1ϕ) = −ρω2
Aξ . Thus, in an infinite and

uniform cylindrical plasma pure Alfvén waves are independent
of the azimuthal number m.

We turn to ρi �= ρe. Again the solutions must satisfy the
constraints given in Equations (39) and (40). Since ω2 = ω2

A,i

for r � R and ω2 = ω2
A,e for r > R we have Alfvén waves that

live in the interior and in the exterior, respectively, of the flux
tube. For ω2 = ω2

A,i the components ξr and ξϕ are different from
zero for r � R and are identically zero for r > R. In addition
ξr = 0 at the boundary r = R. In the particular case m =
0, ξr = 0 everywhere. Conversely for ω2 = ω2

A,e the components
ξr and ξϕ are different from zero for r > R and are identically
zero for r � R. At the boundary r = R again ξr = 0. Note that
the frequencies are independent of the azimuthal wavenumber
m. When we replace the piecewise constant density profile by
a fully non-uniform density profile, the modes with m = 0 are
the only ones that survive as purely incompressible modes.

4.2.2. Surface Alfvén Waves

Here we investigate the solutions to Equation (37) with
m �= 0. We vary ρi − ρe and see what happens to the part
of the spectrum with phase velocities between vA,i and vA,e. We
start from the dispersion curves of solutions for ρi −ρe = 1.5ρe,
because this is analogous to Figure 4 in Edwin & Roberts (1983).
We keep ρi constant and decrease ρi − ρe from 1.5ρe to 0 and
follow the evolution of eigenmodes on the original dispersion
curve. This evolution is illustrated in Figure 1 for m = 1 modes,
i.e., kink modes.

In the top graph of Figure 1, we show the dispersion diagram
of compressible modes with the phase speed on the vertical
axis and the normalized wave number on the horizontal axis,
for different density contrasts in various colors. The associated
external Alfvén speed vA,e (dashed line) and the density contrast
are also indicated. In the solution, the internal Alfvén speed
has always been normalized to vA,i = 1. In the bottom graph
of Figure 1, we display the equivalent dispersion diagram
but for incompressible modes. We can compare the top and
bottom graphs of Figure 1 to assess the differences between
compressible and incompressible waves. We have plotted the
bottom graph on the same scale as the top graph in order to
make the differences as clear as possible. The more striking
difference is that the upper part of the bottom (incompressible)
graph is empty. The dispersion curves in the top right belong
to radial overtones of the kink modes. For radial overtones the
total pressure perturbation P ′ has an additional node in the
internal region. We note the absence of the radial overtones in
the incompressible dispersion diagram. The dispersion curves in
the bottom of both graphs in Figure 1 belong to the fundamental
radial kink mode. The fundamental radial modes survive in
the incompressible limit while radial harmonics are absent.
Radial harmonics need compression to exist. In contrast, the
fundamental radial modes do not need compression to exist.
Compression is a typical characteristic of magneto-sonic waves.
Hence the fundamental radial modes do not have the typical
properties of fast magneto-sonic modes. Instead, they behave
like surface Alfvén waves.

The behavior of the fundamental radial modes in the TT limit
(kzR ≪ 1) is the same in both compressible and incompressible
cases, i.e., their phase velocity tends to the kink velocity, vk,

Figure 1. Top: dispersion diagram ω/kz vs. kzR for compressible kink (m = 1)
modes with different density contrasts plotted with different colors. The
respective external Alfvén velocity is displayed with a horizontal dashed line,
also showing the density contrast. Bottom: same as the top graph but for
incompressible waves.

(A color version of this figure is available in the online journal.)
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Figure 2. Dispersion diagram ω/kz vs. kzR for the fundamental radial modes
with ρi/ρe = 6.25 and different values of m.

(A color version of this figure is available in the online journal.)

namely

vk =

√

ρiv
2
A,i + ρev

2
A,e

ρi + ρe

. (41)

The behavior of compressible and incompressible waves is
slightly different for large kzR, i.e., the phase velocity of the
compressible waves tends to vA,i while that of incompressible
waves remains between vA,i and the kink velocity, vk. We display
in Figure 2 the dispersion diagram of the fundamental radial
modes with different values of m and a fixed value of the density
contrast. In the TT limit, i.e., kzR ≪ 1, the results for the
different values of m overlap and their phase velocity tends
to the kink velocity, vk. The differences between the modes
with different values of m grow when we take larger values of
kzR. For kzR ≪ 1 the frequencies are a good approximation
independent of kzR and independent of m. The behavior of the
fundamental radial modes is reminiscent of Alfvén waves in
uniform plasmas of infinite extent and of surface Alfvén waves
in a true discontinuity.

In Figure 3 the evolution of the phase speed with varying
density contrast is shown for two different wave numbers,
namely kzR = 0.3 and kzR = 2.3 (indicated as vertical dashed
lines in the top graph of Figure 1). Several observations can be
made from the results of Figure 3. It is clear that the dispersion
curve for the fundamental radial kink mode is always between
the external and internal Alfvén speed. When these two values
approach each other, i.e., ρi − ρe → 0, the dispersion curve
eventually collapses to the Alfvén velocity, ω/kz = vA,i. In
that sense the fundamental radial mode is the descendant of the
Alfvén mode of the uniform case. In fact, we have calculated that
all curves that start at the kink speed (Equation (41)) collapse
to the internal Alfvén speed as the density difference ρi − ρe

goes to 0. The evolution of the radial overtones is entirely
different from that of the fundamental radial mode. As the
density contrast decreases, the radial overtones are less well
confined to the magnetic cylinder. When the density contrast
reaches a critical point, confinement is completely breached
and energy leaks away in the form of MHD radiation. Then,
radial overtones become leaky modes with complex frequencies
because of damping due to MHD radiation (see, e.g., Wilson
1981; Spruit 1982; Cally 1986; Goossens & Hollweg 1993).
When the density contrast decreases, the phase speeds of these

Figure 3. Evolution of the phase speed as a function of density contrast for
kzR = 0.3 (top) and kzR = 2.3 (bottom). The external Alfvén speed is indicated
with a dashed line, while the internal Alfvén speed is set to 1. These two graphs
are vertical cuts in the top diagram of Figure 1, along the indicated vertical long
dashed lines. In the bottom graph, n = 0 means the fundamental radial mode
and n = 1 means the first radial overtone.

radial overtones do not collapse to the Alfvén velocity. These
modes are not related to the Alfvén mode of the uniform case,
but rather to fast modes. As such, they become leaky when the
density contrast is too low. This same argument explains the
peculiar behavior of the fundamental radial mode with m = 0,
i.e., the sausage mode (not displayed in Figure 1).

4.2.3. Vorticity

Here we focus on the role of vorticity. As explained before,
vorticity is a typical characteristic of Alfvén waves. Let us now
consider the vorticity of the solutions of Equation (37).

The reader of the original paper of Edwin & Roberts (1983)
might have the impression that vorticity for the solutions of a
piecewise constant equilibrium vanishes. However, visual in-
spection of the radial variation of ξϕ shows that it is discontin-
uous at r = R with opposite values to the left and right of the
boundary (see Figure 1(b) of Goossens et al. 2009, correspond-
ing to the m = 1 mode). Actually Terradas et al. (2008a) studied
the Kelvin–Helmholtz instability triggered by the velocity shear
in ξϕ at the boundary. Thus, there is vorticity present in this
configuration. For mathematical simplicity, let us adopt the TT

8
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approximation, i.e., kzR ≪ 1, so that the dispersion relation for
modes with m �= 0 is (see details in, e.g., Goossens et al. 1992,
2009)

ω2 =
ρiω

2
A,i + ρeω

2
A,e

ρi + ρe

≡ ω2
k. (42)

Note that this is exactly the same dispersion relation as for
incompressible surface Alfvén waves at a true discontinuity
(Equation (23)). Equation (42) is independent of m.

From Equation (42) it follows that

1

ρ
(

ω2 − ω2
A

) =
ρi + ρe

ρiρe

1

ω2
A,e − ω2

A,i

[1 − 2H (r − R)]. (43)

Here H is the Heaviside step function as defined in
Equation (25). Since P ′ is continuous at r = R it follows from
Equations (35) and (43) that

(∇ × ξ ) · 1z = −2i
m

R
P ′ ρi + ρe

ρiρe

1

ω2
A,e − ω2

A,i

δ(r − R), (44)

where δ is again the Dirac delta function. Thus, the solutions
to Equation (37) for the fundamental radial mode of MHD
waves with frequencies ω ∈ [ωA,i, ωA,e] have vorticity but
it is concentrated as a delta function at the boundary. This is
exactly the same behavior obtained for surface Alfvén waves at
a true discontinuity (Section 3.2). This is a rather pathological
situation that finds its origin in the fact that the equilibrium
has been forced to be piecewise uniform. The singularities
of the continuous spectrum are all concentrated in the point
r = R. Note that this is true for all modes with m �= 0. This
result is a strong argument in favor of a classification of the
fundamental radial modes as surface Alfvén waves instead of
fast body modes.

4.3. Continuous Density Variation

In the previous subsections, we have studied the properties
of the waves for a piecewise constant density profile. Here we
replace the discontinuity in density with a continuous variation
of density in an intermediate layer of thickness l. Thus, density
is non-uniform in the interval ]R − l/2, R + l/2[. Since ωA(r) is
non-constant in the interval ]R − l/2, R + l/2[, it follows from
Equation (35) that (∇ × ξ ) · 1z �= 0 in that interval. This means
that vorticity is spread out over the interval with non-uniform
density.

At this point it is instructive to note that when we replace
the piecewise constant density of Edwin & Roberts (1983)
by a continuous variation of density all wave modes with
phase velocities between vA,i and vA,e are in the Alfvén
continuous spectrum. As a consequence, the waves with m �= 0
undergo resonant damping. The fundamental conservation law
for resonant Alfvén waves was obtained by Sakurai et al. (1991)
in ideal MHD and by Goossens et al. (1995) in dissipative MHD
for the driven problem, and by Tirry & Goossens (1996) for the
eigenvalue problem. For a straight magnetic field the conserved
quantity is the total pressure perturbation, P ′.

We denote by rA the position of the Alfvén resonant point
where ω = ωA(rA) and use a Taylor expansion of ω2 − ω2

A in
the vicinity of rA, namely

ω2 − ω2
A ≈ s∆A +O(s2) (45)

where ∆A = (d/dr)(ω2 − ω2
A) and s = r − rA. It follows

from the third equation in Equations (29) that in ideal MHD ξϕ

diverges as 1/s near the resonant point. Equation (35) implies
that the singular behavior of (∇ × ξ ) · 1z is 1/s2 and hence
stronger than that of ξϕ . Hence, vorticity is different from zero

everywhere in the non-uniform plasma when dω2
A/dr �= 0, but

it is by far largest at the resonant position r = rA.
Now we can compare the behavior of vorticity in the non-

uniform case with that in the particular case of a piecewise
constant density profile (Equation (44)). The delta function
behavior at r = R obtained for the piecewise constant profile is
a very pathological and peculiar situation. In the non-uniform
case vorticity is spread everywhere in the region of non-uniform
density.

Conversely, for a wave with its frequency in the slow
continuum, ξz and ∇·ξ are singular at the slow resonant position
rc where ω = ωc(rc). Both quantities diverge as 1/s with s
now defined as s = r − rc. For coronal conditions the Alfvén
continuum and the slow continuum do not overlap. Hence, when
we study MHD waves with frequencies in the Alfvén continuum,
we do not have to worry about the slow continuum. The situation
is different in, e.g., thin threads of prominences (see Soler et al.
2009), and photopheric flux tubes in which the frequency of the
radially fundamental modes with m �= 0 is in both the Alfvén
and slow continua.

Next we compute the eigenfrequencies and the perturba-
tions of the fundamental radial mode numerically. In order to
have non-singular eigensolutions we need to remove the sin-
gularity by including dissipative effects. For that reason we
compute eigenmodes of non-uniform equilibrium states in re-
sistive MHD. We add the term η∇2

B
′ to the right-hand side

of the linearized induction equation (the second equation of
Equations (1)), where η is the coefficient of magnetic diffusion
or resistivity. For simplicity we take η as a constant. We define
the magnetic Reynolds number as Rm = vA,iR/η.

Our numerical procedure uses the PDE2D code (Sewell 2005)
based on finite elements to solve the eigenvalue problem defined
by Equations (1) in our equilibrium. The numerical integration
of Equations (1) is performed from the cylinder axis, r = 0,
to the finite edge of the numerical domain, r = rmax, which
is located far enough to obtain a good convergence of the
solution and to avoid numerical errors. This means that we take
rmax ≫ R. We use a non-uniform grid with a large density of
grid points within the non-uniform interval ]R − l/2, R + l/2[.
The non-uniform grid also allows us to correctly describe the
small spatial scales of the eigenfunctions within the non-uniform
region due to the Alfvén resonance. The PDE2D code uses
a collocation method and the generalized matrix eigenvalue
problem is solved using the shifted inverse power method. The
output of the program is the closest complex eigenvalue to an
initial provided guess and the corresponding perturbations.

First we use the components of the displacement, obtained
numerically, to compute (∇ × ξ ) · 1z in the non-uniform region
for l/R = 0.2 (see Figure 4 (top)). The remaining parameters
are given in the caption. Since (∇ ×ξ ) ·1z is a complex quantity,
we plot its absolute value. We use dimensionless units so that
the maximum of |(∇ × ξ ) · 1z| has been set to unity. Vorticity
is present in the whole non-uniform region and is maximal at
the Alfvén resonance position, rA ≈ R. We overplot in Figure 4
(top) the ideal |(∇ × ξ ) ·1z| computed from Equation (35) using
the obtained P ′ from the numerical code (see the dashed line).
From either curve we conclude that non-uniformity spreads out
vorticity but the resonant behavior is so strongly present that
the values of (∇ × ξ ) · 1z close to the ideal singularity totally
overpower the values away from that position.
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Figure 4. Top: absolute value of the z-component of vorticity (in dimensionless
units) in the non-uniform layer for the fundamental radial m = 1 mode with
kzR = 0.1, ρi/ρe = 2, and l/R = 0.2. The solid line is the resistive result
with Rm = 107. The dashed line shows the ideal spread of vorticity due to
non-uniformity computed from Equation (35) using the numerically obtained
P ′. Bottom: same as the top panel for the resistive result but with different
values of l/R.

(A color version of this figure is available in the online journal.)

Equation (35) gives us the ideal behavior of vorticity and
doesn’t include the effect of diffusion. Diffusion removes the
singular 1/s2 behavior of (∇ × ξ ) · 1z found in ideal MHD and
limit (∇ × ξ ) · 1z to finite values. The remnant of the ideal 1/s2

behavior is, however, still clearly present. In fact, the effect of
diffusion is important in a dissipative layer of width δA around
the resonance position given by (see, e.g., Sakurai et al. 1991)

δA =

(

ω

|∆A|
η

)1/3

. (46)

For the particular case of Figure 4 (top), the dissipative layer
extends approximately in the interval 0.95 � r/R � 1.05.
The resistive result of Figure 4 (top) corresponds to Rm = 107,
while the actual Reynolds number in the corona is believed to be
around Rm = 1012. Using the actual value of Rm is unpractical
from the computational point of view as it requires taking
an enormous number of grid points in the numerical domain.
We therefore use a smaller value of Rm, and, consequently,
a smaller number of grid points, but the qualitative effect of
magnetic diffusion remains correctly described. Thus, the width
of the dissipative layer around the resonance position would be
extremely thin if the actual Reynolds number would be used.

We have made sure that the Reynolds numbers used in the
computations are in the so-called plateau where the damping
rate by resonant absorption is independent of Rm and so the
wave behavior is not dominated by diffusion (see, e.g., Poedts
& Kerner 1991; Van Doorsselaere et al. 2004).

Now we vary the thickness of the non-uniform region, l.
Figure 4 (bottom) displays vorticity in the non-uniform layer
for different values of l/R. For comparison purposes we have
set max |(∇ × ξ ) · 1z| = 1 in all cases. As before, vorticity is
larger near the resonance position, but vorticity spreads along
the whole region of non-uniform density. In a fully non-uniform
equilibrium, vorticity would spread out over the whole domain.

5. DISCUSSION

In this paper, we have studied the different properties of
linear Alfvén waves and magneto-sonic waves in uniform and
non-uniform plasmas. First, in a uniform plasma of infinite
extent, we have reiterated that Alfvén waves are driven solely
by the magnetic tension force and that they are the only
waves that propagate vorticity. The displacements are vortical
and incompressible. On the contrary, magneto-sonic waves are
driven by both the total pressure force and the magnetic tension
force. The displacements are compressible and have no vorticity.

Then we moved to non-uniform plasmas and have investi-
gated how MHD waves are modified by non-uniformity. For the
case of a true discontinuity in the Alfvén velocity, we find that
the incompressible surface Alfvén waves have vorticity equal
to zero everywhere except at the discontinuity, where all vortic-
ity is concentrated. The behavior of the surface Alfvén waves
is clearly different from that of the classic Alfvén waves in a
uniform plasma of infinite extent, which have vorticity different
from zero everywhere.

Subsequently, we have considered the case of MHD waves su-
perimposed on a one-dimensional non-uniform straight cylinder
with constant magnetic field. For the particular case of a piece-
wise constant density profile as studied by Edwin & Roberts
(1983), we find that the fundamental radial modes of the non-
axisymmetric (m �= 0) waves with phase velocity between vA,i

and vA,e have properties remarkably similar to those of surface
Alfvén waves in a true discontinuity. In this pathological sit-
uation, vorticity is present as a delta function at the cylinder
boundary. When the discontinuity in density is replaced with
a continuous variation of density, vorticity is spread out over
the whole interval with non-uniform density. The fundamen-
tal radial modes of the non-axisymmetric waves do not need
compression to exist unlike the radial overtones.

With these insights we may now also interpret the physics
behind the computational results presented in Van Doorsselaere
& Poedts (2007). In that article, the evolution of the m = 1
kink mode frequency was followed while the thickness of
the inhomogeneous layer around the flux tube was increased
(l/R ր). It was found that the kink mode frequency joined the
Alfvén continuum when l/R passed a critical threshold. Indeed,
understanding these waves as surface Alfvén waves, now lets us
conclude that the frequencies return to the Alfvén continuum as
the surface “goes away.” No surface, no surface mode. See also
Sedlacek (1971) for a similar interpretation.

We would like to stress that the importance of the labels
Alfvén or fast is not in the names themselves but in the
properties that are intrinsically associated with these names. Due
to plasma non-uniformity MHD waves have mixed properties
and cannot be classified as pure Alfvén or pure magneto-sonic
waves. However, there are basic characteristics that remain
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strongly related to the wave type. Our results show that in one-
dimensional magnetic cylinders the fundamental radial modes
of the waves with m �= 0 and phase velocities between vA,i and
vA,e have not the typical properties expected for fast magneto-
sonic waves. Instead, their properties resemble very much those
of surface Alfvén waves in a true discontinuity. For this reason,
we call these waves surface Alfvén waves as was already done
by Wentzel (1979b).

Here, we go back to the discussion on the nature of the
ubiquitous, transverse waves as observed in the solar corona
(Tomczyk et al. 2007; De Pontieu et al. 2007; McIntosh
et al. 2011). In view of the results of the paper by Goossens
et al. (2009) and the present paper, the controversy about the
interpretation of the observed waves is lifted. The fundamental
radial modes of kink (m = 1) waves with phase velocity
between the internal and external Alfvén velocities can be
considered as surface Alfvén waves (or Alfvénic waves in the
nomenclature of Goossens et al. 2009). The two interpretations
refer to the same physical phenomenon of a wave dominated
by tension forces. The controversy was also partly due to the
claim by Van Doorsselaere et al. (2008) that Alfvén waves have
to be torsional, i.e., axisymmetric with azimuthal wavenumber
m = 0. Axisymmetric MHD waves do not displace the axis of
the magnetic cylinder and the cylinder as a whole. The view that
Alfvén waves need to be axisymmetric is too narrow. Anyway,
in a non-uniform plasma there is a continuous spectrum of
Alfvén waves with frequencies independent of the azimuthal
wavenumber, m.

Note that the observations of Tomczyk et al. (2007) are not
the first observations of Alfvénic waves, but that they are the first
to observe the ubiquity of these waves. Surface Alfvén waves
as described in the present paper have been observed on earlier
accounts although the authors at that time did not realize that
they had indeed observed Alfvénic waves. Goossens et al. (2009)
pointed out that accepting resonant absorption as damping
mechanism of the transverse MHD waves observed with the
Transition-Region And Coronal Explorer (TRACE) implied that
these waves are surface Alfvén waves or, in the nomenclature of
Goossens et al. (2009), Alfvénic waves. The fundamental radial
modes of kink waves with phase velocity between the internal
and external Alfvén velocities are surface Alfvén waves. Hence
the TRACE observations of transverse MHD waves starting in
1999 with Schrijver et al. (1999), Aschwanden et al. (1999), and
Nakariakov et al. (1999) were observations of surface Alfvén
waves.

We finally note that although the observed waves can be
interpreted as a type of Alfvén waves it is crucial to consider
an adequate description of the coronal loop structures in which
these waves propagate. Hence, the use of expressions for Alfvén
waves in uniform plasmas of infinite extent may be inadequate
for the study of waves propagating in the solar corona. A
description in terms of surface Alfvén kink (m = 1) waves
in cylinders may offer a more detailed model for the seismology
and calculation of the energy budget of the observed waves.
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