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SURFACE AND INTERFACE MAGNETISM IN NANOSTRUCTURES
AND THIN FILMS

Natalie A. Frey

ABSTRACT

Nanostructured systems composed of two or more technologically important materials

are useful for device applications and intriguing for the new fundamental physics they may

display. Magnetism at the nanoscale is dominated by size and surface effects which com-

bined with other media lead to new spin dynamics and interfacial coupling phenomena.

These new properties may prove to be useful for optimizing sensors and devices, increasing

storage density for magnetic media, as well as for biomedical applications such as drug de-

livery, MRI contrast enhancement, and hyperthermia treatment for cancer. In this project

we have examined the surface and interface magnetism of composite nanoparticles and mul-

tilayer thin films by using conventional DC magnetization and AC susceptibility as well as

transverse susceptibility, a method for directly probing the magnetic anisotropy of mate-

rials. Au and Fe3O4 synthesized together into three different nanoparticle configurations

and ranging in size for 60 nm down to 9nm are used to study how the size, shape, and inter-

faces affect the most fundamental properties of magnetism in the Au-Fe3O4 system. The

findings have revealed ways in which the magnetic properties can be enhanced by tuning

these parameters. We have shown that by changing the configurations of the Au and Fe3O4

particles, exotic behavior can be observed such as a large increase in anisotropy field (HK

ranging from 435 Oe to 1650 Oe) and the presence of exchange bias. Multilayer thin films

have been studied as well which combine the important classes of ferromagnetic and fer-

roelectric materials. In one case, barium hexaferrite/barium strontium titanate thin films,

the anisotropic behavior of the ferromagnet is shown to change due to the introduction of

xii



the secondary material. In the other example, CrO2/Cr2O3 bilayers, exchange coupling

is observed as Cr2O3 is an antiferromagnet as well as a ferroelectric. This coupling is

manifest as a uniaxial anisotropy rather than the unidirectional anisotropy associated with

exchange biased bilayers. Not only will such multifunctional structures will be useful for

technological applications, but the materials properties and configurations can be chosen

and tuned to further enhance the desired functional properties.
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CHAPTER 1

INTRODUCTION

Nanostructured systems containing two or more technologically important materials,

referred to as “multifunctional” materials, are becoming increasingly popular as the trend

towards device and sensor miniaturization continues. Spatial constraints are prompting

scientists and engineers to think creatively about bringing multifunctionality to new elec-

tronic components as well as to exploit the properties that occur as a consequence of the

interfaces that are formed by the direct contact of different materials.

In magnetic materials, shrinking one or more dimensions to the nanoscale has profound

implications. For nanoparticles with diameters too small to form magnetic domains, ther-

mal fluctuations can lead to destabilization of the magnetic state. This has forced the

hard drive industry to look at ways of increasing the magnetic anisotropy of small particles

so that storage densities can continue to increase without compromising the stability of

the media. The most straightforward method of increasing the magnetic anisotropy is to

use materials with exceedingly high magnetocrystalline anisotropy such as the L10 phase

of FePt. While progress in making monodisperse, small particles with uniform magnetic

properties has been slow, people are turning to other methods of increasing anisotropy such

as using exchange coupled nanostructures or capitalizing on shape and surface anisotropy.

While superparamagnetism has become a hinderance in the hard drive industry, biomed-

ical engineers have embraced the notion of high-response, remanence-free particles for exter-

nal manipulation after injection into the human body. Applications for such nanoparticles

include targeted drug delivery, MRI contrast enhancement and localized heating for killing

cancerous cells. For these applications, the size of the particle must coincide with the abil-

ity of certain cells to allow passage through the cell membrane. Since this size is dependent
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upon the part of the body targeted, the ability to tune particle size is crucial. For some of

these applications, notably hyperthermia, tuning the magnetic properties such as blocking

temperature and frequency as well as coercivity in the ferromagnetic state becomes im-

portant as well. Providing better functionality through the use of a metal coating allows

for a larger variety of molecules to be delivered to specific sites and can also minimize

inter-particle interactions.

In magnetic nanoparticles, the ability to tune the anisotropy to meet the needs of vastly

different applications is a challenge. In this dissertation, it is demonstrated that the same

two materials, namely Au and Fe3O4, can be synthesized in different configurations to

achieve a broad range of magnetic characteristics. Au-Fe3O4 in the core-shell configura-

tion is extremely useful for biomedical applications because the Fe3O4 component can be

manipulated by external magnetic fields and the Au surface can be used for the attachment

of a vast array of biological molecules. Here, we show how the size of the particles can be

manipulated to meet the requirements for biocompatibility while simultaneously optimiz-

ing the properties for certain biomedical applications. This can be done by making sure

the competition between the anisotropy energy of the particle and the thermal energy nec-

essary to demagnetize the particle strike a precarious balance which allows one to use the

frequency of the magnetic field to switch between the magnetic states. We show how this

maximizes the functionality of the particle for several applications including drug delivery

and hyperthermia.

Furthermore, we demonstrate how simply changing the arrangement of the Au and the

Fe3O4 can drastically alter the functionality of the particle and give rise to novel mag-

netic behavior. When the Fe3O4 is grown on the surface of an Au particle, the result is

a nanostructure made of two particles sharing one interface (“dumbbell” particle). The

composite particle then has greater versatility as the Fe3O4 can still be manipulated exter-

nally, but now both surfaces are available for functionalization. When the Fe3O4 is allowed

to grow on multiple facets of the Au particles via slightly different synthesis conditions, a

different type of composite particle is formed (“flower” particle). This Fe3O4 cluster-type

2



geometry results in surprising magnetic properties including exchange bias, training effect,

and anomalous relaxation behavior. Our studies point to complex and competing interac-

tions between the Fe3O4 particles sharing the same Au particle. The significant increase

in anisotropy achievable in these particles indicates that a cluster-type geometry of easily

synthesized nanoparticles could be a viable path to beating the superparamagnetic limit

in magnetic recording.

In magnetic thin film systems, as in nanoparticles, the magnetic properties are greatly

influenced by surface and interface effects. The differences in magnetism between thin films

and bulk materials are consequences of film thickness, substrate material and interfaces

with other layers if the system is a bilayer or multilayer. In each of these cases, the

anisotropy of the film is affected by interfacial strain as well as exchange coupling to the

other materials present. Using exchange coupling to pin magnetic layers or to increase the

coercivity has had a large impact on device applications from magnetic read and write heads

to spin valves and sensors. Combining the effects of exchange coupling with magnetoelectric

or multiferroic materials has only recently begun to be explored [9] and will likely play a

role as people continue to maximize functionality in nanostructures.

The interfaces formed between magnetic thin films have been explored for many years,

although surprisingly magnetism in the epitaxial interface between CrO2 and its native

oxide Cr2O3 has not earned much attention. These two materials are interesting technolog-

ically due to CrO2 being a spin-polarized ferromagnet and Cr2O3 being a magnetoelectric

antiferromagnet. In this dissertation we present evidence for interfacial coupling between

the two materials, which is manifest in an enhanced anisotropy measured using transverse

susceptibility. The anomalous anisotropy observed in this system is likely due to contribu-

tions from exchange coupling between the ferromagnetic and antiferromagnetic phases as

well as strain present from both CrO2 interfaces.

We also examine how the magnetic properties of polycrystalline barium hexaferrite, a

magnetic material possessing very high magnetocrystalline anisotropy, change when grown

as a multilayer with barium strontium titanate, a ferroelectric. We demonstrate how

3



the functional dependence of the coercivity with respect to temperature is altered by the

presence of the barium strontium titanate, which could be useful for tuning the anisotropy

of barium hexaferrite in multilayer thin films.

In all of the systems described above, it is clear that a solid understanding of the

magnetic anisotropy from all contributions must be reached before materials can achieve

their full potential. This means measuring the effective anisotropy of the system and

figuring out how the surfaces and interfaces of nanoscale materials may affect the result.

Transverse susceptibility has been shown over the years to be an excellent method of

measuring the anisotropy in systems from thin films to nanoparticles [79, 12, 66, 67]. It

is a direct measure of the anisotropy field in a sample and can be used to extract the

effective anisotropy constant. While thus far minimal work has been done using transverse

susceptibility to measure the exchange coupling in multilayer thin films [80], one of the most

important outcomes of this dissertation is to show that it is quite a valuable technique for

understanding the complex magnetic behavior exhibited in multifunctional materials.

1.1 Literature Review

1.1.1 Magnetic Nanoparticles for Biomedical Applications

Pankhurst et al. [62] and Berry et al. [7] provided recent topical reviews of applications

of magnetic nanoparticles in biomedicine though both works stopped short of invoking

the special need for fine-tuning the size and magnetic properties of nanoparticles. While

functionalization of Fe3O4 was discussed, the use of Au as a coating was not covered

in detail. Since then, there have appeared several articles outlining the synthesis and

characterization of Au-Fe3O4 nanoparticles for biomedical applications including but not

limited to Mandal et al. [49], Lyon et al. [46], Gangopadhyay et al. [20], and Lu et al. [44].

These studies focus mainly on the synthesis and DC properties but fail to directly examine

how the Au-coating reduced inter-particle interactions. In chapter 5 we provide direct

evidence of the decrease in inter-particle interactions when Au is used as a coating.
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One of these studies [20] proposed Au as a catalyst for laser-induced hyperthermia.

Hyperthemia using just Fe3O4 or γ-Fe2O3 nanoparticles has received attention in several

publications [5, 20, 61, 17]. These publications address the need to tap into both relaxation

processes (Néel and Brownian), but only the recently published Eggeman et al. [17] suggests

tuning the blocking frequency to utilize hysteretic losses in DC superparamagnetic particles.

While we are unable to measure the AC hysteresis loops of our Au-Fe3O4 particles, we

showed that these particles, while superparamagnetic in DC fields, display a transverse

susceptibility signal consistent with ferromagnetic particles. This would imply that in AC

fields of high enough frequency, hysteretic losses can contribute to particle heating in our

samples.

1.1.2 Au-Fe3O4 Composite Particles

The synthesis of “dumbbell”-shaped Au-Fe3O4 particles was reported by our collab-

orators at Brown University [93] for the purpose of using the Au and Fe3O4 surfaces

simultaneously for biomedical applications. To our knowledge this is the only such in-

stance of suggesting a composite particle with more than one surface for drug delivery.

This same paper also referenced the synthesis of novel “flower”-shaped Au-Fe3O4 parti-

cles as the result of slight changes in solvent pH. In this dissertation we perform a wide

array of magnetic measurements on these particles to compare and contrast how the ge-

ometrical configuration and interfaces affect the magnetic properties. These differences

result in fascinating magnetic properties associated with the flower particles, which can

be attributed to increased intra-particle interaction and magnetic frustration. Though the

Au at the center of these clusters may be difficult to functionalize for some biomedical

applications, the anisotropy associated with these particles and the ability to tune the size

of each component could make them attractive for hyperthermia.

The increased anisotropy of the flower particles could also be viewed in light of finding

ways to overcome the superparamagnetic limit in magnetic recording. The discussion of

novel-shaped particles and their surfaces for this purpose is fairly limited, though Albrecht
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et al. [3, 48] have made some recent advances in this regards by capping polystyrene

nanoparticles with Co/Pt multilayers so that the magnetic nanocaps have novel shape and

interface anisotropy. Other lithographically patterned exchange-biased nanostructures are

described in Nogués et al.’s topical review of exchange bias in nanostructures [60]. While

such patterned media by lithography is getting attention for magnetic recording, chemical

synthesis of novel anisotropic particles should not be ruled out because of its ease and

cost-effectiveness.

From a fundamental physics point of view, surface anisotropy in nanoparticles has been

explored in several publications, most notably Kodama et al.’s work on NiFe2O4 [38]. Since

then, the issues of exchange bias from surface disorder has been explored for Fe3O4 [92, 22]

and γ-Fe2O3 as well as modeled by Kachkachi and Dimian [37] and Bødker et al. [8].

However, exchange bias behavior in cluster-type nanoparticles with competing interactions

contributing to the effective anisotropy including spin frustration and multiple interfaces

is a topic that has not yet been addressed in the magnetism community.

1.1.3 CrO2 Epitaxial Thin Films and Bilayer Cr2O3 Thin Films

Exchange bias in thin films has been observed in several systems dating back over

50 years to Meiklejohn and Bean [53], although there is still no comprehensive theory

that can explain all of the aspects associated with it. The phenomenon of a uniaxial

exchange anisotropy without a unidirectional anisotropy between an antiferromagnet and

a ferromagnet has been reported in recent years by Leighton et al. [42, 41], and the spin-flop

explanation for it was proposed by Shulthess and Butler [72]. The CrO2/Cr2O3 system

itself has been studied only minimally in thin film form for the purpose of measuring

the oxide layer as a tunnel barrier [14] and in nanoparticle form for exchange bias effects

[95]. The closest comparable work to the CrO2/Cr2O3 system is the [Co/Pt]5/Cr2O3

bilayer system published by Borisov et al. [9], in which the magnetoelectric properties of

Cr2O3 were used to switch the sign of the exchange bias of the multilayers. Exchange

coupling between CrO2 and Cr2O3 in thin film form has not been reported, and our use
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of transverse susceptibility to measure this system is a contribution to the understanding

of uniaxial exchange anisotropy in ferromagnetic/antiferromagnetic bilayers and the first

such measurement of a ferromagnetic/magnetoelectric bilayer.

1.1.4 Barium Hexaferrite/Barium Strontium Titanate Multilayer Thin Films

Finally, most of the work that has been done on the BaM/BSTO system has been

reported since the completion of the author’s master’s thesis. This has come from work done

by Dr. Ranko Heindl, who received his Ph.D. as a result of his work on epitaxial BaM/BSTO

bilayers [29]. He was able to demonstrate the dual tunability of the permittivity and

permeability of this system for radio frequency applications. The growth optimization and

magnetic characterization of polycrystalline BaM/BSTO multilayer films was an important

advancement towards the high-quality films that have been grown since this work was

originally performed and published.

1.2 Dissertation Outline

• Chapter two gives a brief overview of magnetism in materials which serves as a

foundation for the magnetic properties discussed throughout the dissertation. Be-

sides addressing the main types of magnetism found in materials we discuss the

phenomenon of superparamagnetism as well as the exchange coupling that can exist

at the interface of ferromagnetic and antiferromagnetic materials.

• Chapters three and four describe the measurement techniques used in this work.

Chapter three discusses the traditional measurement techniques used in the mag-

netism community. Chapter four discusses the method of transverse susceptibility,

a lesser-known technique which is a direct measurement of the anisotropy field of a

material. Special attention is paid to this method as it is an integral measurement

used for the dissertation.

7



• Chapters five and six contain measurement results for Au-Fe3O4 nanoparticles in

different configurations. Chapter five is dedicated specifically to core-shell Au-Fe3O4

nanoparticles for biomedical applications and includes work done in conjunction with

the USF College of Medicine in fulfillment of the requirements of the National Sci-

ence Foundation Integrated Graduate Education Research and Traineeship (IGERT)

Fellowship. Chapter six explores two other geometrical configurations of the Au-

Fe3O4 system, the “dumbbell” and “flower” configuration which are interesting for

fundamental physics and a variety of technological applications from biomedicine to

magnetic storage.

• Chapter seven focuses on the magnetic anisotropy of CrO2/Cr2O3 thin films, a mul-

tifunctional system composed of a ferromagnet and an antiferromagnet which is also

a magnetoelectric material. This chapter discusses in detail the properties of CrO2

single layer thin films as well.

• Chapter eight is a summary of the author’s work for her master’s thesis which is

the growth and characterization of barium hexaferrite/barium strontium titanate

multilayer thin films.

• Chapter nine concludes the dissertation and proposes new directions for the future

of this research.
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CHAPTER 2

A REVIEW OF MAGNETISM IN MATERIALS

2.1 Nomenclature

Every material which is subject to a magnetic field, H, acquires a magnetic moment.

The magnetic moment of an atom has three sources: electron spin, electron orbital momen-

tum about the nucleus, and the change in the orbital momentum induced by an applied

magnetic field. The dipole moment per unit volume is defined as the magnetization, M.

In most materials, M is proportional to the applied field H, such that

M = χH (2.1)

where χ is the magnetic susceptibility. The susceptibility indicates how responsive a ma-

terial is to an applied magnetic field.

The magnetic induction is usually what is presented in Maxwell’s equations and is

related to M and H by the following

B = µ0(H + γM) (2.2)

where µ0 is permeability of free space. Here γ is a a constant that depends upon which

system of units is being used. In SI units, γ = 1, in Gaussian and cgs units, γ = 4π. This

dissertation will use cgs units for which µ0 = 1. B is the same as the density of magnetic

flux inside the material. If the relationship between M and H is linear, then B can also

be written as

B = µH (2.3)
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where

µ = µ0(1 + γχ) = µ0µr (2.4)

is known as the magnetic permeability.

For materials that have a linear relationship between M and H, their magnetic behavior

can be classified in terms of χ and µr. However, some materials do not have a linear

relationship between M and H, and in fact M may not even be a single-valued function of

H but may instead depend on the history of the applied field. This point will be discussed

much more extensively in later sections.

2.2 Diamagnetism

All materials exhibit diamagnetism. It is a very weak effect, and if this is the only mag-

netic response they display, they are referred to as diamagnets. In diamagnetic materials,

χ < 0 and µr < 1. This indicates that the magnetic flux inside of a diamagnet is less than

the flux outside, and the magnetization of a diamagnet decreases in magnitude in response

to the applied field.

Diamagnetism arises from the change in orbital motion of electrons in a material in

response to an applied field. While orbital motion of electrons can only be correctly de-

scribed using quantum mechanics, diamagnetism is often derived using a semi-classical

approach which yields the same result. If we consider an electron moving in a circular

orbit, it feels a centripetal force due to the Coulomb attraction to the nucleus. We can

explain diamagnetism as occurring from the change in velocity of the electron that arises

once the Lorentz force from the magnetic field, (e/c)v×B, is added to the the centripetal

force already acting on the electron. This force decreases the velocity, which in turn de-

creases the current caused by the orbiting charge, and the result is a decreased magnetic

moment. It is the decrease in magnetic moment that is observed as the diamagnetic effect.

This explanation is semi-classical in that it assumes a circular orbit using the results of
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quantum mechanics, which explain how electrons are able to effectively move about the

nucleus. [1]

2.3 Paramagnetism

While diamagnetism is a result of electron orbital motion, paramagnetism is the result of

electron spins interacting with an applied magnetic field. Paramagnetism is characterized

by a positive susceptibility (χ > 0) and a magnetic permeability (µr) greater than 1.

It corresponds to the magnetic behavior found in materials in which localized magnetic

moments are present but in which no net macroscopic magnetization exists in zero applied

field. This is because the magnetic moments are only weakly coupled to each other, so

thermal energy causes random alignment of the moments. When a magnetic field is applied,

the moments start to align, but only a small fraction is deflected into the field direction for

practical field strengths. A schematic of the magnetic spins in a paramagnetic material is

shown in figure 2.1.

Figure 2.1. The spins in a paramagnet in the absence of a magnetic field. Figure adapted
from reference [30].

2.4 Magnetic Ordering

Magnetic ordering comes about when spins of the atoms in a material are allowed to

interact with one another via exchange interactions. These interactions occur between the
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spins of the ions at the lattice sites and are caused by the overlap of the electronic wave

functions.

If we consider a simple model with two electrons which have spatial coordinates r1 and

r2, then the wave function for the system can be written as a product of the single electron

states. If the first electron is in state ψa(r1) and the second electron state is in state ψb(r2),

then the joint wave function is ψa(r1)ψb(r2). This product state does not obey exchange

symmetry since interchanging the two electrons yields ψa(r2)ψb(r1) which is not a multiple

of the original wave function. The only states allowed are symmetrized or antisymmetrized

product states.

For electrons the overall wave function must be antisymmetric so the spin part of the

wave function must either be an antisymmetric singlet state χS (S = 0) or a symmetric

triplet state χT (S = 1). For the wave function in the singlet case

ΨS =
1√
2
[ψa(r1)ψb(r2) + ψa(r2)ψb(r1)]χS (2.5)

and in the triplet case

ΨT =
1√
2
[ψa(r1)ψb(r2) − ψa(r2)ψb(r1)]χT (2.6)

The energies of the two possible states are

ES =

∫

Ψ∗

SHΨSdr1dr2 (2.7)

and

ET =

∫

Ψ∗

THΨTdr1dr2 (2.8)

The energy difference between the states can then be expressed as

ES − ET = 2

∫

ψ∗

a(r1)ψ
∗

b (r2)Hψa(r2)ψb(r1)dr1dr2 (2.9)
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The Hamiltonian of two interacting spins is usually expressed as

S1 · S2 (2.10)

where S1 and S2 are the spin operators. For the singlet state S1 · S2 = −3/4 while for the

triplet state S1 · S2 = 1/4. The Hamiltonian can be written as an ’effective Hamiltonian’

H =
1

4
(ES + 3ET ) − (ES − ET )S1 · S2 (2.11)

The first term is a constant, but the second term appears in equation 2.9. The integral

part of equation 2.9 is the exchange integral and can be defined as

J =
ES − ET

2
=

∫

ψ∗

a(r1)ψ
∗

b (r2)Hψa(r2)ψb(r1)dr1dr2 (2.12)

So the spin-dependent term in the effective Hamiltonian can be written as

Hspin = −2JS1 · S2 (2.13)

If J > 0, ES > ET , and the triplet state S = 1 is favored. If J < 0, ES < ET , and the

singlet state S = 0 is favored.

Generalizing the exchange interaction between two electrons to a many-bodied system

is quite a complex problem. We can nevertheless describe a simplified situation in which

neighboring atoms experience the exchange interaction as

H = −
∑

ij

JijSi · Sj (2.14)

This is the Heisenberg model of neighboring electrons where J is the exchange constant

between the ith and jth spins. The factor of 2 is not necessary, because the summation

includes each pair of spins twice.
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A positive exchange interaction causes spins to align parallel to each other, leading to

ferromagnetism. A negative exchange interaction causes spins to align antiparallel to each

other and leads to antiferromagnetism. These exchange interactions are what cause spon-

taneous magnetic moments in materials which in turn result in the complicated nonlinear

and multi-valued relationships between M and H.

2.4.1 Ferromagnetism

When the exchange interaction between two neighboring spins is positive, they align

in the same direction regardless of whether there is an external field or not, and this

gives rise to a spontaneous magnetization (figure 2.2). This type of long-range magnetic

ordering is known as ferromagnetism. However, most macroscopic ferromagnetic samples

are not magnetized (possessing a net magnetization) unless an external magnetic field is

applied. This is because it is more energetically favorable for the coupled spins to break into

magnetic domains, or small regions where the spins are aligned. Each domain can have

a magnetic moment which is oriented in a different direction from that of its neighbor.

While the exchange energy favors the alignment of neighboring spins, the magnetostatic

energy is highest (and therefore unfavorable) when a macroscopic sample has all of its spins

aligned. Thus, the lowest energy state of a ferromagnet is one made up of domains whose

magnetization vectors are pointing in different directions and the domains themselves are

made of strongly coupled spins aligned in the same direction.

Applying an external magnetic field to a ferromagnet causes the domains to orient in

the same direction and a net magnetization to arise. This response is nonlinear and is

one of the main characteristics of ferromagnets. The magnetization rapidly increases with

applied field until the ferromagnet is saturated, i.e. the domains are all aligned in the

direction of the magnetic field. This maximum magnetization in response to an applied

field is referred to as the saturation magnetization (MS). When the field is decreased

back to zero, the magnetization as a function of field does not follow the same path as

it did with increasing field. In fact, when the field goes all the way back to zero, there
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Figure 2.2. Magnetic ordering in a ferromagnet. Figure adapted from reference [30].

remains a net magnetic moment called the remanent magnetization, MR. In order for the

material to return back to zero net magnetic moment, i.e. the moments of the domains

to be randomized, a magnetic field needs to be applied in the opposite direction. The

magnetic field needed to accomplish this is called the coercive field, HC , or coercivity. The

coercivity of a material is a very important property whose value is heavily dependent on

the crystal structure and growth conditions of the sample. These factors will be discussed

further in section 2.5.

If the field is decreased even further, the domains will reorient in the opposite direction

and align at the negative saturation magnetization. There is also a negative remanent

magnetization and coercive field when bringing the applied field back to zero and upon

increasing it again in the positive direction. One full cycle of this magnetization versus field

(from zero to positive saturation to negative saturation and back to positive saturation) is

called an M-H curve or a hysteresis loop. It is presented schematically labeled with MS ,

MR and HC in figure 2.3.

Ferromagnets undergo a phase transition at a critical temperature called the Curie

temperature, TC . This temperature is different for every material and depends upon the

strength of the exchange interaction between spins. When the thermal energy is high

enough to overcome the exchange energy, the spins are no longer coupled to each other

over a long range, and the material effectively becomes paramagnetic.
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Figure 2.3. Diagram of a magnetization versus field (M-H) curve of a ferromagnetic mate-
rial. The characteristics to note are saturation magnetization (MS), remanent magnetiza-
tion (MR) and coercivity (HC). Figure adapted from reference [28].

2.4.2 Antiferromagnetism

In antiferromagnetic materials, the exchange interaction is negative and aligns the

spins antiparallel to each other. Antiferromagnets can be thought of as containing two

interpenetrating and identical sublattices of magnetic ions. Although one set of magnetic

ions is spontaneously magnetized below some critical temperature (in this case called the

Néel temperature) the second set is spontaneously magnetized by the same amount in the

opposite direction (figure 2.4). As a result, antiferromagnets have no net magnetization,

and their response to external fields is similar to that of paramagnetic materials - the

magnetization is linear in the applied field and the susceptibility is small and positive.

2.4.3 Ferrimagnetism and Ferrites

Ferrimagnets are a special class of antiferromagnets in that the exchange coupling

between adjacent magnetic ions leads to antiparallel alignment but they have a net spon-

taneous magnetic moment similar to ferromagnets. This net moment occurs because the
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Figure 2.4. Magnetic ordering in an antiferromagnet. Figure adapted from reference [30].

Figure 2.5. Magnetic ordering in a ferrimagnet. Figure adapted from reference [30].

magnetization of one sublattice is greater than that of the oppositely oriented sublattice

(figure 2.5).

The most technologically important class of ferrimagnets are ferrites, which are mixed

metal oxides containing the compound Fe2O3. Two classes of ferrites, cubic (spinel) ferrites

and hexagonal ferrites, are the subject of much of the research presented in this dissertation.

Cubic ferrites have the general formula MO·Fe2O3, and hexagonal ferrites have the general

formula MO·6(Fe2O3). M can be a divalent ion such as Mn, Ni, Zn, Co, Mg in the case

of cubic ferrites; in hexagonal ferrites M is usually Ba or Sr. Chapters 5 and 6 focus on

magnetite, Fe3O4 (or FeO·Fe2O3) and chapter 8 discusses BaFe12O19 (or BaO·6(Fe2O3)).
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Ferrites are electrically insulating and find applications in situations where the elec-

trical conductivity present in most ferromagnetic materials would be detrimental. They

are widely used in high frequency applications, because an AC field does not produce

undesirable eddy currents in an insulating material.

2.5 Magnetic Anisotropy

Magnetic anisotropy refers to the dependence of the magnetic properties on the di-

rection in which they are measured. The magnitude and type of anisotropy affect many

properties of the material including coercivity and blocking temperature in nanoparticles.

As a result, studying the anisotropy and determining what factors contribute to increased

or decreased anisotropy leads to creating better materials for a particular application. Mag-

netic anisotropy is a topic that will be discussed frequently throughout this dissertation

and this section describes a few of the sources of anisotropy encountered in the subsequent

chapters.

2.5.1 Magnetocrystalline Anisotropy

Magnetocrystalline anisotropy is the tendency of the magnetization in a material to

align itself along a preferred cystallographic direction. The preferred directions are called

the “easy” axes since it is easiest to magnetize and demagnetize a sample to saturation if the

external field is applied along a preferred direction. When examining hysteresis loops with

the field applied along easy and hard axes, a couple of differences can be seen. When the

field is applied in the easy direction, the rise of the magnetization to saturation is more rapid

and MS is reached at a much lower field. This indicates that a smaller field was required

to align the spins along the field direction. Also, when the sample is magnetized along an

easy axis, it retains more of its magnetization when the field is removed: MR is higher.

The squareness ratio of a curve, defined as S = MR/MS , is a measure of how effective a

material is at staying magnetized in the absence of a field. For materials magnetized in

their easy direction, S is maximized. Along the hard axis of magnetization, it takes a much
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larger field to reach MS . When the field is reversed the magnetization does not go back

to the remanent magnetization that it would along the easy axis. For many materials,

the magnetization is completely unstable along the hard axis and returns to zero once

the field is removed. The squareness, S, is minimized for loops taken along the the hard

axis, because MR has been minimized. The saturation magnetization remains the same

independent of field direction, even though the field required to reach it is different.

The anisotropy energy is the energy required to rotate a spin system of a domain away

from the easy direction. This is actually just the energy required to overcome the spin-orbit

coupling, because reorienting the spin also requires reorientation of the electron orbit. The

orbit is strongly coupled to the lattice, which is where most of the resistance to rotation

originates. Therefore the strength of the spin-orbit coupling in a material determines the

magnetocrystalline anisotropy.

For cubic structures, the magnetocrystalline anisotropy is expressed as a series ex-

pansion of the direction cosines αi of the saturation magnetization relative to the crystal

axes[1]:

E = K1(α
2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1) +K2(α

2
1α

2
2α

2
3) + ... (2.15)

where K1, K2, etc. are the anisotropy constants. This type of magnetocrystalline anisotropy

is called cubic anisotropy.

For hexagonal structures, the anisotropy is said to be uniaxial because the there is just

one easy axis of magnetization, and so the anisotropy is defined only by the angle of the

applied field with the easy axis. The expression for uniaxial anisotropy is [1]

E = K1 sin2 θ +K2 sin4 θ + ... (2.16)

It is important to remember that the anisotropy constants are temperature dependent

and decrease with increasing temperature due to the thermal energy contribution.
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2.5.2 Shape Anisotropy

If a sample is polycrystalline, then it will show no net crystalline anisotropy because

there will be crystallites pointed in all directions. However only if the sample is exactly

spherical will the same field magnetize it to the same extent in every direction. If the sample

is not spherical, then it will be easier to magnetize it along a long axis. This is known

as shape anisotropy. The origin of shape anisotropy is the demagnetizing field. When a

sample is magnetized it will produce magnetic charges or poles at the surface. This surface

charge distribution is itself another source of a magnetic field, called the demagnetizing

field and it acts in opposition to the magnetization that produces it. Demagnetizing fields

are complicated to calculate and are solely a function of the shape of the sample. The

demagnetizing field and thus shape anisotropy constant increases as the aspect ratio of the

sample or particle increases.

2.5.3 Surface Anisotropy

The last type of anisotropy to be discussed is surface anisotropy. A spin on the surface of

a sample or particle has a nearest neighbor on one side of it, but not the other. Therefore the

exchange energy at the surface cannot be the same as in the bulk. In macroscopic samples,

the role of the surface spins is negligible compared to the bulk behavior. However, as the

surface-area-to-volume ratio increases for nanoparticles, a larger percentage of the spins

reside on the surface, contributing a larger amount to the overall magnetic response. The

result is a larger coercivity as a larger field is needed to reverse the surface spins, which in

a nanoparticle point radially outwards instead of aligning with the interior spins [8].

While surface spins have missing nearest neighbors, spins at the interface of two ma-

terials also have environments that are different from the bulk. This interface anisotropy

becomes more important as thin film nanostructures and nanocomposites become more

prevalent in device applications. The interface between a ferromagnet and an antiferro-

magnet leads to exchange coupling, which is discussed in a later section.
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2.6 Magnetic Nanoparticles and Superparamagnetism

When the size of a magnetic particle is small enough that the formation of domains is not

favorable, the particle is said to be single domain. This usually occurs on the nanometer

scale, and the realization of magnetic nanoparticles has profound consequences for all

sorts of technological applications from drug delivery to magnetic recording. In general,

magnetic nanoparticles show superior magnetic properties, such as an enhanced saturation

magnetization and remanent magnetization. When the particle is in the ferromagnetic

state, the coercivity is much larger as well.

When a particle’s size is on the single domain scale, a phenomenon known as super-

paramagnetism is possible. This occurs when the thermal energy is enough to demagnetize

the particle in the absence of an applied field. For an array of particles, it means that

the net moment associated with each particle easily aligns with an applied field but is free

to rotate once the field is removed. This situation is analogous to a paramagnet, only

instead of each individual spin aligning with the field and then randomizing after the field

is removed, there are particles composed of roughly 105 spins that can align with the field.

This results in a much higher susceptibility and better magnetic response than a traditional

paramagnet, but there is no coercivity or remanent magnetization.

Magnetic nanoparticles can exhibit superparamagnetism only when the temperature is

high enough to cause demagnetization by overcoming the anisotropy energy in the absence

of a field. When the temperature is lowered and the thermal energy is not enough to

demagnetize the particles, they again behave as single domain particles with magnetic hys-

teresis. This critical temperature is called the blocking temperature (TB), and it depends

on the particle’s intrinsic properties and size.

The conditions given above for superparamagnetism all assume that the particles de-

magnetize due to thermal energy simultaneously with the removal of a field, and on the

timescale of most DC measurements this appears to be true. However, there is a finite

timescale for the particles to demagnetize, and when the magnetic properties are probed
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with an AC field, the blocking temperature can increase. Thus measurement frequency is

also a factor when describing the blocking behavior of a superparamagnetic system.

Superparamagnetic particles can be very useful for many applications. Because they

do not maintain a permanent moment, they don’t agglomerate, so they are useful for

suspending in magnetic fluids (or ferrofluids) that are used for biomedical imaging and

targeted drug delivery. Their lack of coercivity means they have no magnetic losses, which

makes them ideal for AC applications like transformers. However, their lack of coercivity

and stability makes it impossible to use superparamagnetic nanoparticles for magnetic

storage. In fact, ”beating the superparamagnetic limit” has become a priority for hard

drive companies who want greater areal density while still maintaining magnetic stability.

2.7 Exchange Coupling in Nanostructures

When materials with ferromagnetic-antiferromagnetic interfaces are cooled through the

Néel temperature of the antiferromagnet, an exchange anisotropy is induced in the ferro-

magnet. This type of anisotropy was discovered in 1956 by Meiklejohn and Bean while

studying Co particles embedded in a CoO matrix [53]. Exchange anisotropy is due to the

coupling of the interface spins and can be observed in antiferromagnetic/ferromagnetic thin

films, core-shell nanoparticles, and antiferromagnetic/ferromagnetic composites of particles

in a matrix.

After cooling an exchange-coupled sample from above TN (but below the TC of the

ferromagnet), the hysteresis loop of the antiferromagnet/ferromagnet system can be shifted

along the field axis generally in the direction opposite (‘negative’) to the cooling field. This

results in the absolute value of the coercive field being different for the increasing and

decreasing fields. This phenomenon is known as exchange bias, HE . The hysteresis loops

will also have an increased coercivity HC which, along with HE , disappears at or near TN ,

confirming that it is the antiferromagnet that is responsible for this behavior. Figure 2.6

is a diagram summarizing exchange-biased materials and the modified hysteresis loop due

to exchange anisotropy.
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Figure 2.6. Exchange bias systems and associated phenomena.

The shift in hysteresis loop can be qualitatively explained by the antiferromagnetic

interface spins inducing a unidirectional anisotropy in the ferromagnet. When a field is

applied above TN , the ferromagnetic spins line up with the field, while the antiferromag-

netic spins remain randomized (figure 2.7(i)). When cooling through TN in the presence

of a field due to the interaction at the interface, the antiferromagnetic spins next to the

ferromagnetic spins align ferromagnetically. The other spin planes in the antiferromag-

net remain aligned antiferromagnetically so the antiferromagnet still has no net moment

(figure 2.7(ii)). When the field is reversed, the ferromagnetic spins begin to rotate. For

sufficiently large antiferromagnetic anisotropy, the antiferromagnetic spins do not rotate

(figure 2.7(iii)). The antiferromagnetic spins at the interface exert a torque on the ferro-

magnetic spins to keep them in their original position. Therefore, the ferromagnetic spins

have one stable configuration, i.e. the anisotropy is unidirectional. The field needed to

completely reverse the ferromagnetic layer will be larger, because a larger field is needed

to overcome the torque. However, once the field is rotated back to its original direction,

the ferromagnetic spins will start to rotate at a smaller field due to the influence of the

antiferromagnetic spins which now exert a torque in the same direction as the field (figure
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2.7(v)). The material in effect acts as if there were an internal biasing field, hence the term

“exchange bias”.

Figure 2.7. Schematic diagram of the spin configuration of an antiferromagnet/ferromagnet
bilayer at different stages (i)-(v) of an exchange biased hysteresis loop. Figure adapted from
reference [59].

There are some exchange-coupled systems for which an increase in coercivity is observed

after field-cooling, but there is no shift in hysteresis loop. In such a situation, the antifer-

romagnetic anisotropy is too low to create a unidirectional anisotropy in the ferromagnet.

After saturation of the ferromagnetic spins when the field is reversed, the antiferromagnetic

spins can be dragged by the spins in the ferromagnet. It is energetically favorable that

the spins in both the ferromagnet and the antiferromagnet rotate together. The result of

dragging the antiferromagnet spins in both directions results in a uniaxial anisotropy and

an increase in coercivity, HC .
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Exchange coupled thin films are used in numerous technological applications such as

spin-valve sensors, magnetic tunnel junction read heads for hard disk drives, and magnetic

random access memory [48]. The enhanced coercivity and anisotropy that are observed

in these types of systems have led to exchange-coupled nanoparticles and lithographically

patterned structures being proposed to beat the superparamagnetic limit in magnetic me-

dia.
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CHAPTER 3

MEASUREMENT TECHNIQUES

All of the measurement techniques described in this chapter were performed using

a commercial Physical Properties Measurement System (PPMS) from Quantum Design.

The PPMS consists of a liquid helium dewar with a 7 Tesla longitudinal superconducting

magnet and a temperature controller in the range 2K to 350K (figure 3.1). Magnetization

versus field, magnetization versus temperature, and AC susceptibility measurements were

all performed using the AC/DC Magnetometry System (ACMS), a feature of the PPMS.

The transverse susceptibility measurements were performed using a modified Quantum

Design Multifunctional Probe.

Figure 3.1. Physical Properties Measurement System (PPMS).
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3.1 DC Magnetization Measurements

The most common DC magnetic measurement is the magnetization versus field (M-

H) curve, which was discussed in great detail in chapter 2. This measurement yields the

saturation magnetization MS , remanent magnetization MR, and coercive field HC . It can

be an indicator of anisotropy because the shape and squareness ratio is different when H

is applied along the easy and hard axes of magnetization. Lastly, when taken after cooling

in a field, a shift along the horizontal axis along with an increase in HC is an indication of

exchange coupling.

This section discusses magnetization versus temperature measurements which are often

used to characterize magnetic materials. This is usually done by taking zero field cooled

(ZFC) and field cooled (FC) magnetization curves. MZFC(T) is determined by cooling a

sample with H = 0 to low temperature, so that the magnetic moments of the particles have

random orientations. A small, constant field (typically around 100 Oe) is applied so that

there is a measurable magnetization as the temperature is increased. MZFC increases as the

thermal energy is raised, and there is sufficient energy to align the particle moments parallel

to the field. MZFC drops again at high temperature when thermal fluctuations are able to

demagnetize the sample and a sharp drop off is seen at the Curie temperature, TC , when the

magnetization is destabilized due to thermal fluctuations. For magnetic nanoparticles, the

ZFC measurement is especially useful for determining the average blocking temperature,

TB. In the ZFC initial state at low temperature, the net magnetization is ideally zero.

When a field is applied, and the magnetization measured as the temperature is raised, only

particles with TB less than the measuring temperature contribute. Therefore, the average

blocking temperature for the array of particles is seen as a maximum in the ZFC curve.

The FC magnetization, MFC(T), is measured by first applying a small field (again

around 100 Oe) at room temperature. As the sample is cooled, the magnetization rises as

thermal fluctuations become less important. Unlike MZFC , the FC magnetization saturates

at low temperature. The point where the ZFC and FC curves meet is often referred to as

the freezing temperature (TF ), and indicates the onset of irreversible magnetization at the
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field in which the measurement is taken. For magnetic nanoparticles, this often coincides

with the blocking temperature, TB.

A sample graph of a ZFC curve plotted along with an FC curve (this is the typical

representation) for a sample of NiFe2O4 nanoparticles is shown in figure 3.2. These particles

were made by another graduate student in the lab and the magnetic properties were studied

extensively [21].

Figure 3.2. Zero field cooled (ZFC) and field cooled (FC) magnetization versus temperature
curves for NiFe2O4 nanoparticles.

3.2 AC Susceptibility

While DC magnetic measurements generally measure the equilibrium magnetic prop-

erties of a sample, AC magnetic measurements can probe the timescale at which many

magnetization processes occur, and provide valuable information about particle interac-

tions, spin dynamics, and the presence of magnetic transitions. Instead of applying a
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large DC magnetic field, a small AC magnetic field is used, which causes a time-dependent

moment in the sample.

At low frequencies, where the measurement is most similar to a DC measurement, the

magnetic moment of the sample follows the M(H) curve that would be measured in a DC

experiment. As long as the AC field is small, the induced AC moment is

MAC = χ×HAC sin(ωt) (3.1)

where HAC is the amplitude of the driving field, and ω is the driving frequency. χ = dM/dH

is the susceptibility as well as the slope of the M(H) curve at very small fields where the

magnetization is still reversible (i.e. hysteresis has not yet set in). HAC is usually around

10 Oe where the linear susceptibility assumption is still valid. One advantage of AC

susceptibility is that the measurement is very sensitive to small changes in magnetization.

Since the AC measurement is sensitive to the slope of M(H), and not to the absolute value,

small magnetic shifts can be detected even when the total moment is large.

At higher frequencies, the AC moment of the sample does not follow along the reversible

part of the DC magnetization curve due to dynamic effects in the sample. Essentially, the

rotation of the magnetic moment cannot keep up with the alternating magnetic field. In

this higher frequency case, the magnetization of the sample may lag behind the drive field,

an effect that is detected by the PPMS. Thus, the AC magnetic susceptibility measurement

yields two quantities: the magnitude of the susceptibility, χ, and the phase shift, φ, relative

to the drive signal. Alternatively, one can think of the susceptibility as having an in-

phase, or real, component χ′ and an out-of-phase, or imaginary, component χ′′ . The two

representations are related by

χ′ = χ cosφ (3.2)

χ′′ = χ sinφ (3.3)

χ =
√

χ′2 + χ′′2 (3.4)
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In the limit of low frequency, where the AC measurement is most similar to the DC

measurement, the real component χ′ ≈ χ as discussed above. The imaginary component,

χ′′, indicates dissipative processes in the sample. In conductive samples, the dissipation

is due to eddy currents. In ferromagnets, a nonzero imaginary susceptibility can indicate

irreversible domain wall movement, or absorption due to a permanent moment. Also,

both χ′ and χ′′ are very sensitive to thermodynamic phase changes, and are often used to

measure transition temperatures. In this dissertation, we use the fact that relaxation in

superparamagnetic particles gives rise to a nonzero χ′′.

Graphs of both χ′ and χ′′ show maxima at the blocking temperature for the transition

from ferromagnetism to superparamagnetism. Recall that TB depends on the timescale of

the measurement. AC susceptibility is a powerful tool because it uses a timescale where

this effect can be clearly seen as a shift in TB with frequency. The Néel-Arrhenius relation

describes the magnetization reversal of a non-interacting single domain particle in a local

minimum over an anisotropy barrier, Ea

τ−1 = τ−1
0 exp(Ea/kBT ) (3.5)

where τ is the reversal rate, T is the temperature and kB is Boltzmann’s constant. Here,

τ0 is the attempt frequency and is comparable to the Larmor precession frequency [47].

Generally this values falls in the range 10−10 − 10−9s.

By making a plot of 1/TB versus ln (f), the Néel-Arrhenius relation can be used to

extract the attempt frequency (y-intercept of the plot) and the anisotropy energy barrier

(slope of the plot). However, as mentioned before, this relation is only valid for non-

interacting nanoparticle systems, and at times unphysical values of each or both of these

parameters may obtained. In that case, the Vogel-Fulcher relation

τ−1 = τ−1
0 exp(Ea/kB(T − T0)) (3.6)

30



must be used which accounts for weak (dipolar) interactions between particles by the use

of a third parameter, T0. The result of dipolar interactions is to slow down the magnetic

response because the particles must also overcome the local energy present from neighboring

particles.
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CHAPTER 4

TRANSVERSE SUSCEPTIBILITY

Transverse susceptibility (χT ) is a measure of the magnetic susceptibility in one direc-

tion, while an external magnetic field is applied perpendicular to the direction of measure-

ment. In a seminal 1957 paper [2], Aharoni et al. calculated χT as a function of HDC for a

collection of Stoner-Wohlfarth particles [86]. These are ellipsoid, single domain, ferromag-

netic particles with uniaxial anisotropy. According to Aharoni’s theory, measurement of

χT with respect to HDC applied along the hard axis of magnetization should yield peaks

at the positive and negative anisotropy fields, ±HK . The anisotropy field of a material is

the field needed to saturate the magnetization of a material in the hard direction and is

related to the effective anisotropy Keff via the following:

HK = 2Keff/MS (4.1)

Thus it can already be seen that directly measuring the anisotropy field of a materials gives

valuable information about the effective anisotropy of a sample.

4.1 Theory and Historical Background

Transverse susceptibility along with the parallel susceptibility are actually the diagonal

components of the 3×3 reversible susceptibility tensor. The parallel susceptibility is the

susceptibility as a function of HDC measured in the direction of the applied field, and the

transverse susceptibility components correspond to the susceptibility with HDC applied

along either of the two directions transverse to the measurement. For HDC along the
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z -direction, the transverse susceptibility is written as

χT =

(

dMx

dHz

)

Hx=0

, Hy = 0 (4.2)

Expressing susceptibility as a second rank tensor allows for the response of a sample to

be measured in a direction different from the field. As a result, two fields are required to

do a transverse susceptibility measurement: a small AC magnetic field (HAC), for which

variation with sample magnetization can be related to the susceptibility, and an external

DC magnetic field (HDC) that can be varied over a large range. Figure 4.1 shows the

geometry involved in a transverse susceptibility measurement.

Figure 4.1. Geometrical construct of a transverse susceptibility measurement including the
DC field (HDC), the AC field (HAC), the magnetization vector M, and the easy axis (E.A.).
Also included are the relevant angles used in the transverse susceptibility calculation. Fig-
ure adapted from reference [81].

Here, the axis of anisotropy, K, is denoted E.A. (for easy axis), and defined by the

spherical polar angles θK and φK . Similarly, the magnetization vector, M, has coordinates

θM and φM . The applied field HDC is aligned along the z -axis. Choosing the coordinate

system so that

φH = 0
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then

Hx = H sin θH

Hz = H cos θH

Mx = MS sin θM cosφM

Using the expression for χT (equation 4.2) it follows that

χT =
3

2
χ0 lim

θK→0

d(sin θM cosφM )

d(H sin θH)
(4.3)

where χ0 = M2
s /3K. For the magnetic moment to lie in an energy minimum, it is necessary

to impose the following conditions:

δE

δθM
= 0,

δE

δφM
= 0 (4.4)

For a Stoner-Wohlfarth particle, the energy is given by the sum of the anisotropy energy

and the energy of interaction with the applied magnetic field (Zeeman energy) [86]

E = EK + EH (4.5)

In terms of the spherical coordinate system defined above, equation 4.5 becomes

E = −K(sin θK cosφK sin θM cosφM (4.6)

+ sin θK sinφK sin θM sinφM + cos θK cos θM )2

−HMS(sin θH sin θM cosφM + cos θH cos θM )

−HMS cos θM

Using these expressions, Aharoni et al. [2] arrived at the expression for the field-dependent

transverse susceptibility of a single Stoner-Wohlfarth particle by minimizing equation 4.6

34



using the constraints given by equation 4.4

χT =
3

2
χ0

(

cos2 φK
cos2 θM

h cos θM + cos 2(θM − θK)
+ sin2 sin(θK − θM )

h sin θK

)

(4.7)

where h is the reduced field, HK/HDC .

For an array of particles with randomly oriented anisotropy axes, assuming the particles

are identical and that inter-particle interactions are negligible, the average χT becomes

χ̄T = (1/2π)

∫ 2π

0

∫ π/2

0
χT sin θKdθKdφK (4.8)

After integrating over φK and substituting back equation 4.7, we arrive at the expression

χ̄T =
3

4
χ0

∫ π/2

0

[

cos2 θM

h cos θM + cos 2(θK − θM )
+

sin(θK − θM )

h sin θK

]

sin θKdθK (4.9)

Using this relation, along with the one for the parallel susceptibility

χ̄P =
3

2
χ0

∫ π/2

0

[

sin2 θ sin θK

h cos θ + cos 2(θ − θK)

]

dθK (4.10)

Aharoni et al. calculated several values of χT and χP for various values of reduced field (h),

and made a plot of how χT and χP should behave after reducing the field from saturation

(figure 4.2). They predicted that χP should diverge at the switching field, HS , and that χT

should show three cusps: two at the positive and negative HK values, and one at HS . The

shape of the transverse susceptibility curve is heavily influenced by those particles whose

easy axis is aligned at 90◦ to HDC .

The first experimental confirmation of this theory was in 1987 by Pareti and Turilli [63]

who showed the presence of the peaks at ±HK and HS . Their experiment, on barium ferrite

particles, resulted in peaks rather than cusps. This was attributed to the inhomogeneities

in particle shape and dimensions resulting in distributions of HK and HS .

Over the years, transverse susceptibility has attracted experimental interest largely

from the magnetic storage community, who have measured transverse susceptibility on
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HK /HDC

χ/
χ 0

χP χT

+HK-HK HS

Figure 4.2. Theoretical transverse susceptibility (χT ) and parallel susceptibility (χP ) curves
as a function of reduced field h (h = HK/HDC) as calculated by Aharoni et al. Figure
adapted from reference [2].

particulate recording media [31, 69, 13]. The performance of magnetic media is heavily

dependent on the anisotropic properties, and transverse susceptibility as a direct probe of

HK has become an invaluable tool for assessing new materials.

However, due to the limiting assumptions of the Stoner-Wohlfarth model, some mod-

ifications have been made to Aharoni’s original theory. Notably, Hoare et al. [31] added

a weighted anisotropy axis distribution function to account for textured media, i.e. 2-

dimensional arrays of particles that are preferentially aligned with their easy axes in the

plane of the array, an addition useful for recording tape.

A big advance in transverse susceptibility theory was made by Spinu et al. [82] when

they were able to use micromagnetic simulations to model transverse susceptibility using

the Landau-Lifshitz-Gilbert approach, which allowed them to account for the second order

anisotropy constant (K2). For many materials, the value of K2 is appreciable or even

negative (as is the case for Co), and neglecting this term can lead to inaccuracy in K1. Later,
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the LLG approach was used by Stancu and Spinu to calculate the transverse susceptibility

for a single domain particle with cubic anisotropy [85].

In 2006, Matarranz et al. [51] returned to the Stoner-Wohlfarth model in a bid to

incorporate inter-particle interactions into transverse susceptibility theory. Like Hoare et

al. [31], they too tried to account for particle texturing by introducing a double-Gaussian

distribution function of easy axes. To model the dipolar interactions, they used the mean-

field model replacing the reduced field h (recall h = HK/HDC) by heff = h+ ǫm. Here m =

M/MS is the reduced magnetization, and ǫ is an inter-particle interaction parameter. The

most important thing about this modification of the Stoner-Wohlfarth model is the ability

to reproduce some of the features seen in physical nanoparticle transverse susceptibility

measurements such as broadened peaks located asymmetrically around HDC = 0, the

merging of the HS peak with the -HK peak, and a prominent asymmetry in peak heights.

The experimental existence of these phenomena will be addressed in the next section.

In the past few years, focus in transverse susceptibility theory has turned to the complex

transverse susceptibility [16, 15, 36]. Like traditional AC susceptibility, transverse suscep-

tibility also has an out-of-phase component. An analysis of the in-phase and out-of-phase

transverse susceptibility, undertaken by Papusoi [36] in 2000, revealed some very important

conclusions about complex transverse susceptibility. First, when the DC field is decreased

from HK down to zero, the particle relaxation time distribution shifts from zero to very

high values. In the DC field range where the particle relaxation time becomes of the same

order of magnitude as the reciprocal of the AC field frequency, the transverse susceptibility

is strongly influenced by the particle volume distribution. This implies that the HDC in

complex transverse susceptibility measurements plays an analogous role to the tempera-

ture in AC susceptibility measurements. This work prompted Cimpoesu et al. [16, 15] to

develop a micromagnetic model that accounts for the frequency of the perturbing AC field,

which until then had been neglected. It was found that the complex transverse susceptibil-

ity with respect to HDC contains multiple peaks, which can be correlated with anisotropy

and volume distributions.
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Finally, in 2006, it was reported that a new transverse susceptibility theory based on

magnetization vector dynamics as described by the Landau-Lifshitz equation of motion led

to the conclusion that what we measure as transverse susceptibility is actually the zero

frequency limit of ferromagnetic resonance [78].

It can easily be said that the widespread use of micromagnetic simulations with better

and faster computers in recent years has allowed transverse susceptibility theory to evolve

from the simplified view of Aharoni over 50 years ago to a sophisticated series of calculations

used to gain invaluable information on the anisotropy of magnetic materials, and explain

the rich variety of behavior observed in physical transverse susceptibility measurements.

4.2 Measuring the Transverse Susceptibility Using a Tunnel Diode Oscillator

All of the transverse susceptibility data presented in this dissertation were taken not

with a traditional susceptometer, but with a self-resonant tunnel diode oscillator (TDO).

Resonant methods have the advantage of precision and high sensitivity when it comes to

detecting changes in the physical properties of materials as a function of temperature and

magnetic field. This is due to the fact that frequency can be measured with a high degree

of accuracy. In a typical resonant technique based on an LC tank circuit, the capacitor

or inductor couples to the material under study, and acts as a transducer of physical

parameters. Any change in material properties will induce a change in the capacitance or

inductance, which in turn results in a shift in the resonant frequency. Thus, measurement

of the frequency shift translates to directly probing the electronic, dielectric, or magnetic

response of the material to the oscillating signal. Tunnel diode oscillators which operate

based on this principle have been used in the past to study a wide variety of material

properties [83].

The principle of the TDO can be explained as follows. An LC tank circuit is main-

tained at a constant amplitude resonance by supplying the circuit with external power

to compensate for dissipation. This power is provided by a tunnel diode that is forward-

biased with a voltage in the region of negative slope of its current-voltage (I-V) curve, or
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“negative resistance region”. Such an arrangement makes it a self-resonant circuit as the

power supplied by the diode maintains continuous oscillation of the LC tank operating at

a frequency given by the expression

ω =
1√
LC

(4.11)

When a sample is inserted into the oscillator tank coil, there is a small change in the coil

inductance ∆L. If ∆L/L <<1, one can differentiate equation 4.11 and obtain the expression

∆ω

ω
≈ −∆L

2L
(4.12)

The inductance change is related to material properties. In the case of a magnetic material,

this is proportional to the real part, µ′, of the complex permeability

µ = µ′ − iµ′′ (4.13)

The inductance coil in this experimental setup serves as the sample space in which a gel

cap containing the sample can fit. This entire coil is inserted into the sample chamber of

our PPMS using a customized radio frequency (RF) co-axial probe (figure 4.3). The DC

magnetic field (HDC) is varied using the PPMS. The oscillating RF field, HRF , produced

by the RF current flowing in the coil windings, is oriented perpendicular to HDC , and this

arrangement sets up the transverse geometry described in the previous section. When HRF

is perpendicular to the varying HDC , the change in inductance is actually determined by

the change in transverse permeability, µT , of the sample. Thus, we can derive an absolute

value for the transverse susceptibility:

χT = µT − 1 (4.14)
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Figure 4.3. Schematic of the TDO circuit and sample space (left) and CAD drawing of the
inductance coil which serves as the sample holder (right).

The percent change in transverse susceptibility then can be defined as

∆χT

χT
(%) =

|∆χT (H) − χsat
T |

χsat
T

× 100 (4.15)

where χsat
T is the transverse susceptibility at the saturating field Hsat. This quantity, which

represents a figure of merit, does not depend on geometrical parameters and is useful for

comparing the transverse susceptibility data for different samples, or for the same sample

under different conditions. Despite the fact that this technique only gives you the percent

change in transverse susceptibility, the most important features of transverse susceptibility

with respect to temperature, namely the ±HK and HS peaks, are still present, which allow

us to draw important conclusions about the sample’s anisotropy. Moreover, since this is a

resonant method, we are able to use the high degree of sensitivity (δχ ≈ 10 Hz in 10 Mhz)

to look at very small samples that often times do not have a high enough moment to be

picked up by the magnetometer in the PPMS. This feature will be highlighted in chapter

5, where we discuss the use of the TDO method to sense nanoparticles inside of human

cells.
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Figure 4.4 is a sample transverse susceptibility scan of NiFe2O4 nanoparticles taken from

positive saturation to negative saturation. Henceforth, this type of scan will be referred to

as a unipolar scan, and one going from positive to negative saturation and then back to

positive will be referred to as a bipolar scan. Figure 4.5 is a detailed view of a bipolar scan of

the same NiFe2O4 sample. The arrows correspond to the measurement sequence so that the

sets of peaks arising from the positive to negative scan can be easily distinguished from the

negative to positive scan. A couple of features can be seen in these figures that are different

from Aharoni’s theoretical curve (figure 4.2). First, there are peaks seen at the anisotropy

fields, but in this case +HK 6= −HK . In the unipolar scan, the +HK value is 365 Oe and

the −HK value is −390 Oe. In other nanoparticle systems, the two HK values can diverge

by quite a bit more, as will be seen in chapters 5 and 6, and indeed in the bipolar scan, the

disparity is a little more apparent. In almost every case, the peak closest to saturation has

a smaller HK value than the one that occurs after passing through H = 0. Second, there is

no peak corresponding to HS . Lastly, there is a difference in peak height between +HK and

−HK , with the peaks nearest to saturation being higher in amplitude. Thus, +HK is higher

in amplitude and smaller in value, and −HK is smaller in amplitude and larger in value

coming from positive saturation going to negative saturation. Conversely, from negative

saturation, the −HK peak is higher in amplitude and smaller in value, while the +HK

peak is smaller in amplitude and larger in value. For the remainder of this dissertation,

we will distinguish the two sets of peaks with the terminology HK1 and HK2, where HK1

is always the first peak that occurs after saturation in either direction. Note that |HK1| <

|HK2|. Also, it should be explicitly clarified that the subscripts K1 and K2 refer only to

the locations of the anisotropy peaks, and do not correspond specifically to the first and

second anisotropy constants.

The features in the physical transverse susceptibility graphs that deviate from the the-

oretical curve calculated by Aharoni et al. actually show some resemblance to the curves

theorized by Matarranz et al. [51]. Their paper postulated that particle size dispersion,

inter-particle interactions, and texturing all contribute to the phenomena, and this is mod-
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Figure 4.4. Unipolar transverse susceptibility scan (from positive saturation to negative
saturation) of NiFe2O4 nanoparticles.

Figure 4.5. Detailed bipolar transverse susceptibility scan (from positive to negative satu-
ration and back to positive saturation) of NiFe2O4 nanoparticles.
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eled by introducing an orientation distribution function and a modified reduced field. While

none of the nanoparticles we measured should possess texturing (i.e. the moments are com-

pletely randomly aligned), size dispersion and inter-particle interactions should both have

important contributions to transverse susceptibility measurements. Size dispersion, which

also will lead to an HK dispersion, can explain why we see peaks instead of the cusps seen

in figure 4.2.

When it comes to inter-particle interactions, we feel that qualitatively the deviations

from theory can be explained more effectively by considering the energy landscape of the

particles contributing to the transverse susceptibility at different values of HDC . For in-

stance, HK1 always occurs after saturation, when the Zeeman energy (the energy associated

with the moments aligning with the field) is highest. Since the particles are being heavily

influenced by the changing field, the rotation of the moments is more coherent causing a

sharper peak with a higher magnitude at HK1. At the transverse susceptibility minimum

(occurring after H = 0), the moments have essentially randomized and are no longer aligned

with the field, consistent with a minimizing of Zeeman energy. At this point, the inter-

particle interactions are dominating the magnetic response. Strong interactions should lead

to HK2 being closer to symmetric with HK1, since the field each particle experiences from

its neighbors should have a similar response to an applied field. Thus, minimizing the Zee-

man energy should not have as large an effect on the collective response of the system. If

the inter-particle interactions are weak, then the overall magnetic response of the particles

in the randomized state to an increasing field will be much smaller, leading to peaks with

smaller height than those occurring after saturation. We believe that is why in thin films,

the peaks are symmetric. We can think of thin films as being the “highly interacting”

limit of the picture described above, where instead of dipolar interactions producing a field

internal to the system, the exchange interaction between spins causing the crystal field is

responsible for the similar behavior on each side of H = 0. In nanoparticles, we usually

see the complete disappearance of the peak associated with the switching. This is likely

due to the dispersion in HK and HS associated with a distribution in particle sizes. These
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dispersions likely overlap leading to a single, broadened peak which is also consistent with

the value of HK2 being larger than HK1.

Because of the varying interactions and dispersions in HK and HS , the HK2 peak can

vary greatly in height and field value. For these reasons, Keff is always calculated using HK

= HK1, though often both HK values will be plotted versus temperature to examine the

anisotropy evolution in a material. And finally, when the Keff values are calculated from

transverse susceptibility using equation 4.1, we are actually calculating K1. In chapter 2 the

anisotropy energy was often expressed as a series expansion, where only the first two terms

were used containing the first and second order anisotropy constants. In calculating Keff,

we are neglecting the second order and higher terms, keeping only K1. While K2 is non-

negligible and even negative in some materials, we have found that for our purposes, namely

probing nanoparticles dominated by uniaxial anisotropy and surface effects, calculating K1

only captures the main physics of the systems to a satisfactory degree.
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CHAPTER 5

Fe3O4 AND Au-Fe3O4 NANOPARTICLES FOR BIOMEDICAL
APPLICATIONS

In the spring of 2006, the author was awarded a National Science Foundation Integrative

Graduate Education Research and Traineeship (IGERT) fellowship. The IGERT program

was developed to educate Ph.D. scientists with interdisciplinary backgrounds, deeper knowl-

edge in chosen disciplines, and technical, professional, and personal skills to meet the needs

of a changing scientific landscape. The IGERT research performed by the author was in

collaboration with Professor Shyam Mohapatra and Dr. Arun Kumar of the University of

South Florida College of Medicine. Prof. Mohapatra and Dr. Kumar have research inter-

ests in magnetic nanoparticles for biomedical applications. This research was undertaken in

order to help characterize, as well as optimize the magnetic properties of the nanoparticles

they use for cell transfection, in line with the goals of the IGERT program.

5.1 Introduction

In recent years, magnetic nanoparticles have become a topic of interest for a wide

range of medical applications due to their dimensions being smaller than or comparable to

several biological entities such as cells (10-100 µm), viruses (20-450 nm), and proteins (5-

50 nm) [62]. The ability of magnetic particles to be manipulated by an external magnetic

field make them especially attractive for localized treatment options such as targeted drug

delivery and hyperthermia, as well as diagnostics like enhancing existing MRI techniques

and sensors based on the detection of a magnetic signal. In this section, we describe these

treatment and diagnostic applications, as well as propose how transverse susceptibility
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could be used for cancer cell detection. The rest of the chapter describes the magnetic

properties of Fe3O4 and Au-Fe3O4 particles synthesized specifically for these applications.

5.1.1 Targeted Drug Delivery

The biggest problem associated with systemic drug administration is that a pharmaceu-

tical becomes evenly distributed throughout the body, which results in a lack of specificity

for the area of interest [7]. Therefore, high levels of a drug must be administered to achieve

the desired concentration in the afflicted area. Both non-specificity and the toxic levels

needed to treat illness often lead to unwanted and harmful side-affects. No where is this

currently more evident than in chemotherapy, where significant damage is done to the

entire body in the hopes of killing often localized cancer cells.

Targeted drug delivery aims to alleviate these issues by immobilizing a drug onto a

biocompatible magnetic nanoparticle, which acts as a carrier. The drug/carrier complexes,

which are usually in the form of a suspension of nanoparticles (ferrofluid) in a biocompatible

liquid, can be injected into the patient via the circulatory system. After the particles enter

the bloodstream, external, high-gradient magnetic fields can be used to concentrate the

complex at a specific target site within the body. Once the drug/carrier is concentrated at

the target, the drug can be released either via enzymatic activity, or changes in physiological

conditions such as pH, osmolality, or temperature.

Fe3O4 superparamagnetic nanoparticles have been examined for targeted drug delivery

due to their biocompatibility, magnetic properties (high saturation magnetization), and

their ability to be functionalized [25, 24, 58]. However, if the surface is left untreated,

agglomeration can occur, and the natural hydrophobicity of the surface causes the particles

to be taken up by the body’s systems, mainly the kupffer cells in the liver [25]. Usually,

Fe3O4 particles must first be coated with an amphiphilic polymeric surfactant such as

poly(ethylene glycol) (PEG) to keep them from agglomerating, and to minimize unwanted

protein adsorption onto nanoparticles. The subsequent coating can then be functionalized

by attaching carboxyl groups or other molecules.
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Coating the Fe3O4 particles with a noble metal, such as gold (Au), can serve a similar

purpose, but in this case “linker” molecules with functionalities at both ends and an affinity

for Au can be used to aid in functionalization. A well-known example is thiol adsorption, in

which alkanedithiols are covalently attached to the Au surface [56]. This opens up a greater

realm of possibilities as thiols can be bonded with proteins, peptides, carbohydrates, lipids,

and DNA [49]. It is widely thought that greater functionality of Fe3O4 nanoparticles can

be achieved through coating them with Au and exploiting Au-thiol chemistry.

5.1.2 Hyperthermia Treatment for Malignant Cells

The preferential killing of cancer cells without damaging normal tissue has been one

of the main goals of cancer therapy for many years [7]. The potential of hyperthermia

(localized heating) as a treatment for cancer was first predicted following observations

that several types of cancer cells were more sensitive to temperatures in excess of 41◦C

than their normal counterparts [35]. The use of magnetic nanoparticles for hyperthermia

involves dispersing the particles throughout the target tissue, and then applying an AC

magnetic field of sufficient amplitude and frequency to cause the particles to heat. This

heat conducts into the immediately surrounding diseased tissue whereby, if the temperature

can be maintained at the threshold of 41◦C for 30 minutes or more, the cancerous cell

is destroyed. Magnetic nanoparticles in a suspension can be heated via four different

mechanisms: Brownian rotation, Néel relaxation losses, eddy current losses (if the particle

is also conducting), and hysteretic losses. No matter what type(s) of losses contribute to

the heating, it has been suggested that the product of the frequency and magnitude of the

applied field not exceed Hf = 6 × 106 Oe Hz [5].

Brownian rotation and Néel relaxation losses both occur as a consequence of a magnetic

particle exposed to an AC magnetic field. Brownian rotation refers to the physical rotation

of the particle in suspension and depends on the particle size and viscosity of the fluid.

It is the dominant mode of relaxation at lower frequencies (f in the kHz range). Néel

relaxation refers to the movement of the magnetic moment in response to the magnetic
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field and dominates at higher frequencies. Both types of relaxation can be probed by AC

susceptibility measurements (section 2.2). Generally, the use of frequencies in the range

f = 0.05 − 1.2 MHz is considered safe for humans [62], so in principle both relaxation

modes could be used to contribute to heating.

If the magnetic particle is also conducting, eddy currents can form within the particle,

and contribute inductive heating. However, Fe3O4, which is an insulator, has been looked

at the most for hyperthermia because the magnetic properties and biocompatibility far

outweigh the benefits of heating via eddy currents in hyperthermia. Metallic nanoparticles,

such as Fe, are often toxic and highly pyrophoric, and special care needs to be taken to

safely coat the surface. Using an already safe material with high saturation magnetization,

like Fe3O4, and coating it with Au as proposed in the previous subsection, would aid in

hyperthermia applications as well because the Fe3O4 could contribute Brownian and Néel

losses, while eddy currents are generated on the Au surface, adding to the overall heating

ability of the particles.

Thus far, we have assumed that the magnetic nanoparticles in suspension are super-

paramagnetic to avoid agglomeration, and aid in easier passage through the cell membrane.

Largely, superparamagnetic particles are preferred because they stay in suspension, thus

allowing easier manipulation to the specific site. However, once the particles have been

taken up by a tumor cell and an AC magnetic field has been applied, this is no longer an

issue. In fact, a particle that is superparamagnetic at room temperature and in DC fields

but acquires a coercivity in an AC field would be very beneficial for hyperthermia. The

amount of heat generated per unit volume is given by the frequency multiplied by the area

of the hysteresis loop:

PFM = µ0f

∮

HdM (5.1)

Recently, Eggeman et al. [17] studied the size and concentration effects of iron oxide

nanoparticles that exhibited hysteresis at higher frequencies, and found that hysteretic

losses in these particles are significant. Therefore, being able to tune the blocking tem-
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perature and blocking frequency to optimize functionality and hysteretic losses is a viable

route to improving properties for hyperthermia.

5.1.3 MRI Contrast Enhancement

Magnetic resonance imaging (MRI) is currently one of the most common imaging tech-

niques for soft tissue structure of the musculoskeletal system. In brief, it measures changes

in the magnetization of hydrogen protons in water molecules sitting in a magnetic field

after a pulse of radio frequency with HAC perpendicular to HDC is propagated through the

sample. Protons from different tissue react differently, giving a picture of the anatomical

structures. These images can be enhanced by adding contrast agents, which sharpen the

contrast by affecting the behavior of the protons in their vicinity. In standard clinical MRI

scans, contrast agents travel through the bloodstream and tissues, increasing contrast ev-

erywhere. The most commonly used MRI contrast media are gadolinium chelates, which

tend to be non-specific with rapid accumulation in the liver and only allow a short window

for imaging.

Dextran-coated superparamagnetic iron oxide nanoparticles for MRI enhancement are

becoming increasingly common. They are selectively taken up by reticuloendothelial sys-

tem, the cells that line blood vessels, whose function is to remove foreign substances from

the bloodstream. Nanoparticles used for MRI contrast enhancement rely on the differen-

tial uptake of anatomical regions, and nanoparticle size plays a significant role in which

cells selectively uptake them. Larger particles (d > 30 nm) are taken up by the liver and

spleen, smaller particles (d < 10 nm) are not easily detected and propagate through the

bloodstream and reticuloendothelial cells, including bone marrow and lymph nodes. Small

particles can also be used to image the vascular system and central nervous system.

5.1.4 Transverse Susceptibility as a Biosensor

One can think of any number of ways to use an external field to sense cells that have

taken up nanoparticles. Recently, the large change in magnetoimpedance of amorphous
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magnetic ribbons was used to detect the presence of cells loaded with magnetic nanopar-

ticles. This method, in which the impedance of a magnetic conductor changes with HDC ,

relies on the fringe fields associated with the magnetic nanoparticles inside the cells to give

a change in magnetoimpedance from the normal response exhibited by the ribbons [40].

We proposed that transverse susceptibility may be used to sense particles that have been

taken up by cells as well. Recall that this technique is highly sensitive for two distinct

reasons: any susceptibility measurement is a measure of the derivative of the magnetic re-

sponse with respect to field, and our method of measurement is a resonant technique which

can detect changes in frequency on the order of 10 Hz in 10 MHz. Therefore, it is possible

that even a small sample of cells that have taken up nanoparticles when placed inside the

sample space of the transverse susceptibility probe could yield a signal characteristic of the

magnetic nanoparticles.

5.2 Nanoparticle Synthesis

Both Fe3O4 nanoparticles and Au-coated Fe3O4 were synthesized at the University of

South Florida College of Medicine by Dr. Arun Kumar following the procedure outlined by

Mandal et al. [49] using a micellar method. First, a stock solution was made by dissolving

ferric ammonium sulfate (0.128 M with respect to the Fe(III) ion) and ferrous ammonium

sulfate (0.064 M with respect to the Fe(II) ion) in 100 ml 0.40 M aqueous sulfuric acid. A

separate solution of 1.0 M NaOH was added to 0.01 M poly(oxyethylene) isooctyl phenyl

ether (TX-100) to make a concentration of 0.01 M TX-100. Of this solution, 25ml was added

drop by drop to 0.01M TX-100. This solution was heated to 70-80◦C, and 25 ml of the iron

stock solution was added drop by drop while stirring. Heating and stirring continued for 30

minutes while Fe3O4 nanoparticles were formed. The particles were centrifuged to separate

them from solution and washed. The resulting Fe3O4 particle sizes were measured using

TEM and found to have an average diameter of 60 nm with a moderate size dispersion.

This size of particle is desirable because the cells to be used in this experiment preferentially
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take up particles of 60-70 nm. The static and dynamic magnetic properties of the Fe3O4

particles were studied and are presented in the next section.

The procedure outlined above was followed to obtain the Fe3O4 particles, which were

then coated with gold. For this step 0.5 g of glucose was added to a solution of 1:1 molar

ratio Fe3O4 to HAuCl4. The solution was sonicated for 15 minutes and then heated in

a water bath for 1 hour. Mandal et al. reported in reference [49] that the glucose helps

promote Au-Fe3O4 adhesion and maintain Au thickness uniformity. The magnetic prop-

erties of the Au-Fe3O4 particles were also studied and presented in the following section.

Due to the dual functionality of the Au and Fe3O4, these particles were chosen for cell

transfection, and subsequently tested for detection using transverse susceptibility.

5.3 DC Magnetic Properties of Fe3O4 and Au-Fe3O4 Nanoparticles

5.3.1 Fe3O4 Nanoparticles

Zero field cooled and field cooled curves were taken of the Fe3O4 particles in an external

field of 100 Oe (figure 5.1). The ZFC curve is consistent with a polydisperse sample of

nanoparticles, with a broad blocking temperature (TB) that occurs around 267K. This

temperature matches well with that reported by Goya et al. [22] for 50 nm Fe3O4 particles.

They also report a bump in the ZFC curve at 16K, which they attribute to the Verway

transition, a well-studied structural transition which occurs at 120K in bulk Fe3O4. The

Verway transition has been shown to be highly temperature dependent in nanoparticles,

shifting to lower temperature as the particle diameter decreases until it cannot be seen in

particles below about 40 nm [22]. The ZFC curve in figure 5.1 does show a small bump at

16K as well, which re-enforces the notion that these particles are relatively large.

The nearly linear relationship between magnetization and temperature in the ZFC curve

indicates that the inter-particle interactions in these particles are strong, which is to be

expected since these particles were not coated with a surfactant, so were free to agglomerate.

Particles with fewer interactions tend to show a magnetization that rises faster than the

increase in temperature, resulting in a more curved zero field cooled magnetization versus
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Figure 5.1. Zero field cooled and field cooled curves for Fe3O4 particles.

temperature. We also performed DC magnetic measurements on the Fe3O4 particles after

dispersing them in a paraffin wax matrix to see if that would affect the overall shape of

the ZFC and FC curves (figure 5.2). This was done by taking a dry sample of Fe3O4 and

several pellets of wax in a vial, and sonicating in a hot water bath while the wax melted.

This suspended the particles in the wax matrix, and prevented them from agglomerating.

Ideally, the inter-particle distance is enough to prevent the particles from experiencing

dipolar interactions from their neighbors. The ZFC curve did show better definition with

a steeper rise of magnetization, more consistent with non-interacting particles. However,

the freezing of residual water in the sample made it very difficult to observe the magnetic

behavior right around the blocking temperature.

Figures 5.3 and 5.4 are the 300K and 2K magnetization versus field curves respectively

for the Fe3O4 powder. The lack of coercivity in the 300K M-H curve confirms that the

particles are superparamagnetic at 300K. At 2K, a coercivity is present of 430 Oe.
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Figure 5.2. Zero field cooled and field cooled curves for Fe3O4 nanoparticles suspended in
a paraffin wax matrix.

Figure 5.3. Magnetization versus field curve for Fe3O4 nanoparticles taken at 300K.
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Figure 5.4. Magnetization versus field curve for Fe3O4 nanoparticles taken at 2K.

The coercivity of the system of particles will also be affected by inter-particle interac-

tions, so the low temperature M-H curve was repeated after the Fe3O4 particles were put

into paraffin wax. Indeed, the coercivity was reduced from 430 Oe to 230 Oe indicating

that while interactions were present in the case of bare Fe3O4 particles, these interactions

were greatly reduced or eliminated by placing them in the wax matrix (figure 5.5).

5.3.2 Au-Fe3O4 Nanoparticles

DC magnetic measurements were then taken of the Fe3O4 particles coated with Au.

As can be seen in the ZFC curve (figure 5.6), the approach to the blocking temperature is

steeper than for the Fe3O4 particles. This is consistent with a less interacting system, which

can be expected for the particles coated with Au, as opposed to the bare Fe3O4. Indeed,

one of the many reasons for coating the Fe3O4 with gold is to minimize the inter-particle

interactions.
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Figure 5.5. Magnetization versus field curve for Fe3O4 nanoparticles suspended in paraffin
wax taken at 2K.

The blocking temperature for the Au-Fe3O4 particles is slightly higher than the Fe3O4

samples. This could be due to slight differences in chemical batches, as the two were

synthesized on different occasions. In this sample, like the Fe3O4, the broad blocking

indicates a particle size dispersion. It is likely that both sets of samples have particle size

dispersions with the Au-Fe3O4 have an average Fe3O4 particle size slightly larger than the

Fe3O4 particles measured in the previous section. The low temperature feature thought

to be associated with the Verway transition is present in this sample as well, occurring at

17K rather than 16K.

Like the bare Fe3O4 particles, the 300K M-H curves for the Au-Fe3O4 particles (figure

5.7) confirm that they are superparamagnetic at room temperature. At 2K, the coercivity

is 200 Oe (figure 5.8), lower than the 430 Oe measured for the Fe3O4 particles alone, and

comparable to the particles suspended in wax. Again, this can be attributed to a decrease

in inter-particle interactions. This demonstrates that suspending the particles in wax and

simply coating them with a layer of Au achieve the same objective, that is, eliminating
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Figure 5.6. Zero field cooled and field cooled curves for Au-Fe3O4 nanoparticles.

inter-particle interactions. However, whereas manipulating nanoparticles in a solid matrix

is not very useful for biomedical applications, the Au-coated Fe3O4 particles retain their

versatility by being able to be manipulated while in a biocompatible liquid suspension.

5.4 Transverse Susceptibility Measurements

5.4.1 Fe3O4 Nanoparticles

Transverse susceptibility measurements were first performed on the bare Fe3O4 par-

ticles not in wax suspension. The transverse susceptibility data for these particles show

indiscernible features, likely due to the inter-particle interactions. A representative low

temperature bipolar scan is shown in figure 5.9. Therefore, in order to make any quanti-

tative observations of the anisotropy of the Fe3O4 particles, we limit this discussion to the

transverse susceptibility measurements made on Fe3O4 nanoparticles suspended in paraffin

wax. For this experiment, the same wax sample was used that was presented in section

4.3.1.
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Figure 5.7. Magnetization versus field curve for Au-Fe3O4 nanoparticles taken at 300K.

Figure 5.8. Magnetization versus field curve for Au-Fe3O4 nanoparticles taken at 2K.
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Figure 5.10 shows several unipolar transverse susceptibility scans of the Fe3O4 particles

in wax. At low temperatures, anisotropy peaks can be seen. As the temperature increases,

the peaks shift to lower fields, and eventually merge into a single peak around H = 0,

signaling the ferromagnetic to superparamagnetic transition. It can be seen from these

graphs that anisotropy peaks are still present at 250K, but the transition is complete by

300K, in agreement with the ZFC curve.

Figure 5.11 is a low field, low temperature, bipolar scan of the particles clearly showing

that two different anisotropy peaks, HK1 and HK2, are present. Recall that asymmetry in

the two anisotropy peaks is common for nanoparticles, and can be correlated with a lack

of inter-particle interactions because the H = 0 energy environment is much different than

the H = Hsat environment for a non-interacting array of particles. Here HK1 ≈ 415 Oe,

while HK2 ≈ 530 Oe.

In figure 5.12 we present the low field, room temperature, bipolar transverse suscepti-

bility scan. A distinct lack of anisotropy peaks can be seen. It can be concluded from this

scan that at room temperature and 12 MHz nearly all of the Fe3O4 particles in the wax

matrix are in the superparamagnetic state.

5.4.2 Au-Fe3O4 Nanoparticles

In figure 5.13 we present several unipolar transverse susceptibility scans for the Fe3O4

particles coated with Au. Again, anisotropy peaks can clearly be made out at the lowest

temperatures, with the peaks shifting to smaller fields as the temperature is increased. In

this case, there remains a slight ferromagnetic signature even at room temperature, which

indicates that not all of the particles have undergone the ferromagnetic to superparamag-

netic transition. This is consistent with the Au-Fe3O4 particles having a slightly higher

DC blocking temperature (283K versus 267K for the bare Fe3O4 particles). Again, keeping

in mind that the particles were synthesized on two different occasions, slight differences in

size distributions is not surprising. What is important though is the fact that both samples

are superparamagnetic at room temperature and in DC fields, which is normally how mag-

58



Figure 5.9. Low temperature bipolar transverse susceptibility scan of bare Fe3O4 not sus-
pended in paraffin wax.

netic nanoparticles are manipulated in a biological environment. By slightly increasing the

average size (thus the DC blocking temperature), the superparamagnetic particles become

ferromagnetic in an AC field, in this case the AC field is 12 MHz. While this frequency is

slightly above the generally accepted safe frequency of 1.2 MHz, the notion of tuning the

size to correspond with DC superparamagnetic behavior and AC ferromagnetic behavior

seems to be achievable for these particles.

Figure 5.14 is a low field, low temperature, bipolar scan of the Au-Fe3O4 particles

taken at 20K. Like the Fe3O4 particles suspended in wax, the shape of the transverse

susceptibility scan for these particles indicates an asymmetry in peak position with HK1 ≈

415 Oe, and HK2 ≈ 535 Oe. These values match up very well with the Fe3O4 particles

indicating that two of the most important qualities of the Fe3O4 particles in paraffin

wax (the anisotropy field HK , and the lack of inter-particle interactions) are intact in

the Au-Fe3O4 particles. This shows that coating the Fe3O4 particles with Au achieves the
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Figure 5.10. Transverse susceptibility scans taken at several different temperatures for
Fe3O4 particles.
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Figure 5.11. Low temperature (20K) transverse susceptibility bipolar scan of Fe3O4 parti-
cles.

Figure 5.12. Room temperature (300K) transverse susceptibility bipolar scan of Fe3O4

particles.
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important goal of separating the particles and reducing the inter-particle interactions, while

still maintaining a nanopowder form that can be suspended in a biocompatible solvent.

Figure 5.15 shows a low field, room temperature, bipolar scan of the Au-Fe3O4 particles

so that the anisotropy peaks can still be seen. It is likely that the majority of particles

are too small to contribute to the anisotropy peaks (i.e. are superparamagnetic even at 12

MHz), but the very largest particles are ferromagnetic at this frequency.

In the next sections, we describe how the transverse susceptibility measurement was

repeated for human embryonic kidney cells after transfection with the Au-Fe3O4 particles.

Figure 5.13. Transverse susceptibility scans taken at several different temperatures for Au-
Fe3O4 particles.

5.5 Nanoparticle Transfection

Human embryonic kidney (HEK293) cells were obtained from the American Type Cul-

ture Collection (ATCC). Cells were cultured on a plastic substrate at 37◦C in minimum
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Figure 5.14. Low temperature (20K) transverse susceptibility bipolar scan of Au-Fe3O4

particles.

essential medium containing 10% fetal bovine serum and 100U/ml each of penicillin and

streptomycin in an atmosphere of 5% CO2/95% air.

Au-Fe3O4 nanoparticles were introduced to the medium at concentrations of 0.05, 0.1,

0.3, 0.5, and 1 mg/ml buffer, where they were transfected by the cells via phagocytosis.

Cells were then detached from the substrate by removing excess medium, rinsing the cell

layer with 0.25% (w/v) Trypsin- 0.53 mM EDTA solution and adding Trypsin-EDTA so-

lution. A complete growth medium was then added to the cells for incubation. Figure

5.16 is a TEM image of a cell after transfection. The circle indicates the region where the

nanoparticles are located, and the particles appear as the dark, filament-like structures.

The nanoparticles can be recovered from the cells through homogenization. Previous

studies indicated that the percentage of nanoparticles transfected at maximum concentra-

tion (1 mg/ml) is approximately 70%.
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Figure 5.15. Room temperature (300K) transverse susceptibility bipolar scan of Au-Fe3O4

particles.

5.6 Transverse Susceptibility Measurements of Cells with Au-Fe3O4

Nanoparticles

Transverse susceptibility measurements were performed on cells that had not been

transfected with nanoparticles, as well as cells after transfection of nanoparticles in all of

the concentrations listed in the previous section. For each of these experiments, a sample

of cells was placed inside of a liquid-safe, 1 ml sample holder. An inductance coil similar

to the one used in the permanent transverse susceptibility setup was wound around the

sample holder and held in place on each end by two small o-rings. The coil containing the

sample was then soldered into the multifunctional probe in place of the regular inductance

coil, and found to self-resonate at the same frequency of 12 MHz.

The transverse susceptibility probe was then placed inside of the Physical Properties

Measurement System after the sample chamber had been warmed to ambient temperature,

and the pressure inside the sample chamber was maintained at 1 atmosphere. This ensured
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Figure 5.16. TEM image of Au-Fe3O4 particles (circled) inside of HEK cells.
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Figure 5.17. Transverse susceptibility measurements of HEK cells with varying concentra-
tions of Au-Fe3O4 nanoparticles. The black scan is for the cells without any nanoparticles.

that the particles could stay inside of the cells as freezing of the cells causes the nanoparti-

cles to be expelled. Applying a large enough pressure gradient might have caused the cells

to be taken from the sample holder, and deposited into the sample chamber of the PPMS.

Low-field transverse susceptibility scans at ambient temperature and pressure were

taken of the samples. Figure 5.17 shows the unipolar scan of the cells with several con-

centrations of the particles, as well as a scan of just cells that were not transfected with

nanoparticles. It can clearly be seen that the transverse susceptibility probe was able to

detect a signal from the nanoparticles inside of the cells, whereas the cells by themselves

left no signal. For the lowest concentration of particles (0.05 mg/ml, not shown), no signal

could be seen and at a concentration of 30 mg/ml (not shown), the signal was too noisy

to exhibit anisotropy peaks. As expected, the highest concentration of nanoparticles gives

the best signal, but it is important to note that at lower concentrations the signal of the

particles can still be seen.
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The anisotropy peaks seen for the nanoparticles inside of the cells appear more defined

than those seen at room temperature for just the sample of Au-Fe3O4 particles. In this case,

the same batch of Au-Fe3O4 particles was used for the measurement as for the transfection.

It is well-known that certain types of cells will only take up particles in a particular size

range, which was why the particles were synthesized in this experiment to be around 60 nm.

However, while the DC measurements and even the transverse susceptibility measurements

of just the particles pointed to a modest size dispersion, it may be that the cells only take

up the biggest particles, acting as a size selection mechanism for the nanoparticles. If many

of the smaller particles were not taken up by the cells, the ferromagnetic signal at 12 MHz

would be stronger in this sample than the polydisperse nanoparticle sample (figure 5.15).

This experiment demonstrates how transverse susceptibility as a measurement tech-

nique can act as a biosensor for the presence of magnetic nanoparticles inside of cells.

This could be used in a diagnostic capacity if the nanoparticles are functionalized with a

biomarker specific to a type of cancer cell. Transfection of the nanoparticles would only

occur if the cells were cancerous, and then transverse susceptibility could be used to de-

termine if the cells had taken up the particles, and therefore if they are cancerous. Even

though we used a Physical Properties Measurement System to provide the HDC it is well

worth noting that the fields needed for this experiment are less than 500 Oe, a field strength

easily achievable with an electromagnet. The measurements were also taken at room tem-

perature and not in a vacuum. Realistically, transverse susceptibility used in this capacity

could be set up as a table-top experiment rather than integrated into a commercial PPMS.

5.7 Conclusion

In this chapter, we presented DC magnetic characterization and transverse susceptibil-

ity data for Fe3O4 and Au-Fe3O4 nanoparticles for biomedical applications. We showed

that bare Fe3O4 particles have strong inter-particle interactions, compromising the mag-

netic properties, and likely leading to particle agglomeration. This is not preferable for
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biomedical applications such as drug delivery or hyperthermia, which require the uptake

of single particles within a specific size range.

Au-Fe3O4 particles showed almost identical magnetic properties to Fe3O4 particles

that were suspended in a paraffin wax matrix, showing that a coating of Au around the

Fe3O4 acts to greatly diminish or eliminate inter-particle interactions and agglomeration,

while still keeping the versatility of a magnetic nanoparticle in a biocompatible suspension.

Additionally, the Au coating is attractive because it offers more choices for functionalization

via Au-thiol chemistry.

While all the particles studied were superparamagnetic at room temperature and under

DC applied fields, it was demonstrated just how sensitive the ferromagnetic to superpara-

magnetic transition is to applied AC fields in the particle size range studied. The blocking

temperature of the Fe3O4 particles was slightly lower than that of the Au-Fe3O4 parti-

cles, and the Fe3O4 particles showed room temperature superparamagnetism even at 12

MHz. Some of the Au-Fe3O4 particles appeared to still be in the ferromagnetic state at 12

MHz, consistent with the higher blocking temperature, indicating a slightly higher average

particle size. This change in magnetic properties from superparamagnetic at DC fields

to ferromagnetic at AC fields is ideal for hyperthermia. This size range also allowed for

easy transfection by the cells, and led to the emergence of clear anisotropy peaks when

transverse susceptibility was performed on the cells with the nanoparticles.
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CHAPTER 6

“DUMBBELL” AND “FLOWER” Au-Fe3O4 COMPOSITE
NANOPARTICLES

6.1 Introduction

In the previous chapter, it was described how Fe3O4 nanoparticles with an Au shell

can be useful for several biomedical applications. While the magnetic core can be ma-

nipulated by DC and AC external fields, the gold surface can be functionalized to allow

for attachment of therapeutic molecules or contrast agents to be delivered to the tissue of

interest. So far, the key requirements have been that the Au have a surface available for

functionalization and that the Fe3O4 be of a size to promote cellular uptake, while main-

taining desirable magnetic properties. While most applications require that the particles

be superparamagnetic, we saw in the last chapter how tuning the size of the particles to

have frequency-dependent blocking around room temperature can optimize the magnetic

properties.

However, as was shown by our collaborators, because of the lattice constants of Au and

Fe3O4 being nearly 1:2 in ratio, the two can be grown epitaxially coupled to each other [93].

They used this fact to create composite nanoparticles of Au and Fe3O4 grown together in

the shape of a dumbbell, with the two sharing a common facet. One advantage this may

have over the core-shell structure is that not just the Au will be available for functionality

through thiol attachment, but the exposed Fe3O4 surface can be functionalized using dif-

ferent chemistry, allowing the same composite particle to deliver two types of molecules.

Moreover, it was proposed that the unique shape of the particle and the Au-Fe3O4 interface

could give rise to different magnetic properties than the core-shell particles.
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It was also found that by slightly changing the pH of the chemical reaction, the Fe3O4

can be nucleated on several Au facets, creating a composite structure similar to a flower in

appearance, with Au making up the core, and Fe3O4 nanoparticles making up “petals”. In

this chapter, we will show that this results in a system with vastly different magnetic prop-

erties from the dumbbell particles, which can be understood in terms of the complex and

competing interactions present in each composite particle. While the dual functionality

of the dumbbell particles is promising for biomedical applications, the anomalously high

anisotropy of the flower particles should be further explored for higher anisotropy applica-

tions such as beating the superparamagnetic limit for high density magnetic recording.

6.2 Nanoparticle Synthesis

All nanoparticles were synthesized at Brown University by Professor Shouheng Sun’s

group [93]. The dumbbell Au-Fe3O4 nanoparticles were prepared by decomposing iron

pentacarbonyl, Fe(CO)5, over the surface of Au nanoparticles in the presence of oleic acid

and oleylamine. The mixture was heated to reflux (300◦C), followed by oxidation in air.

The Au nanoparticles were formed in situ by injecting HAuCl4 solution into the reaction

mixture. Flower-shaped nanoparticles were synthesized by changing the solvent from a

non-polar hydrocarbon to a slightly polarized solvent (i.e. diphenyl ether). The size of the

Au particles can be tuned by controlling the temperature at which the HAuCl4 is injected.

The size of the Fe3O4 particles can be tuned by adjusting the ratio between Fe(CO)5 and

Au. More Fe(CO)5 results in larger Fe3O4 particles.

Figure 6.1 is a TEM image of a sample of dumbbell Au-Fe3O4 nanoparticles. For this

sample, the average Au size is about 8 nm, and the average Fe3O4 size is about 9 nm. The

dark particles represent the Au due to the higher electron density, and the lighter particles

are the Fe3O4. Figure 6.2 is a TEM image of the flower nanoparticles. For comparison

purposes, the flower sample has the same sizes of Au and Fe3O4 particles as the dumbbell

sample (8 nm and 9 nm respectively).
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Figure 6.1. TEM image of a dumbbell Au-Fe3O4 nanoparticle. (Courtesy of Brown Uni-
versity)

In this synthesis method, the Fe3O4 is grown epitaxially onto the Au seed particle,

which is possible because Au has an fcc structure with a = 4.08Å, while Fe3O4 has an

inverse spinel (cubic) structure with a = 8.35Å, which is within 3% of being exactly double

that of Au. This epitaxial growth is confirmed by high resolution TEM (HRTEM) for

the dumbbell nanoparticles (figure 6.3). The lattice fringes in each particle correspond

to atomic planes within the particle, indicating that both types of particles are single

crystalline. The distance between two adjacent planes in Fe3O4 was measured to be 0.485

nm, corresponding to the (111) planes in the Fe3O4. The lattice fringe spacing in Au is

0.24 nm, resulting from a group of (111) planes in the Au.

Once the Fe3O4 starts to nucleate on the Au in the hydrocarbon solvent, the free

electrons from the Au must compensate for the charge induced by the polarized plane at

the interface. As the Au has only a limited source of electrons, the compensation makes all

other facets of the Au nanoparticle electron deficient and unsuitable for multinucleation,

giving only the dumbbell structure. If the polarity used for the synthesis is increased, the

Au nanoparticle could compensate for the apparent electron density loss with charges from

the solvent, allowing nucleation on multiple facets, resulting in the flower structure. [93]
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Figure 6.2. TEM image of a flower Au-Fe3O4 nanoparticle. (Courtesy of Brown University)

6.3 DC Magnetic Measurements

Magnetic measurements in a static field were carried out on all samples using the Phys-

ical Properties Measurement System (PPMS). These measurements consisted of zero field

cooled and field cooled (ZFC-FC) curves and magnetization versus field (M-H) curves.

Figure 6.4 shows the ZFC-FC curves for the dumbbell nanoparticles taken in a field of 100

Oe. The ZFC curve shows a peak at around 60K, consistent with the transition from the

blocked state to the superparamagnetic state. The ZFC-FC curve for the flower nanopar-

ticles (figure 6.5) shows a sharper peak around 90K. There is an additional feature seen in

the FC curve, which is flat until about 65K, and then drops rapidly. This does not line up

with the peak seen in the ZFC curve, and is indicative of another characteristic tempera-

ture associated with the flower nanoparticles, which will be explored further in subsequent

sections. Since the Au and Fe3O4 components are the same size for both samples, the

increase in traditional blocking temperature associated with the flower nanoparticles has

to be from an added anisotropy contribution, likely due to the unusual configuration of the

particles.
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Figure 6.3. High resolution TEM image of a dumbbell Au-Fe3O4 nanoparticle. (Courtesy
of Brown University)

Interestingly, the ZFC curves for both the dumbbell and the flower Au-Fe3O4 particles

exhibit a negative magnetization at the lowest temperatures. This type of behavior has

not been reported in the literature for ferrite nanoparticles of any configuration, and is

likely due to the unique interfaces that are present in these systems. This feature is

currently under intense investigation, and recent experiments have revealed that for both

types of particles increasing the external DC magnetic field results in the low temperature

magnetization increasing. ZFC curves were taken for several fields to determine at which

field the 2K magnetization crosses from a negative value to a positive value. For the

dumbbell particles, this field is around 150 Oe, whereas for the flower particles, it is around

210 Oe. It is not surprising that in light of the multiple interfaces present in the flower

particles, there is a higher magnetic energy associated with changing the magnetization

from a negative value to a positive value.

M-H measurements for the dumbbell nanoparticles were taken at low temperature (2K)

and room temperature as well as some intermediate temperatures. Figure 6.7 shows the

curves for 2K and 75K, just above the blocking temperature. The coercivity at 2K was

measured to be 750 Oe, and at 75K the coercivity is zero, confirming that the particles

are then in the superparamagnetic state. For the flower nanoparticles (figure 6.8), the

low temperature M-H curve revealed a much higher coercivity (1270 Oe). In addition, the

curve was irreversible (did not close) up to 1.5 Tesla and did not saturate at fields up to 2
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Figure 6.4. Zero field cooled and field cooled curves for dumbbell Au-Fe3O4 nanoparticles.

Figure 6.5. Zero field cooled and field cooled curves for flower Au-Fe3O4 nanoparticles.
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Figure 6.6. Values of magnetization at 2K for the Au-Fe3O4 composite particles taken in
the zero field cooled condition for different values of H.

75



Figure 6.7. Magnetization versus field curve for dumbbell Au-Fe3O4 nanoparticles taken at
2K (blue) and 75K (black).

Tesla. These features, combined with the higher blocking temperature and anomalous 65K

feature in the FC curve, are indicative of a fundamental difference in magnetic response

between the dumbbell (which are closer to conventional) and the flower (more anomalous)

nanoparticles. One can infer that the major difference between the two systems is the

geometrical arrangement of the Fe3O4 clusters, and the role of the spins at the surfaces

as well as at the multiple interfaces between Fe3O4 and Au. It is known that interfacial

spin configuration can be greatly influenced in core-shell nanoparticles [60, 89, 75, 64], and

an important consequence is the observation of exchange bias in such materials. The next

section describes experiments that were done to probe the presence of exchange bias in

both of these types of Fe3O4 particles.
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Figure 6.8. Magnetization versus field curve for flower Au-Fe3O4 nanoparticles taken at
2K.

6.4 Exchange Bias and Training Effect in Flower-Shaped Nanoparticles

To test for the presence of exchange bias, both types of particles were cooled from room

temperature in a 5 Tesla field, and magnetization versus temperature measurements were

performed. While the dumbbell-shaped particles retained a symmetric hysteresis loop for

all temperatures after field-cooling, the flower-shaped particles exhibited a large horizontal

shift in their hysteresis loops (figure 6.9). This exchange bias was then tested for a number

of temperatures and shown to persist up to about 65K, lower than the blocking temperature

but consistent with the feature seen in the FC curve. This suggests two characteristic

temperatures for the flower particles, as opposed to only one for the dumbbell particles

(namely, the blocking temperature). This lower characteristic temperature for the flower

particles is likely due to the onset of a unidirectional anisotropy, whose origin can be

correlated with interactions between Fe3O4 particles sharing the same Au seed particle

(henceforth, these will be referred to as intra-particle interactions as opposed to the more
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well-known inter -particle interactions, the interactions between separate particles). In

addition to the horizontal shift in the M-H loops, there is a marked increase in coercivity

after field-cooling (1920 Oe after field cooling as opposed to 1270 Oe after zero field cooling),

which is another signature of exchange bias. Figure 6.10 shows the exchange bias field (HE ,

or the amount by which the loop is shifted) and coercivity (HC) as a function of temperature

for the flower particles. The shapes of the curves are similar, and both have 65K as

a characteristic temperature (HE goes to zero, HC decreases less rapidly, consistent with

more traditional nanoparticle systems). These similarities suggest that the two phenomena

are related, and that the anisotropy in these particles is uniaxial as well as unidirectional.

Exchange bias in nanostructures is a topic of current interest, and has been reported in

several core-shell particles [60, 89, 75, 64, 96]. These results for the flower-shaped Au-Fe3O4

particles represent the first report of exchange bias in nanoparticles with an ordered cluster-

type geometry, displaying both unidirectional and uniaxial anisotropy. Furthermore, since

exchange bias isn’t seen in either of the other two geometries studied (core-shell and dumb-

bell configuration), the behavior must be associated this particular configuration.

In many exchange-biased systems, the exchange field, HE , and the coercive field, HC ,

will decrease if the magnetization versus field measurement is repeated immediately after

an initial magnetization versus field measurement is taken. This decrease in HE and HC

upon subsequent M-H cycles is known as the training effect [60]. Like many exchange-

biased systems, the flower nanoparticles also exhibit a training effect. Figure 6.11 is a plot

of the field cooled hysteresis loop taken from positive saturation to negative saturation

and back to positive. The measurement was then repeated immediately without zeroing

out the field or warming the sample. HE was still present but to a lesser extent, and HC

decreased as well. The measurement was repeated for one more cycle, and HE and HC

decreased again, but the decrease from second to third cycle was not as much as from the

first to second cycle. In total, HC decreased from 1920 Oe in the first cycle to 1650 in the

third cycle. The inset of figure 6.11 shows HC as a function of M-H cycle.
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Figure 6.9. Magnetization versus field curve for flower Au-Fe3O4 nanoparticles taken at 2K
(blue) and 40K (purple) after cooling in a 5 Tesla field.

It is interesting to note that both the horizontal shift in hysteresis loop, and the training

effect seen in the nanoparticles, are different from those seen in many exchange-biased thin

films. In the latter case, the first field cooled M-H loop is also accompanied by a first order

reversal asymmetry. In these systems, the hysteresis loop has a sharp jump in the first

magnetization reversal (with decreasing field), while the second reversal (with increasing

field) is more gradual. In contrast, the second hysteresis loop is more symmetric with a

smaller decrease in HE and HC , and similar shapes for both magnetization reversals. Any

subsequent hysteresis loops are unchanged in shape from the first. It is suggested that in

thin films, two reversal mechanisms are present, with domain wall nucleation and prop-

agation being responsible for one reversal, and coherent rotation of magnetization being

responsible for the other [54]. In nanoparticle systems, there is only coherent magnetiza-

tion rotation, so the hysteresis loop can only show one type of reversal, which is consistent

with Zheng et al.’s model of training effects in γ-Fe2O3 coated Fe nanoparticles [96]. In
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Figure 6.10. HE and HC as a function of temperature for flower Au-Fe3O4 nanoparticles
after cooling in a 5 Tesla field.

this model, the training effect and horizontal shift in M-H loops has been interpreted by

a modified Stoner-Wohlfarth model, with an additional unidirectional anisotropy energy

term to the total energy. If the presence of a pinned layer, which causes the exchange bias,

is due to a spin-glass-like surface phase, then the frozen spins which were originally aligned

in the cooling field direction may change their directions and fall into other metastable

configurations during the hysteresis measurements, leading to a training effect. In this

case, it is not exactly clear whether it is a surface spin effect which is causing the training

effect, or the pinning of spins at the Au-Fe3O4 interface. In the last section, we will present

a schematic picture describing the various possible interactions in the flower particles.

6.5 AC Susceptibility Measurements

We measured the temperature dependence of AC susceptibility (both in phase χ′(T)

and out of phase χ′′(T)) in the frequency range of 10 Hz to 10 kHz for both sets of
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Figure 6.11. Training effect in flower-shaped Au-Fe3O4 nanoparticles. The inset shows the
coercivity (HC) as a function of the loop cycle.

composite nanoparticles. The data for both the dumbbell nanoparticles (figure 6.12) and

flower nanoparticles (figure 6.13) show superparamagnetic behavior with a maximum at a

temperature Tm, which shifts to a higher temperature with increase in frequency.

The out-of-phase component of the AC susceptibility for the flower particles shows a

shift in peak position with an increase in frequency, as well as a decrease in peak magnitude,

again consistent with superparamagnetic particles.

As discussed in chapter 2, The magnetization reversal of a single domain particle

over the anisotropy barrier (Ea) can be described using the Néel-Arrhenius law: τ =

τ0 exp(Ea/kBT ) [22, 73]. We first plotted 1/TB vs. ln(f), and from the fitting of the

experimental data using the above equation, we obtained values of Ea/kB for the flower

and dumbbell particles as 4211K (5.8 × 10−20 J) and 2741K (3.8 × 10−20 J) respectively.

The fitted values of τ0 for the flower and dumbbell particles were 4.5 × 10−17 s and 3.1 ×

10−15 s respectively. These attempt frequencies are unphysical and cannot accurately de-
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Figure 6.12. Temperature dependence of the in-phase χ′(T) and out-of-phase component
χ′′(T) of the magnetic susceptibility for the dumbbell Au-Fe3O4 nanoparticles.
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Figure 6.13. Temperature dependence of the in-phase χ′(T) and out-of-phase component
χ′′(T) of the magnetic susceptibility for the flower Au-Fe3O4 nanoparticles.

83



scribe the relaxation of these particles since the accepted τ0 for an array of non-interacting

superparamagnetic particles is between 10−10-10−9 s. This prompted us to try to use the

Vogel-Fulcher model to calculate τ0 and Ea/kB values for the Au-Fe3O4 particles (figure

6.15). Recall from section 2.2 that the Vogel-Fulcher equation can account for weak dipolar

interaction by incorporating the parameter T0 so that τ−1 = τ−1
0 exp(Ea/kB(T−T0)). This

time the values of τ0 and Ea/kB for the dumbbell particles were 0.80 × 10−8 s and 616K

respectively. These are both reasonable values and indicate that the weakly interacting

particle assumption is valid for the dumbbell nanoparticles. The value of T0, which can be

thought of as an activation energy for the dipolar interaction in this system, is 50K. For

the flower Au-Fe3O4 particles, we were still unable to obtain reasonable values for τ0 and

Ea/kB. In fact, the values deviated even further from the accepted range as we obtained

a τ0 of 0.36 × 10−27 s and an Ea/kB of 13675K. We also obtained a nonsensical value

of −105K for T0. Neither the Néel-Arrhenius fits nor the Vogel-Fulcher fits successfully

modeled the relaxation of the flower particles, which indicates that the particles are inter-

acting (since they don’t fit Néel-Arrhenius), but that the interactions cannot be described

as weak and dipolar. This points to the existence of a much stronger intra-particle type

interaction in the flower particles.

6.6 Transverse Susceptibility Measurements

To further study the anisotropy properties of both types of particles, we did transverse

susceptibility measurements over a broad range of temperatures (10K < T < 300K), with a

variable DC field, HDC , of ±5 kOe in both zero field cooled and field cooled conditions. Fig-

ure 6.16 shows the field-dependent transverse susceptibility data for the dumbbell-shaped

particles at fixed temperatures from 10K to 300K measured in the zero field cooled condi-

tion. The plot represents unipolar field sweeps from positive (+5kOe) to negative (−5kOe)

fields, chosen to be far above saturation. The two peaks seen in the scan below the block-

ing temperature occur at the positive and negative anisotropy fields. These peaks shift to

higher fields and broaden as the temperature decreases. It has been suggested that the
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Figure 6.14. Plot of ln(f) against 1/TB for both types of nanoparticles. The solid red line
is the fit to the Néel-Arrhenius law.
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Figure 6.15. Plot of ln(f) against 1/TB for both types of nanoparticles. The solid red line
is the fit to the Vogel-Fulcher relation.
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Figure 6.16. Unipolar transverse susceptibility curves of the dumbbell Au-Fe3O4 nanopar-
ticles taken at several different temperatures.

broadening of anisotropy peaks at the lowest temperatures is due to the random freezing

of spins [66]. At higher temperatures, above the blocking temperature, the peaks merge

into a single peak at zero field with a monotonic decrease in transverse susceptibility as the

field is increased in the negative and positive directions. This signals the transition from

the blocked state to the superparamagnetic state.

Figure 6.17 shows the low-field portion of a bipolar scan taken at 30K for the same

sample of dumbbell-shaped particles as presented in figure 6.16. As is the case with most

nanoparticles, two distinct sets of peaks can be seen, the narrower peak with the higher

magnitude (±HK1) occurring after saturation, the broader peak with the lower magnitude

(±HK2) occurring after the field passes through zero. As discussed in chapter 3, this is

likely due the differences in the energy states of the system during saturation (when the

Zeeman energy is highest), and after the field is decreased to zero, allowing some of the
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Figure 6.17. Low field portion of a transverse susceptibility scan of the dumbbell Au-Fe3O4

nanoparticles taken at 30K. The arrows indicate the sequence of measurement.

spins to randomize again. Also recall that according to Aharoni’s theory [2], one should

see a switching peak as well for a Stoner-Wohlfarth particle. In nanoparticle arrays, the

switching field associated with each particle is not a well-defined peak, and is instead a

distribution, which is likely merged into the HK2 peak. For the dumbbell nanoparticles,

these two separate peaks, HK1 and HK2, are symmetric with respect to the positive to

negative (+scan) and the negative to positive (−scan). We also see no shift in peak

position after cooling in a 5 Tesla field, showing the absence of exchange bias, and thus

consistent with the field cooled M-H measurements.

In figure 6.18, we present the unipolar transverse susceptibility data for the flower

nanoparticles at several different temperatures. The most important thing to note is the

dramatically large difference in the anisotropy fields for the flower-shaped particles com-

pared to the dumbbell-shaped particles. The first set of anisotropy peaks for the flower

particles (HK1 ≈ ±1650 Oe for T = 10K) occur at fields three times higher than that for the

dumbbell particles (HK1 ≈ ±560 Oe). The position of the second set of peaks anisotropy
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Figure 6.18. Unipolar transverse susceptibility curves of the flower Au-Fe3O4 nanoparticles
taken at several different temperatures.

peaks for the flower particles (HK2 ≈ ±4050 Oe for T = 10K) is over six times higher than

the position of the corresponding dumbbell particle anisotropy peaks (HK2 ≈ ±630 Oe).

The ±HK1 and ±HK2 for T = 30K (figure 6.19) are ±1650 Oe and ±3000 Oe respec-

tively, depending on the +scan or −scan. These values, along with the unipolar data, are

consistent with the flower-shaped particles having higher shape and surface anisotropies

than the dumbbell-shaped particles. The asymmetry in the peak height, width, and posi-

tion in the unipolar scan is much more pronounced for the flower particles as well. The fact

that there is a much greater discrepancy between HK2 peaks of the two types of particles

than the HK1 peaks is also consistent with the large difference seen in coercivity between

the two types of particles since the HK2 peak can be correlated with the switching of the

particles. It should be kept in mind that peak width can also be correlated with other

effects, such as short-range interactions within clusters. The asymmetry of the transverse
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Figure 6.19. Low field portion of a transverse susceptibility scan of the flower Au-Fe3O4

nanoparticles taken at 30K. The arrows indicate the sequence of measurement.

susceptibility peaks being higher in the flower particles also can be reconciled with the fact

that each flower particle is a compact cluster of Fe3O4 nanoparticles bound to a single Au

nanoparticle, thus forming a geometry favoring a certain level of short-range interactions

between the spins. The presence of such interactions in clusters would make it relatively

harder (and the peaks sharper) for collective flipping of the spins as the field polarity

is changed during the scans. The relatively lower peak asymmetry in the dumbbells is

consistent with the absence of such short-range cluster type interactions.

Figures 6.20 and 6.21 show the evolution of both sets of peaks with temperature for the

dumbbell-shaped and flower-shaped particles respectively. The anisotropy fields of both

these nanoparticle types decrease with increase in temperature. The striking difference in

the first peak (HK1) and second peak (HK2) positions in the flower particles is most evident

in this figure when compared to the dumbbell particles, underscoring the role of shape and

surface anisotropy in the Au-Fe3O4 system.
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Figure 6.20. Values of ±HK1 and ±HK2 as a function of temperature for the dumbbell
Au-Fe3O4 nanoparticles.

Figure 6.21. Values of ±HK1 and ±HK2 as a function of temperature for the flower Au-
Fe3O4 nanoparticles.
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The exchange bias in the flower nanoparticles was further probed by transverse sus-

ceptibility measurements. In comparing the ZFC and 5 Tesla FC transverse susceptibility

curves (figure 6.22), we can see that the shapes of the curves and the relative positions of

the peaks remained the same, but the curves were horizontally shifted as expected. While

the narrower peaks measured in the zero field cooled condition were seen at HK1 ≈ ±1650

Oe and HK2 ≈ ±3000 Oe, in the field cooled condition case the anisotropy field values were

HK1 ≈ +1100 Oe, −1500 Oe and HK2 ≈ −2600 Oe, +2250 Oe respectively depending on

the positive or negative scan. It is also interesting to note the difference in shape of the

transverse susceptibility scans for the FC versus the ZFC case. The FC scans have the nar-

rower peaks. Recall that the width of the peaks depends on the random freezing of spins.

In the FC situation, the spins are not randomly frozen; their directions are determined by

the field in which they are cooled, thus narrowing the peaks. The difference of HK1’s (i.e.

∆HK1) and HK2’s (i.e. ∆HK2) between the +scan and −scan in field cooled transverse

susceptibility is a measure of the exchange bias, HE . The temperature dependence of both

∆HK1 and ∆HK2 matches very well with the HE(T) from the M-H data shown in figure

6.10. Our transverse susceptibility study of exchange bias in these nanoparticles represents

the first such study in exchange-biased nanostructures.

6.7 Memory Effect in Flower and Dumbbell Nanoparticles

The phenomena associated with the intentional decay of magnetization at one tempera-

ture while cooling, and the observation of an imprint of that decay at the same temperature

upon warming back up are often referred as “memory” effects. This is because it seems

to be that the system retains a memory of its thermal and magnetic history. To perform

memory effect measurements on both types of samples, we employed the same experimen-

tal procedure that was described by Sun et al. [87]. The experiment was conducted by

cooling the sample in a 50 Oe field (FC) from 300K at a constant rate of 2 K/min, and

measuring the magnetization while cooling. The measurement was stopped at T = 90K,

70K, 50K, 20K, 10K and 2K for the flower particles, and T = 70K, 50K, 20K, 10K and 2K
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Figure 6.22. Zero field cooled and field cooled transverse susceptibility curves for the flower
Au-Fe3O4 nanoparticles taken at 30K.

for the dumbbell nanoparticles for a wait time of 2 hours. During that wait time, the field

was switched off, and the magnetization was allowed to relax. The solid squares in figures

6.23 and 6.24 were collected in this manner. It can be clearly seen that during the wait

time, the magnetization consistently relaxed for T > 20K, indicating the absence of any

short range order. However at T = 10K and 2K, after the wait time there is no change

in magnetization (even though the field was switched off), indicating that a robust short

range order had set in. After reaching the lowest temperature of 2K, the magnetization

was measured (open circles) while warming back up (FW) to 300K at the same rate of

2K/min. The M(T) measured during this cycle also shows step-like behavior at the stop

temperatures of 50K, 70K and 90K ,indicating that the system can retain memory of its

thermal and magnetic history at those temperatures. The memory effect is observed for

both the flower and dumbbell nanoparticles. Memory effects have been studied extensively

in spin glasses, and have been reported in nanoparticle systems as well [87, 34, 71, 94, 10].
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Figure 6.23. Memory effect in dumbbell Au-Fe3O4 nanoparticles. Black squares show field
cooling, red circles show field warming.

The origin of this memory effect in spin glasses is understood in terms of hierarchal

organization of the metastable states as a function of temperature. In nanoparticle systems,

the memory effect is attributed more to the distribution of relaxation times arising due

to the distribution of particle sizes. For example, when the magnetic field is turned off

at 90K, those particles with blocking temperatures above 90K relax easily, while the rest

remain aligned with the field. At the next lower temperature, smaller particles with a

lower blocking temperature can relax shortly after the removal of a field. This process is

repeated for the temperatures at which the memory effects are observed. Upon warming,

those particles that relaxed at the lowest temperatures are re-aligned with the field, and

so on until all the stop temperatures have once again been reached upon warming. In

the present case we have a relatively uniform particle size, but the shape of the composite

particles along with inter-particle interactions would lead to a distribution in relaxation

times.
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Figure 6.24. Memory effect in flower Au-Fe3O4 nanoparticles. Black squares show field
cooling, red circles show field warming.

6.8 Origins of Enhanced Anisotropy and Exchange Bias in Flower

Nanoparticles

What is clear from the above experiments is that the dumbbell-shaped nanoparticles

behave in a much more conventional manner than the flower-shaped nanoparticles, despite

the fact that both of these systems are composite nanoparticles. We believe that it is the

complex interactions at the multiple surfaces and interfaces of the flower particles that can

account for the deviation in magnetic properties between the two systems. In this section,

we examine the role of the surface anisotropy and Au-Fe3O4 interactions, as well as the

interactions between Fe3O4 nanoparticles sharing the same Au particles, and correlate

these interactions with the behavior observed.

Several groups have focused on anomalous magnetic behavior in ferrite nanoparticles

due to surface spin disorder such as exchange-biased hysteresis loops and high field irre-

versibility [38, 50, 90, 92, 4]. An explanation of this behavior is that when a large enough
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fraction of atoms reside on the surface of a particle, the broken exchange bonds are suffi-

cient to induce surface spin disorder, thus creating a core-shell structure made of the ferrite

core with a shell of disordered spins. These disordered spins can take on a number of config-

urations, one of which can be chosen by field cooling the particle to induce a unidirectional

anisotropy resulting in a shifted hysteresis loop [38]. It is thought that the lowest energy

configuration of surface spins in the zero field cooled condition of a spherical particle is

the one in which the spins point out in the radial direction from the particle. Although

Bødker et al. have demonstrated via symmetry arguments that a perfect spherical particle

should have a zero net contribution from surface anisotropy [8], it is important to note

that in both dumbbell and flower nanoparticles, the spherical symmetry is broken result-

ing in a net surface anisotropy. However, the fact that we see no signature whatsoever of

a unidirectional anisotropy in the dumbbells suggests that surface anisotropy alone cannot

account for the behavior seen in the flower particles. It is possible that the surface spin

configuration of the dumbbell particles can explain the spin-glass-like behavior seen in the

AC susceptibility data and that other, stronger interactions suppress this behavior in the

flower nanoparticles.

In the flower-shaped system, two Fe3O4 particles located at opposite ends of the struc-

ture are separated by one Au particle, and the three particles as a group form a structure

reminiscent of those seen in thin films displaying giant magnetoresistance (GMR). Such

multilayer films have two metallic ferromagnetic layers separated by a nonmagnetic metal

(unlike the situation described here in which the ferromagnetic phase is insulating). The

result is an indirect exchange coupling between the two ferromagnetic layers mediated by

the RKKY interaction. The sign and strength of the coupling constant is dependent upon

the space between the layers. In the case of the flower nanoparticles, it is possible that

the distance between Fe3O4 particles (i.e. the radius of the Au particle) sets up a an

antiferromagnetic coupling between the Fe3O4 nanoparticles reminiscent of this type of

exchange (figure 6.25). A similar, indirect ferromagnetic coupling has been observed for

adjacent Fe nanodots sharing a metallic (Cu) substrate [65]. In this work, the exchange
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Figure 6.25. Schematic of possible interactions in flower Au-Fe3O4 leading to anomalous
behavior.

strength could be tuned by changing the distance between nanodots. This tells us that it is

reasonable to postulate that at the distances separating the Fe3O4 nanoparticles, indirect

exchange through the Au-Fe3O4 interfaces can result in antiferromagnetic coupling, setting

up the unidirectional anisotropy needed to observe exchange bias effects. Just as Pierce et

al. found that the metal-mediated coupling dominated over anisotropy effects, we believe

that the interfacial coupling between the Au and Fe3O4 dominates the low temperature

behavior seen. However, since there are multiple Fe3O4 particles sharing interfaces with the

Au particle, this antiferromagnetic coupling could have the added feature of spin frustra-

tion. While the magnetization states of two opposite particles are determined by indirect

exchange across the Au, they can still be directly adjacent to one another, creating a com-

petition between the metal-mediated exchange and traditional inter-particle interactions.

This competition could leave the system frustrated adding to the large anisotropy seen.

It should be emphasized that the anomalous magnetic behavior seen in the flower

nanoparticles can be observed below 65K, which is still below the superparamagnetic tran-
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sition and consistent with the plateau in the FC curve. We believe this characteristic tem-

perature is due to thermal energy overcoming the energy associated with the Au-Fe3O4

interaction. For temperatures below the interaction energy, the antiferromagnetic-type or-

der is robust and we see the exchange bias and training effects. At the thermal activation

energy (65K), the coupling is broken and we have a situation where the particles are still

in the blocked state and, according to the transverse susceptibility measurements, still

show quite a bit more anisotropy than the dumbbell particles. At 75K, the values of HK1

and HK2 for the flower nanoparticles are 550 Oe and 1770 Oe respectively (figure 6.21),

whereas for the dumbbell nanoparticles the HK1 and HK2 values are 130 Oe and 220 Oe

respectively (figure 6.20). This indicates that even after the unidirectional anisotropy is

gone, the flower nanoparticles still possess a higher effective anisotropy than the dumbbell

particles. Even though the antiferromagnetic coupling has likely been broken, the spin

frustration associated with a cluster geometry of Fe3O4 may still exist (figure 6.25). It is

also possible that rather than possessing broken exchange bonds which normally lead to

surface disorder in small ferrite nanoparticles, the nucleating Fe3O4 particles making up

the “petals” could be growing together into a larger structure, forming exchange bonds

with each other, resulting in more of a continuous, cluster-type particle. After projecting

a three dimensional particle onto a two dimensional screen when taking a TEM image, it

is difficult to tell from figure 6.2 how many of the Fe3O4 particles are in direct contact.

6.9 Conclusion

In this chapter, the magnetic properties of two new configurations of Au-Fe3O4 were

presented. While the dumbbell-shaped Au-Fe3O4 did not show behavior that different from

traditional Fe3O4 nanoparticles, it is still an important system to explore for biomedical

applications as two separate surfaces are available for functionalization, and both the Au

and Fe3O4 sizes can be controlled. It would be interesting to look at various size com-

binations of Au and Fe3O4 to see which combination performs best for functionalization,

cellular uptake, and magnetic manipulation while inside the cells.
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The flower-shaped nanoparticles proved to be a fascinating system from a fundamental

physics point of view due to the combination of competing interactions giving rise to

exchange bias and training effects in the low temperature regime, while maintaining an

anomalously high anisotropy in the intermediate regime before blocking. In order to fully

develop the model briefly proposed by the schematic in figure 6.25, it would be beneficial to

look at several different sizes of Au particles to determine the dependence of the interaction

strength on the distance between particles. Changing the size of the Fe3O4, as well as the

number nucleated onto the Au (possibly by making very small changes to the reaction pH),

could help form a better picture of the spin frustration likely involved between adjacent

Fe3O4 particles.
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CHAPTER 7

SINGLE LAYER CrO2 AND BILAYER CrO2/Cr2O3

THIN FILMS

7.1 Introduction

CrO2 belongs to an important class of oxides. It is ferromagnetic with a Curie tem-

perature of 395K. Band structure calculations have predicted that it is nearly 100% spin-

polarized, meaning all of the electrons at the Fermi level have the same spin orientation,

and experiments support these predictions [77]. This makes CrO2 an attractive material

for spintronic devices such as spin valves and magnetic tunnel junctions.

Cr2O3 is an antiferromagnet with a Néel temperature of 307K. It is the more thermo-

dynamically stable of the two chromium oxide phases. In zero magnetic field, the Cr3+

ions are antiferromagnetically aligned parallel to the rhombohedral c axis. When a strong

enough external magnetic field is applied along the c axis, the spins switch to lie in the

basal plane [57]. Rado et al. were the first to experimentally study the existence of both

magnetic and electric field-dependent magnetoelectric (ME) effect in Cr2O3 powders [68].

The magnetically induced ME effect is manifest as a magnetic-field induced voltage, while

the electrically induced ME effect is a magnetic moment that arises in the presence of an

electric field. This dual manipulation of one material could have important consequences

in the next generation of devices. Cr2O3 is also the native oxide that forms on the surface

of CrO2 films and there is evidence that the CrO2 layer may polarize the Cr2O3 layer [14].

Moreover, the multifunctionality of a structure with spintronic and multiferroic prop-

erties could be of considerable interest from basic and applied materials perspectives. This

chapter describes the growth, characterization, and magnetic properties of CrO2 thin films

and CrO2/Cr2O3 bilayer thin films. We present evidence for exchange coupling between the
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layers seen as an increase in anisotropy that cannot be explained by the varying thickness

of the CrO2 phase alone.

7.2 Thin Film Growth

High-quality epitaxial CrO2 films were grown by Professor Arunava Gupta’s group at

the University of Alabama MINT Center. Atmospheric pressure chemical vapor deposition

(CVD) was used to grow CrO2 on (100)-oriented TiO2 substrates using chromium trioxide

(CrO3) as a precursor. In this reaction, oxygen is used as a carrier gas in a two-zone

furnace to transport the precursor from the source region to the reaction zone, where it

decomposes selectively to form CrO2. The films were grown at a substrate temperature of

about 400◦C, with the source temperature maintained at 260◦C, and an oxygen flow rate

of 100 sccm [43].

It is well known that formation of a natural Cr2O3 layer will occur on the CrO2 surface

because it is thermodynamically a much more stable phase than CrO2 [55]. Because of

its metastability, bulk CrO2 will also irreversibly be reduced to Cr2O3 at temperatures

higher than about 425◦C. The MINT group took advantage of this transformation to grow

CrO2/Cr2O3 heterostructures of varying relative thickness. For example, by post-annealing

a CrO2 film at 450◦C for varying lengths of time, the film starting from the top surface

layer can be controllably converted to Cr2O3. All films studied were grown on TiO2, single

crystal (100) substrates, with 5 × 5 mm2 dimension, and of varying thicknesses and Cr2O3

content. In order to decouple the effect of thickness on magnetic anisotropy from that of

interface coupling in bilayers, we have also examined films of CrO2 with varying thickness

in the range of 20nm to 725 nm, whereas the total thickness of the CrO2/Cr2O3 bilayers

was kept constant at 200 nm with different proportions of CrO2 and Cr2O3. This does

not account, however, for the variation in volume arising due to the difference in density

between the two.

The CrO2 and CrO2/Cr2O3 bilayer films were studied at MINT using a Philips X’Pert

x-ray diffractometer and electron microscopy. Dr. Maria Varela and Dr. Stephen Pennycook
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of Oak Ridge National Laboratory imaged one of the bilayers using an aberration-corrected

scanning transmission electron microscope (STEM). Figure 7.1 shows a cross-sectional

STEM image of the CrO2/Cr2O3 bilayers, where it can be seen that the two layers are

well-aligned and form an abrupt interface. The Cr2O3 layer is crystalline and it is grown

epitaxially on top of the CrO2 with very few defects. The grain boundary defect, which in

the figure is marked by an arrow, propagates into the Cr2O3 layer directly from the CrO2

layer. Measurements of the STEM done at Oak Ridge National Laboratory indicated that

the (0001) plane of the Cr2O3 with a corundum structure is parallel to the (100) plane of

the rutile CrO2. Also, the in-plane [010] and [001] directions of CrO2 are aligned with the

[112̄0] and [1̄100] directions of Cr2O3 respectively. This epitaxial relationship is consistent

with what has been observed for the naturally formed Cr2O3 surface layer on commercial

acicular CrO2 particles [95].

Figure 7.1. Cross-sectional high resolution STEM micrograph of heteroepitaxial
CrO2/Cr2O3 bilayer. A grain boundary defect that propagates across the CrO2/Cr2O3

interface is indicated with an arrow. Image courtesy of Oak Ridge National Laboratory.

102



7.3 DC Magnetic Characterization

Magnetization versus field (M-H) curves were done at the University of Alabama (us-

ing an alternating gradient magnetometer), and here at the University of South Florida

(using our Physical Properties Measurement System). Figures 7.2 and 7.3 show the M-H

curves for the CrO2 films of 21.5 nm and 725 nm respectively taken at room tempera-

ture. Measurements were done along the b axis ([010] direction, red circles) and c axis

([001] direction, black circles). Figure 7.4 shows the room temperature M-H curves for the

CrO2/Cr2O3 bilayers. The 100% CrO2 film corresponds to the 200 nm CrO2 film, and the

inset shows the b axis and c axis data for this sample. The step observed in the hysteresis

loops near the saturation field in figure 7.3 is an artifact of the AGM measurement. Miao

et al. showed in reference [55] that the magnetic easy axis of CrO2 changes orientation

with film thickness. This is attributed to the competition between the magnetocrystalline

anisotropy of the CrO2, and the strain induced by the lattice mismatch with the substrate.

The magnetocrystalline anisotropy of CrO2 favors the magnetic easy axis to orient along

the in-plane c direction, as observed both for bulk samples [70], and also for thicker films

[43]. The strain anisotropy is an interface effect, and strained thin films grown on (100)

TiO2 substrates exhibit magnetic easy axis alignment along the b direction, since the lattice

misfit is larger along the b than in the c direction (3.91% vs 1.44%). Thicker films exhibit

inhomogeneous strain distribution, with the magnetic easy axis vector rotating from the

b direction near the substrate to the c direction closer to the surface. Consistent with

this picture, the M-H curves for the 200 nm and 725 nm films exhibit an easy axis along

the [001] direction, and a hard axis along the [010] direction. For the 21.5 nm film, the

M-H data indicate an easy axis along the [010] direction, and a hard axis along the [001]

direction.

The decrease in saturation magnetization for the bilayer films is due to the decrease

in ferromagnetic content (CrO2) by annealing and conversion to anitferromagnetic Cr2O3.

The thicknesses of the Cr2O3 layers were deduced from the decrease in saturation magneti-

zation (MS) of the bilayer in comparison to the pure CrO2 film as the Cr2O3 contribution
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Figure 7.2. Hysteresis loops of 21.5 nm thick CrO2 film taken along the b and c axes.

to MS is negligible. The estimated percent content of CrO2 remaining in different bilayer

films measured were 64%, 50%, and 32%. The annealing times for these films were 14h

(64% CrO2), 24h (50% CrO2), and 34h (32% CrO2). For all the bilayers, the room tem-

perature M-H curves showed a magnetic easy axis along the [001] direction (c axis), and a

hard axis along the [010] direction (b axis).

In figure 7.5 the temperature dependence of the coercivity with variation of CrO2

content in CrO2/Cr2O3 bilayers is compared to the pure CrO2 film of the same total

thickness of 200 nm. HC of the bilayers increases in comparison to the pure CrO2 film

depending on the thickness of Cr2O3. For the bilayer with 64% CrO2 content (≈64 nm

antiferromagnet thickness), enhancement persists even above the Néel temperature (307K)

up to 350K. Increase in HC above TN is reported in single crystalline exchange-biased

antiferromagnetic FeF2 films with Co [42] or Fe [23] ferromagnetic layers. This is interpreted

as being due to the short range order induced in the antiferromagnet by the ferromagnet.

As the CrO2 (Cr2O3) content increases (decreases) the variation in HC decreases and well
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Figure 7.3. Hysteresis loops of 725 nm thick CrO2 film taken along the b and c axes.

above the Néel temperature it becomes equal to that of the pure CrO2 film. The inset of

figure 7.5 shows the variation of HC with CrO2 content at room temperature. HC increases

from 47 Oe for the 100% CrO2 film of 200 nm to 174 Oe for the bilayer film with 64%

CrO2, and with further decrease in CrO2 content HC decreases. The films with 50% and

32% CrO2 content have HC values of 145 Oe and 83 Oe respectively. HC for the CrO2 films

alone is inversely proportional to the ferromagnetic thickness (tFM ). The enhancement and

functional dependence of HC on tFM in the bilayer films strongly suggests the existence

of a coupling between the CrO2 and Cr2O3 layers. To further probe the nature of the

coupling, we measured the hysteresis loops of the bilayer samples after cooling them from

above the Néel temperature in a field of 1 Tesla. We did not see any shift in M-H even at

10K except for one film with 32% CrO2 (64 nm), for which a very small exchange field of

12 Oe was observed. This implies that the exchange coupling mechanism in this system

is primarily manifest in the enhancement of HC , and not accompanied by a shift in M-H

(HE).
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Figure 7.4. Hysteresis loops for CrO2/Cr2O3 bilayers of varying CrO2 content. Inset shows
the hysteresis loops for the 100% 200 nm CrO2 film taken along the b and c axes.

The role of thickness of the antiferromagnetic and ferromagnetic layers in a number of

exchange-biased systems has been studied in detail. In general either the ferromagnetic

layer or the antiferromagnetic layers only varied, and the main results of these studies

indicate that the exchange bias, HE , and coercivity, HC , are inversely proportional to the

thickness of the ferromagnetic layer [59]. Furthermore, HE and HC are independent of

antiferromagnetic thickness (tAFM ) for thick films, and HE abruptly decreases and goes to

zero for small tAFM [59]. In the CrO2/Cr2O3 system, the functional dependence of HE and

HC on tFM and tAFM is rather complicated as tFM and tAFM are varying simultaneously.

It is the total thickness (200 nm) of the bilayer which is held constant. Apart from this,

the tFM falls in the range of CrO2 thickness wherein both the inhomogeneous strain and

the magnetocrystalline anisotropy compete, and the easy axis switches with both thickness

and also temperature. This point will be further discussed in subsequent sections.
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Figure 7.5. Variation of coercivity as a function of % CrO2 in CrO2/Cr2O3 bilayer films.

7.4 Transverse Susceptibility Measurements for CrO2 Films

In figure 7.6 we present the unipolar (positive to negative saturation) field-dependent

change in transverse susceptibility (χT ) obtained for the CrO2 films with different thick-

nesses at room temperature with the static magnetic field, HDC , applied along the hard

in-plane axis of magnetization (c axis for the 21.5 nm film, b axis for 200 nm and 725

nm films). Identical anisotropy peaks are seen in χT symmetrically located around H=0,

followed by an approach to saturation at higher fields. This is different than the data

we saw for the nanoparticle systems, because here we can discern one distinct anisotropy

field, which is symmetric regardless of direction of transverse susceptibility scan (i.e. HK1

= HK2 = HK). We also do not see a separate switching peak along the hard axis, because

as the out-of-plane hysteresis loops indicate, the switching field and anisotropy field are

very nearly equal. The anisotropy peak height increases with increase in film thickness. An

increase in the anisotropy field, HK , with increase in film thickness is also observed. Using
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the standard relation HK = 2Keff/2MS , we extracted the effective anisotropy Keff at room

temperature. CrO2 films are known to have a prominent in-plane uniaxial anisotropy, lead-

ing to the assumption that Keff ≈ K1 [79]. Furthermore, transverse susceptibility performed

on thin CrO2 films grown from the same group in 2000 revealed that the magnetization

rotation could be successfully reproduced using a coherent rotation model, resulting in

behavior very similar to a Stoner-Wohlfarth particle [79]. Using HK=80 Oe and MS = 465

emu/cc, we calculated Keff as 1.9 × 104 erg/cc for the 21.5 nm CrO2 film. Using the same

procedure, we calculated Keff values for the 200 nm and 725 nm CrO2 films as 1.1 × 105

erg/cc (HK = 514 Oe) and 2.5 × 105 erg/cc (HK = 1050 Oe) respectively. These results

agree well with the values obtained by Miao et al. in their thickness dependent study of

Keff in CrO2 films using DC magnetic measurements [55].

Figure 7.6. Unipolar transverse susceptibility data for CrO2 films of varying thicknesses
taken at room temperature. Scan was taken from positive to negative saturation.

At 10K, the HK and Keff don’t show the same increase in value with increase in thickness

(figure 7.7). The 725 nm film still has the highest HK (1340 Oe) and Keff (4.3×105 erg/cc),

but the 21.5 nm films has a higher HK (815 Oe) and Keff (2.6 × 105 erg/cc) than the 200

nm film (390 Oe and 1.2 × 105 erg/cc). The room temperature magnetic properties and
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Figure 7.7. Transverse susceptibility data for CrO2 films of varying thicknesses taken at
10K. Scan was taken from positive to negative saturation.

low temperature magnetic properties are collected in table 7.1. The low temperature MS

values were taken from reference [55]. The films used in that study were also grown by

Professor Gupta’s group, so the two sets of films can be compared with confidence.

CrO2 MS HK Keff MS HK Keff

thickness (emu/cc) (Oe) (erg/cc) (emu/cc) (Oe) (erg/cc)
(nm) (RT) (RT) (RT) (LT) Ref. [55] (LT) (LT)

21.5 465 80 1.9 × 104 640 815 2.6 × 105

200 436 514 1.1 × 105 640 390 1.2 × 105

725 486 1050 2.6 × 105 640 1340 4.3 × 105

Table 7.1. Magnetic properties of CrO2 films at room temperature (RT) and low temper-
ature (LT).

In order to understand this complex thickness dependence on the anisotropic proper-

ties, transverse susceptibility measurements were done over the full range of temperatures

and the HK values are plotted in figure 7.8. For the 21.5 nm and the 725 nm films, the peak

position shifts to higher fields as the temperature decreases. The temperature variation

is dominated in the 21.5 nm film by strain effects from the substrate, which introduces a
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Figure 7.8. Temperature dependence of HK for various thicknesses of CrO2.

magnetoelastic term to the effective anisotropy. The 725 nm film will behave the closest

to a bulk sample where the magnetocrystalline anisotropy will dominate, and an increase

in anisotropy with decrease in temperature is what is expected for most bulk systems [70].

For the 200 nm film there is a slight increase in HK with increase in temperature. This

intermediate thickness film should have the most competition between strain anisotropy

and magnetocrystalline anisotropy, and in fact it falls within the range (50-250 nm) re-

ported by Miao et al. where these competing anisotropies induce a change in easy axis of

magnetization. The transverse susceptibility measurements presented here seem to also

display a temperature dependent switching of easy axis due to the inhomogeneous strain

distribution, resulting in a decrease in anisotropy field at lower temperature.

Interestingly, the 200 nm thin film also shows a double switching feature consistent

with the findings reported in reference [55], likely due to the large presence of both strain

and magnetocrystalline anisotropies favoring different magnetic easy axes. While the HK

measurements for the 200 nm film for the temperatures shown in figure 7.8 were all done

110



with HDC along the [010] direction, systematic measurements done with HDC along the

[001] direction showed that the c axis was an easy axis at room temperature (consistent

with figure 7.4) but that as the temperature was lowered, it became a hard axis of mag-

netization. Figure 7.9 shows transverse susceptibility scans with HDC along the c axis for

several different temperatures. While just one peak at the switching field is seen at room

temperature, anisotropy peaks begin to emerge as the temperature decreases. The [001]

peaks appear different from the [010] peaks because the [010] peaks behave as expected

for a thin film measured along the hard axis, that is, the anisotropy peaks are sharp and

coincide with the switching peak. The [001] peaks behave more as if the anisotropy fields

have a slight distribution and a separate switching field manifest as a separate peak closer

to H = 0. This is consistent with the emergence of the [001] being strain-related and in-

homogeneous, so that the easy axis is rotating throughout the thickness of the film. This

could give rises to slight distribution in HK which is not equal to HS . The increase in

anisotropy associated with the presence of these peaks when the temperature is lowered as

HDC is applied along the c axis could help to explain the anomalous decrease in anisotropy

with decrease in temperature as HDC is applied along the b axis. As expected, neither the

21.5 nm film nor the 725 nm film showed this behavior at low temperatures when HDC

was applied along their respective easy axes.

7.5 Transverse susceptibility Measurements for CrO2/Cr2O3 Bilayers

Transverse susceptibility measurements were carried out on all bilayer samples by ap-

plying the HDC parallel to the hard [010] axis. First, transverse susceptibility was measured

on a fully decomposed sample to look at the signal due to Cr2O3 only. As expected for

antiferromagnetic materials, a single sharp peak was present at H=0 and the curves did not

flatten out at high fields, indicative of a failure to reach saturation. Non-saturating magne-

tization is a known feature of antiferromagnetic materials that is also commonly observed

in M-H curves. We observe a distinct asymmetry in the shape of the curves for negative

and positive field polarities. This could be associated with slightly different responses of
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Figure 7.9. Unipolar transverse susceptibility scans of 200 nm CrO2 film for several tem-
peratures showing anisotropy peaks emerging as the temperature is decreased. Here HDC

is applied along the [001] direction from positive to negative saturation.

the sublattice magnetization components of the antiferromagnetic order when the field is

reversed. While this is generally not seen in DC magnetization measurements (which is a

volume magnetization measurement), the transverse susceptibility geometry, which probes

the transverse component of the magnetization vector, is highly sensitive to the influence

of the sublattice magnetization energy.

The transverse susceptibility measurements on the bilayers interestingly exhibit com-

bined features associated with both the ferromagnetic CrO2 (anisotropy peaks), and anti-

ferromagnetic Cr2O3 (peak at H=0, as well as the nonsaturation and asymmetry discussed

earlier). The transverse susceptibility data for all the samples containing different amounts

of CrO2 percent content at room temperature is presented in figure 7.10. The most no-

ticeable feature of the bilayer data is the shift in the anisotropy peaks to higher fields as

the content of Cr2O3 increases. The anisotropy peaks are not as sharp as in the case for

CrO2, but appear as broad shoulders about the center peak. The broadening becomes
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more pronounced with increase in Cr2O3 until at 32% CrO2, anisotropy peaks can barely

be made out. There is also a prominent strain-associated peak that appears and becomes

more prominent at lower temperatures (figure 7.13). The emergence of peaks which can

be associated with strain was also seen by Spinu et al. in transverse susceptibility data

of CrO2 thin films [79]. This behavior can be explained in terms of a slight deviation of

the anisotropy axis from the hard axis of magnetization and was successfully modeled by

introducing a magnetoelastic term into the total anisotropy energy.

HK for the 200 nm 100% CrO2 film is ≈515 Oe, whereas for the film with 32% CrO2

it is ≈2100 Oe. The shift in anisotropy peaks to higher fields with decrease in CrO2

content for the bilayers implies a change in effective anisotropy (Keff). It is important to

verify if the increase in HK corresponds to an increase in Keff after taking into account

the corresponding MS of the tFM . The tFM values based on the percent content of CrO2

was calculated, and is presented in tables 7.2 and 7.3. The corresponding Keff for these

thicknesses is obtained by a fit to a curve based on data in reference [55] (figure 7.11).

When comparing the observed room temperature Keff values with those calculated based

on tFM , it is clear that the observed Keff is consistently larger than what it would be if the

Cr2O3 were not present in the films. The maximum Keff (2.4 × 105 erg/cc) was obtained

for a bilayer film with 50% content of CrO2, which is much larger in comparison to the

Keff extracted from the curve (6.2 × 104 erg/cc). The results for all the films are given in

table 7.2. For the pure CrO2 films, HK is proportional to CrO2 thickness (table 7.1), while

for the bilayers, HK is inversely proportional to the tFM (table 7.2). The role of Cr2O3

and its interface with CrO2 is manifest not only by the enhancement of HK , but also by

its functional dependence with tFM .

The temperature dependence of HK for the bilayers is plotted in figure 7.12. For all

bilayer films, an increase in HK with decrease in temperature is observed. This indicates

that the presence of Cr2O3 changes the temperature dependence of the strain in comparison

to the pure CrO2 films, thus the easy axis of magnetization remains along the c axis

throughout the temperature range. This is also evident from the absence of the anisotropy
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Figure 7.10. Room temperature transverse susceptibility scans of CrO2/Cr2O3 bilayers for
different CrO2 percentages. Scan taken from positive to negative saturation.
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Figure 7.11. Keff versus CrO2 thickness for the films studied here and in ref [55]. This is
used for a reference curve to predict values of Keff for the effective CrO2 thickness in the
bilayers.

peaks throughout the temperature range when the transverse susceptibility is measured

with the applied field parallel to the easy (b) axis. Similar to the room temperature

measurements, HK increases with increase in Cr2O3 content throughout the measured

temperature range. While the values of Keff for the CrO2 thin films matched well with

those reported in reference [55], the Keff values for the bilayers were consistently larger

throughout the temperature range, again indicating a coupling between the layers. As we

saw in chapter 6, transverse susceptibility can be used to probe systems showing exchange

bias due to unidirectional anisotropy, and there was no shift in the transverse susceptibility

for the bilayers, which is consistent with the lack of shift observed in the M-H loops.

Table 7.3 is a collection of the low temperature (10K) values of HK and Keff. From

figure 7.12, we can see that HK is highest at low temperature, but from table 7.3 it can

be clearly seen that this translates into an increase in Keff as well. Figure 7.13 shows a

low temperature (36K) transverse susceptibility scan of the bilayer with 64% CrO2. The

strain-associated peak discussed above is much more noticeable at low temperature. For
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Effective MS HK Keff (erg/cc) Keff HK

% thickness (emu/cc) (Oe) (observed) (erg/cc) (Oe)
CrO2 (nm) (RT) TS (RT) (RT) (calc) (calc)

100 200 436 514 1.1×105 1.1×105 514

64 128 291 1448 2.1×105 4.6×104 314

50 99 227 2075 2.3×105 6.2×104 548

32 64 136 2100 1.4×105 7.7×104 1136

Table 7.2. Magnetic properties of CrO2/Cr2O3 bilayer films of different Cr2O3 content
measured at room temperature (RT). The calculated values correspond to what the effective
anisotropy should be for just the CrO2 component according the reference in figure 7.11.

Effective HK (Oe) MS Keff

% thickness (TS) (emu/cc) (erg/cc)
CrO2 (nm) (10K) (10K) (10K)

100 200 390 660 1.3×105

64 128 2130 423 4.5×105

50 99 3150 326 5.1×105

32 64 3230 212 3.4×105

Table 7.3. Magnetic properties of CrO2/Cr2O3 bilayer films of different Cr2O3 content
measured low temperature (LT).

this particular sample, the strain peak was not present at room temperature. The other two

samples, which did show strain peaks in figure 7.10, also showed the strain peak evolving

further as the temperature is decreased.

7.6 Origins of Exchange Coupling in CrO2/Cr2O3 Bilayers

To observe an exchange bias (HE), the spins in the antiferromagnet must not be rotated

by the magnetic field applied. Therefore, the anisotropy energy of the antiferromagnet must

be larger that the interface coupling energy,

4
√

AAFMKAFM/π
2 < KAFM tAFM

where AAFM and KAFM are the exchange stiffness (≈4x10−7 erg/cc for Cr2O3) and the

anisotropy constant (≈2×105) [95]. This gives a minimum antiferromagnetic thickness

requirement of 5.73 nm. Since our tAFM values are all much larger than this (tAFM > 64
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Figure 7.12. HK versus temperature for the CrO2/Cr2O3 bilayers.

Figure 7.13. Low temperature (36K) transverse susceptibility scan of 64% CrO2 bilayer.
This is a portion of a scan taken from positive to negative saturation.
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nm), the antiferromagnetic spins should be pinning the ferromagnetic spins, giving rise

to a unidirectional anisotropy. Clearly from the data shown, there is no unidirectional

anisotropy, only a uniaxial anisotropy.

The behavior observed in the CrO2/Cr2O3 bilayers can in fact be understood in terms

of a model put forth by Schulthess et al. [72]. The model applies to systems with compen-

sated spins at the interface, i.e. when there is an equal number of positive and negative

exchange interactions across the interface, which would apply to the nearly perfect epitaxy

seen in the CrO2/Cr2O3 bilayers. In such a system, the exchange coupling between the

antiferromagnet and the ferromagnet is perpendicular. This perpendicular coupling, re-

ferred to as “spin-flop” coupling, fits within a microscopic Heisenberg model where, due to

frustration of the moments at the interface, the ferromagnet minimizes the energy when it

aligns perpendicular to the antiferromagnetic easy axis. This type of coupling will not lead

to a unidirectional anisotropy because the antiferromagnetic spins at the interface will not

pin the ferromagnetic spins when cooled from above the Néel temperature in the presence

of a field. Instead, since the spins will be perpendicular, the antiferromagnetic spins will

“drag” the ferromagnetic ones, leading to a uniaxial anisotropy, and thus an enhanced co-

ercivity. Figure 7.14 is a schematic of this model, which shows the bulk antiferromagnetic

spins (bottom), the interfacial antiferromagnetic films (middle), and the ferromagnetic

spins (top). The antiferromagnetic spins do not rotate except for small disturbances very

near to the interface.

Recall that both the total thickness of the bilayers (200 nm), and all the effective CrO2

thicknesses fall into the region of CrO2 which exhibit a doubling switching phenomenon due

to the inhomogeneous strain distribution caused by the substrate. Hence the magnetization

of the bilayers is the result of the inhomogeneous strain caused by the substrate at one

end and the exchange coupling with the antiferromagnetic Cr2O3 at the other end. This

is likely the origin of the large strain-induced peak seen for all the bilayer films. Another

striking feature of the combined analysis of the M-H and transverse susceptibility on the

bilayer system is the variation of HC and HK with tFM . Thus the Cr2O3 presence in the
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Figure 7.14. Schematic of spin-flop coupling model. Adapted from reference [72].

bilayer affects the two most important magnetic properties, the switching field and the

anisotropy field, establishing the coupling between the CrO2 and Cr2O3 layers.

It should also be noted that CrO2/Cr2O3 system is an exchange-coupled system in which

the top layer is a magnetoelectric antiferromagnet. Recently, magnetoelectric switching of

an exchange bias was shown in Cr2O3/(CoPt)3 [9], wherein the Co/Pt multilayers were

grown on Cr2O3 single crystals of 0.7 mm thickness. The direction of the exchange bias

(or the horizontal shift of M-H) could be switched by cooling the sample from above the

Néel temperature in an external electric field either parallel or antiparallel to the cooling

DC magnetic field. So apart from the exchange coupling, magnetoelectric coupling of

Cr2O3 to the ferromagnetic may contribute to the variation in HC and HK . Testing for

magnetoelectric coupling would require large electric fields to be present inside the PPMS,

which is not something we are currently capable of doing. Future work will focus on the

completion of a probe designed to measure complex impedance, where the magnetic and

dielectric response functions can be simultaneously measured inside of the PPMS.
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7.7 Conclusion

We have presented in this chapter a compelling case for exchange coupling of CrO2/Cr2O3

bilayers through a uniaxial anisotropy rather than the unidirectional anisotropy normally

associated with exchange-coupled systems. This uniaxial anisotropy is manifest as a mod-

est increase in HC and a substantial increase in HK measured with transverse susceptibility.

We were successfully able to rule out a simple ferromagnetic thickness dependence by mea-

suring several different thicknesses of CrO2 films, meanwhile providing more evidence of

strain-induced double switching in the CrO2 films. We also proposed that the lack of

unidirectional anisotropy in the bilayers is likely due to perpendicular spin-flop coupling

between the Cr2O3 and the CrO2.
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CHAPTER 8

BARIUM HEXAFERRITE/BARIUM STRONTIUM TITANATE
MULTILAYER THIN FILMS

This chapter contains a summary of the author’s work for her master’s thesis [18] and

the publications that followed [19, 84]. Growth of one batch of thin films along with some

of their structural characterization was done at Dr. Nancy Dudney’s laboratory at Oak

Ridge National Laboratory by the author as a visiting student. A second batch of thin

films was grown in Dr. Kevin Coffey’s laboratory at the University of Central Florida. All

post-annealing and magnetic characterization was done at the University of South Florida.

8.1 Introduction

As discussed in the opening chapters, multiferroic materials, or those possessing both

ferroelectric and magnetic ordering, have seen a renewed interest as of late due to the dual

functionality and interesting coupled properties they display. While single phase multi-

ferroics are being intensely studied for fundamental physics, it is becoming more popular

to synthesize composites and multilayer structures of ferroelectrically and magnetically

ordered phases where it is possible to engineer the material for a desired application by

means of modifying its chemical composition, microstructure and layer morphology. Grow-

ing magnetic/ferroelectric multilayers is promising due to the significant control one has

over the growth process. This results in the ability to optimize growth parameters to

achieve the desired thickness, and microstructure including grain size and shape. In this

chapter, we present results on the magnetic properties of multilayer thin films of BaFe12O19

and Ba(1−x)SrxTiO3, two very important materials used in microwave devices.
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The compound BaFe12O19 (Barium-hexaferrite, BaM) is an important ferrite, and is

used in a variety of magnetic recording [33] and high-frequency applications such as isola-

tors, filters, phase shifters, and circulators [27]. It belongs to the M-type class of hexag-

onal ferrites (hexaferrites). This type of hexagonal ferrite has a magnetoplumbite crystal

structure, shown in figure 8.1, which consists of four interchanging spinel (S and S∗) and

rhombohedral (R and R∗) blocks. The asterisk means that the corresponding block has

been turned 180◦ around the hexagonal c-axis. The ferrimagnetic properties come entirely

from the 24 Fe3+ ions, each having a magnetic moment of 5µB (µB: Bohr magneton), and

the total magnetic moment is 40µB [52]. The lattice parameters of the unit cell of BaM are

a ≈5.89Åand c ≈23.19Å [91]. The most outstanding property of BaM is its large magnetic

anisotropy [76]. The easy direction of magnetization is along the hexagonal c-axis, and the

hard direction is along the hexagonal a-axis.

Figure 8.1. Crystal structure of Barium Hexaferrite. Figure adapted from reference [27].
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Figure 8.2. Crystal structure of Barium Strontium Titanate. Figure adapted from reference
[6].

Barium-strontium-titanate (BSTO) is a widely used ferroelectric, having the formula

Ba1−xSrxTiO3. BSTO is often referred to as a “tunable” ferroelectric because the permit-

tivity changes with applied electric field. The compound with x=0.5 is in a paraelectric

state, with Curie temperature below room temperature. The Curie temperature can be

adjusted by changing the value of x (BaTiO3 is ferroelectric and SrTiO3 is paraelectric at

room temperature). The spontaneous polarization comes from the relative displacement

of Ba(Sr) and Ti atoms to the O atoms. The crystal structure of BSTO is shown in fig-

ure 8.2, with lattice parameter around 4Å. At the Curie point, the lattice undergoes a

phase transition from cubic (paraelectric) to tetragonal (ferroelectric). BSTO is a particu-

larly attractive material for microwave applications because it posseses a large permittivity

(ǫ ≈ 10, 000 at 0 V), high tunability, fast response to electric fields, high breakdown fields,

low dielectric leakage currents, and it is relatively easy to fabricate [6, 88].

Other groups have brought together these two technologically important materials

through doping BaM with BSTO [32] and a former graduate who graduated from our lab

with a Ph.D. has grown 50% BSTO/50% BaM composite thin films as well as multilayers
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fabricated by pulsed laser deposition (PLD) [26]. My research was the primary contri-

bution in our group’s effort which led to the optimized growth of sputtered BSTO/BaM

multilayer thin films and studying their magnetic properties.

8.2 Multilayer Thin Film Growth

8.2.1 Films Grown at Oak Ridge National Laboratory

Pure BSTO and BaM films as well as multilayer films were grown on two types of

substrates: Polished alumina (Al2O3) and thermally oxidized (001) silicon. Deposition

was done using a non-commercial magnetron sputtering vacuum chamber equipped with

two guns holding the BSTO and BaM targets and attached to RF power supplies. The

BSTO and BaM targets were 2-inch ceramic sputter targets with copper back plates from

SCI Engineered Materials. The two targets were set up vertically and a movable substrate

holder could be positioned over either target. In addition, a quartz crystal oscillator could

be placed over either of the targets to measure deposition rates. The presence of two guns

allowed the multilayer structure to be grown in situ by simply rotating the substrate holder

to be in position above the desired target. The original substrate holder was modified by the

author to include a heater and thermocouple. The substrates were heated during deposition

to around 300◦ to promote film adhesion. For all multilayer films, BSTO was used as the

bottom layer due to its superior adhesion to silicon over BaM. The multilayer films grown

at Oak Ridge National Laboratory were four layers: Substrate/BSTO/BaM/BSTO/BaM.

The overall film thickness was optimized to be around 1.5 µm. Deposition conditions are

presented in table 8.1.

All films were taken back to the University of South Florida for post-annealing as the

substrate heater was sufficient for promoting adhesion, but the as-grown films were still

amorphous. Post annealing was done in a tube furnace at 1000◦C in flowing O2 for 10 hours.

X-ray diffraction (XRD) scans were performed at the University of South Florida using a

Philips PW2-4-Pro diffractometer available through the College of Engineering. XRD

measurements revealed the presence of several BaM and BSTO peaks consistent with the
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Base pressure = 6.8×10−6 Torr Layer 1 Layer 2 Layer 3 Layer 4
Deposition Temperature 350◦C (BSTO) (BaM) (BSTO) (BaM)

Argon pressure (mTorr) 20 20 20 20

Argon flow (sccm) 57.0 56.7 56.6 56.4

Power (W) 71 70 71 70

DC Bias (V) 146 242 148 245

Deposition rate (Å/min) 60.0 39.2 71.6 46.4

Table 8.1. RF Magnetron sputtering parameters for BSTO/BaM multilayers grown at Oak
Ridge National Laboratory.

polycrystalline phases of each. The films grown on Si/SiO2 showed impurity peaks which

matched well the diffraction pattern of Sr3Si3O9. Since BSTO was the bottom layer, we

believe that the BSTO film reacted with the Si/SiO2 substrate creating an impurity layer.

Figure 8.3 is a representative X-ray diffraction scan of the multilayers on Al2O3.

8.2.2 Films Grown at the University of Central Florida

Multilayer thin films as well as pure BSTO and BaM films were grown together with

Dr. Srinath Sanyadanam and Dr. Ranko Heindl using a commercial magnetron sputtering

system built by AJA International, Inc. The targets used this time were 3-inch ceramic

targets from STMC, Ohio. A new substrate holder had to be built for this system as well

because the substrate-target distance was prohibitively large causing very low deposition

rates. Even with the modified substrate holder, the deposition time was still quite long so

the number of layers was limited to just three. A heater was not included in the modified

substrate holder, which created more adhesion problems. It was found that the BaM

could adhere properly at room temperature onto Al2O3 and allow for annealing. Thus

the films grown at the University of Central Florida were all Al2O3/BaM/BSTO/BaM.

The deposition details are presented in table 8.2. As-grown films were again amorphous

and post annealing was done at the University of South Florida using the same conditions

described above. Figure 8.4 is a representative XRD scan for the multilayer films grown at

the University of Central Florida.
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Figure 8.3. X-ray diffraction scan of BaM/BSTO multilayers grown on Al2O3 at Oak Ridge
National Laboratory.

Base pressure = 7.8×10−6 Torr Layer 1 Layer 2 Layer 3
Deposition Temperature: Ambient (BaM) (BSTO) (BaM)

Argon pressure (mTorr) 4 4 4

Argon flow (sccm) 20 20 20

Power (W) 70 70 70

DC Bias (V) 302 196 302

Deposition rate (Å/min) 38 57 38

Table 8.2. RF Magnetron sputtering parameters for BSTO/BaM multilayers grown by the
author at the University of Central Florida.
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Figure 8.4. X-ray diffraction scan of BaM/BSTO multilayers grown on Al2O3 at the Uni-
versity of Central Florida

8.3 Multilayer Characterization

Figure 8.5 shows a cross-sectional scanning electron microscope (SEM) image of one

of the multilayer thin films grown on Si at Oak Ridge National Laboratory. A multilayer

structure with distinct interfaces between layers is evident even after annealing. The picture

depicts alternate layers of 0.3 µm thick BaM and 0.2 µm thick BSTO. The bottom layer

may consist of intermixing of Strontium with the Silicon substrate, which would account

for the peaks corresponding to Sr3Si3O9 in the XRD spectra. While there was some error

in estimation of deposition rate leading to non-uniform thickness of individual layers, what

it unmistakable is the presence of well-defined and distinctly visible layers from a coarse

grain-structure point of view in the final-annealed film. This is promising in terms of

realizing composite multilayers without significant degradation of materials properties at

the interfaces.
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Figure 8.5. Cross-sectional image of a Si/SiO2/(BSTO/BaM)2 multilayer film after anneal-
ing.

Figure 8.6 shows an SEM image of the surface of the same sample used in figure 8.5. The

elongated platelet-type grains which are typical of BaM are clearly visible with an average

grain size of 1.2 µm x 0.3 µm. This high aspect ratio in the grains is what gives BaM

its well-known shape anisotropy. The size and shape of the grains depend largely on the

deposition and annealing conditions, which in turn affect the overall magnetic properties.

This is desirable for microwave properties as the dielectric constant and permeability have

been shown to increase with increase in the grain size [32].

8.4 Magnetic Properties of BaM and Multilayer Thin Films

From the growth conditions described in section 8.1, it is not very practical to make

direct comparisons between the films grown at Oak Ridge National Laboratory and those

grown at the University of Central Florida. Not only were the substrate temperatures

different (350◦C versus room temperature) but also the multilayer structure was different

(sub/(BSTO/BaM)2) versus sub/BaM/BSTO/BaM). Therefore, any comparison made be-
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Figure 8.6. SEM image of the BaM surface of a multilayer film.

tween the two can only be done without decoupling the effects of substrate temperature,

bottom layer and total number of layers. In this section, brief summaries of each set of

films and the conclusions that can be drawn from them will be presented as well as a

broad overall summary of all samples with only minimal discussion about the origin of the

differing magnetic properties.

8.4.1 Magnetic Properties of Films Grown at the University of

Central Florida

We first examined the magnetization versus field loops of a film of just BaM on Al2O3

at 10K and 300K (figure 8.7). In all of the M-H curves presented, a noticeable diamagnetic

background can be seen at low temperatures which is manifest as a downward tilt of the

loop. This is due to the magnetic response of the substrates, which are diamagnetic at

low temperature and contribute a slight paramagnetic response at higher temperatures,

manifest as a slight upward tilt. The room temperature HC value of the BaM (1900 Oe) is
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Sample HC (Oe) HC (Oe)
Description 10K 300K

BaM/Al2O3 2100 1900

BaM/BSTO/BaM/Al2O3 1800 2100

Table 8.3. Coercivity values for multilayer films grown at The University of Central Florida.

in good agreement with reported values of BaM films [11, 74]. For the pure BaM film only,

we were able to determine the saturation magnetization (MS) from the magnetic moment

with confidence since the entire film thickness is BaM and therefore the magnetic volume

can be estimated. Using a Tencor Instruments profilometer, we measured film thickness

of the BaM to be 0.45µm. After finding the sample area to be 0.324cm2, and the total

magnetic moment to be 6.13 x 10−3 emu at 10K and 1.75 x 10−3 emu at 300K we calculated

the values of MS to be 420 emu/cc at 10K and 120 emu/cc at 300K. These values again

match well with magnetic properties reported in BaM thin films [11, 74]]. For the multilayer

films, we did not calculate the MS values as there was no way to accurately determine the

total magnetic volume. However, for our purposes, it is coercivity and the shape of the M-H

curves that we are most interested in as it is the best indicator of magnetic anisotropy in

this system. For the pure BaM film, the coercivity increases with decrease in temperature

(2100 Oe at 10K), which is the expected behavior in bulk magnetic materials.

Upon examining the 10K and 300K hysteresis loops of the multilayer films grown under

the same conditions (figure 8.8) it is apparent the magnetic behavior is different. Rather

than a decrease in coercivity with a increase in temperature like the pure BaM film, the

multilayers exhibit an increase in coercivity with increase in temperature going from 1800

Oe at 10K to 2100 Oe at 300K . This trend is also seen in the films grown at Oak Ridge

National Laboratory and will be discussed in a later section. The high and low temperature

HC values for both the BaM and the multilayer films are collected in table 8.3.

8.4.2 Magnetic Properties of Films Grown at Oak Ridge National Laboratory

Magnetization versus field (M-H) measurements were performed at 10K and 300K with

magnetic field applied parallel (in-plane) and perpendicular (out-of-plane) to the surface of
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Figure 8.7. 10K and 300K hysteresis loops for BaM on Al2O3 grown at the University of
Central Florida.

the film. In figures 8.9 and 8.10 the in-plane 10K and 300K hysteresis loops are presented

for the multilayer films grown on Al2O3 (figure 8.9) and Si (figure 8.10. Once again it

can be seen that the coercivity increases with increase in temperature (from 2600 Oe to

3900 Oe for the film on Al2O3, and from 1460 Oe to 2300 Oe for the film on Si). This

is the same behavior that was observed for the multilayer films grown at the University

of Central Florida and is opposite the traditional behavior seen for BaM alone, namely a

decrease in coercivity with increase in temperature. This point will be further discussed

in the next section. It is also apparent that for both temperatures, the HC values for the

films grown on Si are much lower than the HC values for the films grown on Al2O3.

Figures 8.12 and 8.11 show the 10K in-plane and out-of-plane hysteresis loops for the

multilayers grown on Al2O3 (figure 8.12) and Si (figure 8.11). For the multilayers grown

on Si the perpendicular coercivity and the parallel coercivity at 10K are 1250 Oe and 1450

Oe and the squareness S (the ratio of the remanent magnetization to the saturation mag-
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Figure 8.8. 10K and 300K hysteresis loops for multilayers on Al2O3 grown at the University
of Central Florida.
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Figure 8.9. 10K and 300K hysteresis loops for multilayers on Al2O3 grown at Oak Ridge
National Laboratory.

Figure 8.10. 10K and 300K hysteresis loops for multilayers on Si grown at Oak Ridge
National Laboratory.
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HC (Oe) HC (Oe) HC (Oe) HC (Oe)
Sample 10K 10K 300K 300K
Description in-plane out-of-plane in-plane out-of-plane

(Bam/BSTO)2/Al2O3 2600 2600 3900 3900

(BaM/BSTO)2/Si 1460 1250 2300 2200

Table 8.4. Coercivity values for multilayer films grown at Oak Ridge National Laboratory.

netization, MR/MS) of the perpendicular and parallel loops are 0.45 and 0.60 respectively.

The difference in magnetization in two different directions of the multilayers plane indicates

that there is a preferential orientation of magnetization along a favored direction, which

is the easy axis of magnetization for the BaM grains. As can be seen in figure 8.6, the

platelet-like grains in the BaM layer appear to have attained an in-plane texturing and the

magnetic easy axis seems to be in the same direction.

In contrast, the multilayers grown on Al2O3 show no such deviation upon changing

orientations of the magnetic field. The polycrystalline Al2O3 substrate does not allow

grain orientation and the lack of texturing causes no change in coercivity with respect

to applied field direction. The value of HC 10K remains the same at 2600 Oe regardless

of field orientation. In table 8.4 we present the in-plane and out-of-plane HC values for

multilayer films grown on each substrate at 10K and 300K. Note that the texturing exists

to a lesser extent at room temperature for films grown on Si, and not at all for the films

grown on Al2O3.

The room temperature results presented for the films grown at Oak Ridge National

Laboratories on heated Si are consistent with those reported for pure BaM films deposited

using pulsed Laser deposition heated in situ to 900◦C on Si (001) substrates [45]. The in-

plane and out-of-plane coercivities in our case is only slightly different from the reported

values of Lu and Song [45]. While the different film growth techniques are expected to

have some influence on the magnetic characteristics, substrate heating in their case was

much higher and is likely the primary reason for them obtaining better texture. Also,

while substrate material clearly has an effect on the texturing (an oriented substrate gives

textured films, a polycrystalline substrate gives isotropic films), it is important to keep in
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Figure 8.11. 10K hysteresis loops for multilayers on Si taken with H in-plane and out-of-
plane.
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Figure 8.12. 10K hysteresis loops for multilayers on Al2O3 taken with H in-plane and
out-of-plane.
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mind that neither layer of BaM is in direct contact with the oriented Si. Thus the extent

of the texturing that would usually be seen in BaM on Si (001) may be lost in this case due

to the intermediate BSTO. Extensive studies of epitaxy and substrate influence in PLD-

grown BaM/BSTO films have been done by a former graduate student (Ranko Heindl) and

reported in his Ph.D. thesis [28].

8.5 Correlating the Coercivity with Microstructure in BaM and BaM/BSTO

Multilayer Films

The most noticeable trend in the above data is that while the coercivity of the BaM

decreases with increase in temperature (consistent with most other bulk magnetic materi-

als), the multilayers behave in the opposite way with increasing coercivity as temperature

increases. We believe this can be understood in terms of the competition between shape

and magnetocrystalline anisotropies in BaM. The theoretical coercivity of a random array

of BaM particles is given by Kubo et al. [39]

HC = 0.48(2Keff/MS −NMS) (8.1)

where N is the demagnetizing factor. The first term (2Keff/MS) is the magnetocrystalline

anisotropy and the second term (NMS) is the shape anisotropy. As MS decreases with

increase in temperature, the first term dominates and HC will increase with temperature.

It is possible that the presence of the BSTO layers affect the grain growth of the BaM.

It is known that the coercivity of BaM is inversely proportional to the grain size, with

larger grains yielding a smaller coercivity [33]. In this case, if the grain growth is inhibited,

the coercivity will increase, resulting in a smaller aspect ratio and thus a smaller shape

anisotropy (NMS). Indeed, all the coercivity values presented above for the multilayers

show an increase in coercivity over the pure BaM.

In comparing the two sets of films, we can deduce that (1) the functional dependence

of coercivity on temperature is altered by the presence of BSTO and that (2) heating the
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substrate while depositing the multilayers enhances this effect since all the films grown on

heated substrates display larger HC values than all of those grown at room temperature.

However it is important to remember that the multilayers grown at room temperature also

had less BSTO present than the ones grown on heated substrates. Therefore, as mentioned

in an earlier section, a more systematic study is needed to decouple these two effects,

namely the number of BSTO layers and the substrate heating.

For many technological applications, the increase in HC with increase in temperature

(resulting in higher room temperature HC), along with the overall increase in coercivity

with BSTO present leads to greater functionality of the BaM in the multilayers than in

BaM alone. While the ferroelectric properties of BSTO in multilayer form with BaM have

not been explored extensively, Dr. Ranko Heindl, a former student showed in his doctoral

thesis that dual tunability of the permittivity ǫ in BSTO and permeability µ in BaM for

microwave applications is achievable in BSTO/BaM bilayer thin films [28].

8.6 Conclusion

We have grown BaM thin films and BSTO/BaM multilayer thin films and examined

the structural as well as magnetic properties of both. The BaM films grown at room

temperature on Al2O3 exhibited behavior consistent with other reports of BaM films grown

under similar conditions. The multilayers, grown both at room temperature and 350circC

on Al2O3 and on heated (001) Si showed different behavior with much larger HC values

which increase with increasing temperature, contrary to what is expected in magnetic

materials. The films grown on Si also show texturing with different HC and squareness

ratio depending upon the direction of applied magnetic field. We believe that all the

described behavior can be attributed to the dependence of grain size and shape on the

growth conditions, including the presence of BSTO in the multilayers. The trend can be

explained by the temperature dependence on the competing magnetocrystalline and shape

anisotropies.
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CHAPTER 9

CONCLUSION AND FUTURE WORK

This work presented the magnetic properties of several multifunctional systems includ-

ing core-shell Au-Fe3O4 nanoparticles, dumbbell- and flower-shaped Au-Fe3O4 nanopar-

ticles, CrO2 and CrO2/Cr2O3 thin films and BaM/BSTO multilayer thin films. In these

systems we were able to show how the magnetic anisotropy was influenced by key param-

eters from altering particle size, shape, surfaces and interfaces in Au-Fe3O4 particles to

the effects of interfaces between substrates and functional layers in multilayer thin films.

In several of these instances, we used transverse susceptibility in new ways to gain deeper

insight into the physics of these complex systems.

9.1 Magnetic Nanoparticles for Biomedical Applications

For Fe3O4 and Au-Fe3O4 nanoparticles synthesized specifically for biomedical applica-

tions, we conclusively demonstrated how coating Fe3O4 particles with Au decreases inter-

particle interactions while increasing the functionality of the particles. The particular size

chosen for the synthesis of the particles coincides with the size range that can be success-

fully taken up by human embryonic kidney cells. This particle diameter, about 70 nm,

also proved to be advantageous for hyperthermia applications as we demonstrated that

the particles were superparamagnetic in DC magnetic fields and ferromagnetic at the 12

MHz used in transverse susceptibility measurements. This indicates that hysteretic losses

could also contribute to the heating ability of these particles. We were also able to show

how the transverse susceptibility measurement could be used as a sensor for cells that have

taken up magnetic nanoparticles. Due to its high sensitivity and the low external DC fields

required, we described why this method could find use in cancer diagnostics.
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Remaining questions with regards to this research are:

• What other core-shell configurations can be made which may display even better

magnetic properties while maintaining biocompatibility?

• Since different bodily systems require different size nanoparticles to achieve uptake,

can we tune the anisotropy in smaller/larger particles of different materials to display

the same balance of DC superparamagnetism/AC ferromagnetism?

• Can a smaller, more compact biosensor be built based on the concept of transverse

susceptibility and the results we obtained?

9.2 Au-Fe3O4 Composite Nanostructures

We also examined the magnetic properties of two new configurations of Au-Fe3O4.

The dumbbell-shaped Au-Fe3O4 particles, which showed behavior similar to Fe3O4 and

even core-shell Au-Fe3O4 nanoparticles, is an important system to explore for biomedical

applications as two separate surfaces are available for functionalization. The flower-shaped

nanoparticles proved to be a fascinating system from a fundamental physics point of view

due to the combination of competing interactions giving rise to exchange bias and training

effects in the low temperature regime, while maintaining an anomalously high anisotropy

in the intermediate regime before blocking. An important feature of both of these systems

is the fact that both the Au and the Fe3O4 sizes can be controlled for possible use in a

broad range of applications.

There are numerous directions this research can take and several questions that remain

unresolved. Most notably:

• Can we optimize the size combinations of Au and Fe3O4 to find which combination

performs best for functionalization, cellular uptake, and magnetic manipulation while

inside the cells?

• What is the nature of the low temperature negative magnetization?
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• Can we change the sizes of the Au in the flower particles to determine the dependence

of the interaction strength between Fe3O4 particles on the intra-particle distance?

• Similarly, can we change the size of the Fe3O4 as well as the number nucleated onto

the Au? This could help form a better picture of the spin frustration likely involved

between adjacent Fe3O4 particles.

9.3 CrO2 Epitaxial Thin Films and Bilayer CrO2/Cr2O3 Thin Films

The thickness and temperature dependence of CrO2 epitaxial thin was explored using

transverse susceptibility. We were able to confirm and track the easy axis switching due to

the inhomogeneous strain at 200 nm. We have also presented strong case for exchange cou-

pling of CrO2/Cr2O3 bilayers through a uniaxial anisotropy rather than the unidirectional

anisotropy normally associated with exchange coupled systems. This uniaxial anisotropy is

manifest as a modest increase in HC and a substantial increase in HK measured with trans-

verse susceptibility. We were successfully able to rule out a simple ferromagnetic thickness

dependence by measuring several different thicknesses of CrO2 films. We suggested that

the lack of unidirectional anisotropy in the bilayers is likely due to perpendicular spin-flop

coupling between the Cr2O3 and the CrO2. Some questions that would be interesting to

address for these systems are:

• All the films had the same total thickness which meant each component was vary-

ing. Can we form a better picture of the dependence of the anomalous anisotropy

on thickness by varying the thicknesses of the ferromagnet and antiferromagnet in-

dependently?

• Can any of the anisotropic behavior of the CrO2/Cr2O3 bilayers be explained by a

magnetoelectric coupling of the CrO2 to the Cr2O3?

• Similarly, could an experiment be done in the same vein as the one used by Borisov

et al. to see if applied electric field changes the nature of the exchange coupling?
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• A probe that measures impedance in a magnetic field currently being built for inte-

gration into the PPMS could help answer many of these questions.

9.4 BaM Thin Films and BaM/BSTO Multilayer Thin Films

BaM thin films and BSTO/BaM multilayer thin films have been grown and the struc-

tural as well as magnetic properties have been examined. BaM films exhibited behavior

consistent with other reports of BaM films grown under similar conditions. The multilay-

ers showed different behavior with HC values which increase with increasing temperature,

contrary to what is expected in magnetic materials. We believe that this behavior can be

attributed to the dependence of grain size and shape on the growth conditions, including

the presence of BSTO in the multilayers. The trend can be explained by the temperature

dependence on the competing magnetocrystalline and shape anisotropies. Many of the

questions that were posed at the time this research was completed have been answered as

a result of the research performed by Dr. Ranko Heindl.

Manipulation of the magnetic anisotropy in nanoparticles and thin films will continue

to be an important aspect in future technological applications. This work has shown that

surface and interface magnetism can dramatically alter the overall magnetic response of a

system in unexpected ways and technologically important ways.
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ercivity enhancement above the Néel temperature of an antiferromagneti/ferromagnet
bilayer, J. Appl. Phys. 92 (2002), 1483–1488.

[43] X. W. Li, A. Gupta, T. R. McGuire, and P. R. Duncombe, Magnetoresistence and Hall
effect of chromium dioxide epitaxial thin films, J. Appl. Phys. 85 (1999), 5585–5587.

[44] Q. H. Lu, K. L. Yao, D. Xi, Z. L. Liu, X. P. Luo, and Q. Ning, Synthesis and char-
acterization of composite nanoparticles comprised of gold and magnetic core/cores, J.
Magn. Magn. Mater. 301 (2006), 44–49.

[45] Y. F. Lu and W. D. Song, Properties of BaFe12O19 films prepared by laser deposition
with in situ heating and post annealing, Appl. Phys. Lett. 76 (2000), 490–492.

[46] Jennifer L. Lyon, David A. Fleming, Matthew B. Stone, Peter Schiffer, and Mary Eliz-
abeth Williams, Synthesis of Fe Oxide core/Au shell nanoparticles by iterative hydrox-
ylamin seeding, Nano Letters 4 (2004), 719–723.

[47] S. A. Majetich and M. Sachan, Magnetostatic interactions in magnetic nanoparticle
assemblies: energy, time and length scales, J. Phys. D: Appl. Phys. 39 (2006), R407–
R422.

[48] G. Malinowski, M. Albrecht, I. L. Guhr, J. M. D. Coey, and S. van Dijken, Size-
dependent scaling of perpendicular exchange bias in magnetic nanostructures, Phys.
Rev. B 75 (2007), 012413–1–01241304.

[49] M. Mandal, S. Kundu, S. K. Ghosh, S. Panigrahi, T. K. Sau, S. M. Yusuf, and T. Pal,
Magnetite nanoparticles with tunable gold or silver shell, J. Colloid and Interface Sci.
286 (2005), 187–194.

[50] B. Martinez, X. Obradors, Ll. Balcells, A. Rouanet, and C. Monty, Low temperature
surface spin glass transition in γ-Fe2O3 nanoparticles, Phys. Rev. Lett. 80 (1998),
181–184.

[51] R. Matarranz, M. C. Contreras, G. Pan, B. Presa, J. A. Corrales, and J. F. Calleja,
Transverse susceptibility of nanoparticle systems: the effect of interaction, dispersion,
and texture, J. Appl. Phys. 99 (2006), 08Q504–1–08Q504–3.

146



[52] R. A. McCurrie, Ferromagnetic Materials: Structure and Properties, Academic Press,
1994.

[53] W. H. Meiklejohn and C. P. Bean, New magnetic anisotropy, Phys. Rev. 102 (1956),
1413–1414.
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