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SURFACE AREA MEASURES OF LOG-CONCAVE

FUNCTIONS

LIRAN ROTEM

Abstract. This paper’s origins are in two papers: One by Colesanti
and Fragalà studying the surface area measure of a log-concave function,
and one by Cordero-Erausquin and Klartag regarding the moment mea-
sure of a convex function. These notions are the same, and in this paper
we continue studying the same construction as well as its generalization.

In the first half the paper we prove a first variation formula for the
integral of log-concave functions under minimal and optimal conditions.
We also explain why this result is a common generalization of two known
theorems from the above papers.

In the second half we extend the definition of the functional sur-
face area measure to the Lp-setting, generalizing a classic definition of
Lutwak. In this generalized setting we prove a functional Minkowski
existence theorem for even measures. This is a partial extension of a
theorem of Cordero-Erausquin and Klartag that handled the case p = 1
for not necessarily even measures.

1. Functional surface area measures

This paper has two main parts, so it also has two introductory sections.
In this section we give the necessary background concerning surface area
measures and their functional extensions. We conclude it by stating our
first main theorem, which is proved in Sections 2 and 3. In Section 4 we
introduce the Minkowski problem and its known functional analogues, and
state our second main theorem. This second theorem is proved in Section 5.

We begin this section by recalling the classical definition of the surface
area measure of a convex body. For us, a convex body is a convex and
compact set K ⊆ R

n with non-empty interior. The support function hK :
R
n → R of K is defined by

hK(y) = max
x∈K

〈x, y〉 ,

where 〈·, ·〉 denotes the standard inner product on R
n. For points x ∈ R

n

we will write |x| =
√

〈x, x〉 for the Euclidean norm, while for convex bodies
we will write |K| for their (Lebesgue) volume. The use of the same notation
for both should not cause any confusion.

If K,L ⊆ R
n are convex bodies and t ≥ 0 we write

K + tL = {x+ ty : x ∈ K, y ∈ L}
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for the Minkowski addition. A fundamental fact in convex geometry is that
for every convex body K there exists a Borel measure SK on the unit sphere
S
n−1 = {x ∈ R

n : |x| = 1} such that

(1.1) lim
t→0+

|K + tL| − |K|

t
=

∫

Sn−1

hLdSK

for every convex body L. The measure SK is called the surface area measure
of the body K. For a proof of this fact, as well as alternative equivalent
definitions of SK and general background in convex geometry, we refer the
reader to [20].

Over the last two decades it became more and more apparent that im-
portant problems in convexity and asymptotic analysis can be attacked by
embedding the class of convex bodies into appropriate classes of functions
or measures on R

n. The idea is to think of such analytic objects as “gen-
eralized convex bodies”, and study geometric constructions such as volume,
addition and support functions on these larger classes. The motivation be-
hind this idea is twofold. First, even if one is ultimately only interested in
convex geometry and convex bodies, working in such a larger class can be
extremely useful as it allows the use of various analytic and probabilistic
tools. Second, since we are now working with functions and measures, the
geometrically inspired theorems we obtain can be of interest in analysis. In
fact, the main theorem we prove in Section 5 can be viewed as a theorem
about the existence of generalized solutions to a certain PDE, as we will see.

Since this fundamental idea of “functional convexity” is so widespread
nowadays, it is impossible to pick a manageable list of representative papers
to cite. Instead we settle for referring the reader to Section 9.5 of [20], to
the survey [15] and to the references therein. Unfortunately these only cover
slightly older results and not the massive explosion of the field over the last
decade.

In this paper we will study functional surface area measures. We will
work with the standard class of log-concave functions:

Definition 1.1. A function f : Rn → [0,∞) is called log-concave if for every
x, y ∈ R

n and every 0 ≤ λ ≤ 1,

f ((1− λ)x+ λy) ≥ f(x)1−λf(y)λ.

For every convex body K, the indicator function 1K is log-concave. This
gives a natural embedding of the class of convex bodies into the class of log-
concave functions. We will always assume that our log-concave functions
are upper semi-continuous, which is analogous to assuming the body K
is closed. We denote the class of all upper semi-continuous log-concave
functions f : Rn → [0,∞) by LCn. Every f ∈ LCn is of the form f = e−ϕ

for a lower semi-continuous convex function ϕ : Rn → (−∞,∞]. We denote
the class of such convex functions by Cvxn.

In order to have a functional analogue of (1.1) we first need to understand
a few things: what is the“volume”of log-concave functions, how to add such
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functions, what is the support function hf of a log-concave function f , and
most importantly what is the surface area measure Sf of f .

The easiest of the four is the volume. Since |K| =
∫
1K , it makes sense

to define the “volume” of f to be its Lebesgue integral
∫
f (unless explic-

itly stated otherwise, our integrals will always be on R
n with respect to the

Lebesgue measure). As for addition and support functions, recall that for
convex bodies the two operations are intimately connected by the relation
hK+tL = hK + thL. If one wants to keep this relation for log-concave func-
tions, and have other natural properties such as monotonicity, it turns out
that there is essentially only one possible definition:

Theorem 1.2 ([19]). Assume we are given a map T : LCn → Cvxn and a
map ⊕ : Cvxn×Cvxn → Cvxn such that

(1) f ≤ g if and only if T f ≤ T g.
(2) T 1K = hK .
(3) T (f ⊕ g) = T f + T g.

Then:

(1) There exists C > 0 such that

(T f) (x) =
1

C
· (− log f)∗ (Cx) .

(2) We have

(f ⊕ g) (x) = sup
y∈Rn

f(y)g(x− y).

The ∗ that appears in the theorem is the Legendre transform map ∗ :
Cvxn → Cvxn, defined by

(1.2) ϕ∗(y) = sup
x∈Rn

(〈x, y〉 − ϕ(x)) .

Therefore, for a log-concave function f = e−ϕ we define its support function
hf : Rn → (−∞,∞] by hf = ϕ∗. We also define the addition of log-concave
functions to be

(f ⋆ g) (x) = sup
y∈Rn

f(y)g(x− y).

This addition is also known as the sup-convolution, or Asplund sum, and as
an addition on log-concave functions was it first considered in [11]. Like the
support function hf , it is by now a standard definition in convex geometry.

For t > 0 and f ∈ LCn we also define (t · f) (x) = f
(
x
t

)t
. This dilation

operation is consistent with the sup-convolution is the sense that 2·f = f ⋆f .
With these standard definitions in our disposal, we may now define:

Definition 1.3. For f, g ∈ LCn we define

δ(f, g) = lim
t→0+

∫
(f ⋆ (t · g))−

∫
f

t
.
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In other words, δ(f, g) is the directional derivative of the integral at the
point f and in the direction g. The first to seriously study this quantity
were Colesanti and Fragalà, who proved in [6] that δ(f, g) is well defined
whenever

∫
f > 0. More importantly, they were able to prove a functional

version of (1.1):

Definition 1.4. For f = e−ϕ ∈ LCn, we define its surface area measure Sf
as the push-forward of the measure fdx under the map ∇ϕ. More explicitly,
for every Borel subset A ⊆ R

n we define

Sf (A) =

∫

{x: ∇ϕ(x)∈A}
fdx.

Equivalently, if f = e−ϕ then Sf is the unique Borel measure on R
n such

that

(1.3)

∫

Rn

ρ(y)dSf (y) =

∫

Rn

ρ (∇ϕ(x)) f(x)dx

for all functions ρ for which the left hand side is well defined (it could be
±∞). Note that this definition does not require any regularity assumptions
from f . Indeed, since ϕ is a convex function it is differentiable almost
everywhere on the set domϕ = {x ∈ R

n : ϕ(x) <∞} – see e.g. [17] for this
fact as well as other basic analytic properties of convex functions. Therefore
∇ϕ exists fdx-a.e. , which means the push-forward is well defined.

Definition 1.4 can seem a bit strange at first. For example, we note that
Sf (R

n) =
∫
f , which is the “volume” of f and not its “surface area”. This is

unlike the classical case of convex bodies, where we have SK
(
S
n−1

)
= |∂K|,

the surface area of K. However, at least for sufficiently regular functions f it
turns out that Sf is indeed the correct definition for a surface area measure,
because of the following theorem of Colesanti and Fragalà:

Theorem 1.5 ([6]). Fix f, g ∈ LCn. Assume that ϕ = − log f and ψ =
− log g belong to the class

{
ρ ∈ Cvxn :

ρ is finite and C2-smooth, ∇2ρ(x) ≻ 0

for all x ∈ R
n, and lim|x|→∞

ρ(x)
|x| = ∞

}
.

Assume further that hf−chg is a convex function for sufficiently small c > 0.
Then

(1.4) δ(f, g) =

∫

Rn

hgdSf .

Theorem 1.5 was one of the main motivations behind this paper. Compar-
ing it with (1.1) explains why Sf should indeed be considered as the surface
area measure of the function f . At the same time, the assumptions of the
theorem are definitely not optimal. For example, it was already proved in

[18] that when f(x) = e−|x|2/2, the first variation formula (1.4) holds for all
g ∈ LCn with no technical assumptions.
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However, there is no doubt that some assumptions are needed, as (1.4)
cannot hold for all functions f, g ∈ LCn. For example, if f = 1K for some
convex body K then Sf = |K| · δ0, so (1.4) cannot hold even if g is also the
indicator of a convex body. We therefore see that the theory developed in
this paper is a functional analogue of the classical theory for convex bodies,
but does not formally extend it. We remark that in [6] the authors did define
a generalization of the measure Sf to the case where f is supported on some
smooth convex bodyK and satisfies some technical assumptions, and proved
a generalization of Theorem 1.5 for such functions f . Unfortunately the
indicator function 1K does not satisfy these technical assumptions, so even
this more general theorem does not recover the case of convex bodies. It’s an
interesting open problem to find extensions of Definition 1.4 and Theorem
1.5 that will hold for all f ∈ LCn, including both smooth functions and
indicators of convex bodies. In this paper, however, we will keep Definition
1.4 as our definition of Sf , and prove a necessary and sufficient condition on
f for (1.4) to hold.

The correct condition to impose on f appeared in the work of Cordero-
Erausquin and Klartag ([7]). In this work the authors study the moment
measure of a convex function ϕ. While this term comes from the very dif-
ferent field of toric Kähler manifolds, the moment measure of ϕ is precisely
the same measure as the surface area measure Se−ϕ . We refer the reader to
[7] and the previous works cited therein (especially [3]) for more information
about the connection between this measure and complex geometry. The
results of [7] and of Section 5 below can also be considered as establishing
the existence of generalized solutions to certain Monge–Ampère differential
equations. This shows again how functional results that are motivated by
convex geometry can have applications to very different areas of mathemat-
ics.

In any case, the crucial definition from [7] is the following:

Definition 1.6. Fix f ∈ LCn with 0 <
∫
f <∞. We say that f is essentially

continuous if

Hn−1 ({x ∈ R
n : f is not continuous at x}) = 0,

where Hn−1 denotes the (n − 1)-dimensional Hausdorff measure (see, e.g.
Chapter 2 of [8] for definition of the Hausdorff measure).

To explain this definition, let us write K = {x : f(x) 6= 0} for the sup-
port of f . Since f = e−ϕ for a convex function ϕ and convex functions
are continuous on the interior of their domain, f is continuous everywhere
outside of ∂K. Moreover, since f is upper semi-continuous, it is easy to see
that f is continuous at a boundary point x0 ∈ K if and only if f(x0) = 0.
Therefore f is essentially continuous if and only if f ≡ 0 Hn−1-a.e. on ∂K.

The following theorem is an adaptation of Theorem 8 from [7] to our
notation:
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Theorem 1.7 ([7]). Fix f, g ∈ LCn with 0 <
∫
f,
∫
g < ∞. Assume that f

is essentially continuous. Then

log

∫
f − log

∫
g ≥

1∫
f
·

∫
(hf − hg) dSf .

The relationship between Theorems 1.5 and 1.7 may not be immediately
clear, and as far as we know did not previously appear in the literature. To
understand it, let us define F : Cvxn → [−∞,∞] by

F (ψ) = − log

∫
e−ψ

∗

.

In other words for every f ∈ LCn we have F (hf ) = − log
∫
f , where we are

using the fact that ψ∗∗ = ψ for all ψ ∈ Cvxn. Theorem 1.5 is a theorem
about the differential of F at some point hf . Indeed, under its technical
assumptions we have by the chain rule

d

dt

∣∣∣∣
t=0+

F (hf + thg) =
d

dt

∣∣∣∣
t=0+

F
(
hf⋆(t·g)

)
= −

d

dt

∣∣∣∣
t=0+

[
log

∫
(f ⋆ (t · g))

]

= −
1∫
f
·
d

dt

∣∣∣∣
t=0+

∫
(f ⋆ (t · g)) = −

1∫
f
·

∫
hgdSf .

In other words, the linear map Lf (hg) = − 1∫
f

∫
hgdSf is the differential of

F at the point hf . On the other hand, Theorem 1.7 is a theorem about
the subdifferential of F . Indeed, the Prékopa–Leindler inequality ([16], [12])
states that for every f, g ∈ LCn with 0 <

∫
f,
∫
g < ∞ and 0 < t < 1 one

has ∫
((1− t) · f) ⋆ (t · g) ≥

(∫
f

)1−t(∫
g

)t
,

or
F ((1− t)hf + thg) ≤ (1− t)F (hf ) + tF (hg).

Therefore F is convex on the appropriate domain. The conclusion of Theo-
rem 1.7 may be written as

F (hg)− F (hf ) ≥ Lf (hg − hf ) ,

which means that Lf belongs to the subdifferential ∂F (hf ). This conclusion
is weaker than the conclusion of Theorem 1.5, but the assumptions are much
weaker as well. In fact, Cordero-Erausquin and Klartag show that essential
continuity of f is necessary for Theorem 1.7 to hold.

The first major goal of this paper is to prove a common generalization
of both Theorems – We will obtain the stronger conclusion of Theorem 1.5
under the optimal assumptions of Theorem 1.7. More concretely, we will
prove the following result:

Theorem 1.8. Fix f, g ∈ LCn with 0 <
∫
f,
∫
g < ∞. If f is essentially

continuous, then

(1.5) δ(f, g) =

∫
hgdSf .
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Moreover, (1.5) holding for g = 1Bn
2

is equivalent to f being essentially
continuous.

We immediately remark that it is not necessarily true that both sides of
(1.5) are finite, and this equality can take the form +∞ = +∞. As an

example it is enough to take f(x) = e−|x|2/2, so Sf = fdx, and the function

g ∈ LCn which satisfies hg(x) = e|x|
2

.
Theorem 1.8 is proved in Section 3, after some preliminary technicalities

are proved in Section 2. Other than a general desire to state theorems
under the minimal and most elegant conditions, we believe that our proof
also explains in a very transparent way exactly why essential continuity is
the natural condition here. The proof also hints about possible extensions
of the theorem to the non essentially continuous case.

2. First variation of the Legendre transform

This section is fairly short and technical, and is dedicated to a proof of
the following result:

Proposition 2.1. Let ψ,α : Rn → (−∞,∞] be lower semi-continuous func-
tions. Assume that α is bounded from below and that α(0), ψ(0) <∞. Write
ϕ = ψ∗ . Then at every point x0 ∈ R

n where ϕ is differentiable we have

(2.1)
d

dt

∣∣∣∣
t=0+

(ψ + tα)∗ (x0) = −α (∇ϕ(x0)) .

Conceptually, Proposition 2.1 is well-known. For example, it is similar to
Lemma 4.11 of [6]. In fact, if {ψt} is any family of convex functions, then it
is well-known that under sufficient regularity assumptions we have

(2.2)
d

dt

∣∣∣∣
t=0

ψ∗
t (x0) = −

d

dt

∣∣∣∣
t=0

ψt (∇ψ
∗
0(x0))

(This result is folklore, but see e.g. Proposition 5.1 of [2] for one rigorous
formulation). The thorny issue here is the words “sufficient regularity as-
sumptions”: for the proof of Theorem 1.8 we will need Proposition 2.1 as
stated, with no extra smoothness or boundness assumptions. In fact, we do
not even assume that ψ and α are convex – The Legendre transform of any
function ϕ : Rn → (−∞,∞], convex or not, can be defined using formula
(1.2). This will not be important for the proof of Theorem 1.8, but will be
useful in the second half of this paper.

As we were unable to find Proposition 2.1 in the literature with our min-
imal assumptions, we give a full proof in this section. We do mention that
Lemma 2.7 of [3] is fairly close to our proposition, and the proofs will have
some similarities as well. We begin with a lemma:

Lemma 2.2. Let ψ : Rn → (−∞,∞] be a lower semi-continuous function
and let ϕ = ψ∗ . Assume that for some fixed x0 ∈ R

n the function ϕ is
differentiable at x0. Then:
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(1) lim|y|→∞ (〈y, x0〉 − ψ(y)) = −∞.
(2) The supremum in the definition of ψ∗(x0) = ϕ(x0) is attained at the

unique point y0 = ∇ϕ(x0).

Proof. For (1) we do not need that ϕ is differentiable at x0, but only that
it is finite in a neighborhood of x0. Since ϕ is convex, it follows that there
exists ε > 0 and M > 0 such that ϕ ≤M on B(x0, ε).

For any 0 6= y ∈ R
n we have

M ≥ ϕ

(
x0 + ε

y

|y|

)
≥

〈
y, x0 + ε

y

|y|

〉
− ψ(y) = (〈y, x0〉 − ψ(y)) + ε |y| .

Hence

〈y, x0〉 − ψ(y) ≤M − ε |y|
|y|→∞
−−−−→ −∞,

so (1) is proved.
Now we prove (2). Since the function

y 7→ 〈y, x0〉 − ψ(y)

is upper semi-continuous and tends to −∞ as |y| → ∞, it must attain a
maximum at some point y0. We will show that necessarily y0 = ∇ϕ(x0),
which will also imply that the maximizer y0 is unique.

Indeed, for every v ∈ R
n and every small t > 0 we have

ϕ(x0 + tv) ≥ 〈y0, x0 + tv〉 − ψ(y0) = 〈y0, x0 + tv〉 − (〈y0, x0〉 − ϕ(x0))

= ϕ(x0) + t 〈y0, v〉 .

Hence

〈y0, v〉 ≤
ϕ(x0 + tv)− ϕ(x0)

t
t→0+
−−−→ 〈∇ϕ(x0), v〉 .

By replacing v with −v we have 〈y0, v〉 = 〈∇ϕ(x0), v〉 for all v ∈ R
n, so

indeed y0 = ∇ϕ(x0) and (2) is proved. �

We can now prove Proposition 2.1:

Proof of Proposition 2.1. Choose M > 0 such that α ≥ −M .
By definition we have

ϕt(x0) = sup
y∈Rn

(〈x0, y〉 − ψt(y)) = sup
y∈Rn

(〈x0, y〉 − ψ(y)− tα(y))︸ ︷︷ ︸
=:Gt(y)

.

According to Lemma 2.2(1) we know that lim|y|→∞G0(y) = −∞. Since
Gt ≤ G0 + tM we also have lim|y|→∞Gt(y) = −∞. Since ψ and α are lower
semi-continuous it follows that the supy Gt(y) is attained at some point yt.
We claim that the set {yt}0≤t≤1 is bounded. Indeed, for 0 ≤ t ≤ 1 we have

G0(yt) ≥ Gt(yt)− tM = sup
y∈Rn

Gt(y)− tM

≥ sup
y∈Rn

(〈x0, y〉 − ψ(y)− α(y) −M) ≥ −ψ(0) − α(0)−M > −∞,
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Since lim|y|→∞G0(y) = −∞, {yt}0≤t≤1 is indeed bounded. For t = 0 we

know from Lemma 2.2(2) that G0(y) is maximized at the unique point y0 =
∇ϕ0(x0).

On the one hand, we have

ϕt(x0) ≥ Gt(y0) = G0(y0)− tα(y0) = ϕ0(x0)− tα(y0),

so we have the bound

lim inf
t→0+

ϕt(x0)− ϕ0(x0)

t
≥ −α(y0).

On the other hand, we have

ϕ0(x0) ≥ G0(yt) = Gt(yt) + tα(yt) = ϕt(x0) + tα(yt)

so

lim sup
t→0+

ϕt(x0)− ϕ0(x0)

t
≤ − lim inf

t→0+
α(yt).

Therefore, to finish the proof it is enough to show that lim inft→0+ α(yt) ≥

α(y0). Since α is lower semi-continuous, it is enough to show that yt
t→0+
−−−→

y0. Assume by contradiction this is not the case. Since {yt}0≤t≤1 is bounded
we can find a converging sequence ti → 0 such that yti → y∗ 6= y. Since G0

is upper semi-continuous it follows that G0(y
∗) ≥ lim supi→∞G0(yti). But

since yti maximizes Gti we have

G0(yti) + tiM ≥ Gti(yti) ≥ Gti(y0) = G0(y0)− tiα(y0).

Since ti → 0 as i→ ∞ it follows that

G0 (y
∗) ≥ lim sup

i→∞
G0(yti) ≥ G0(y0),

contradicting the fact that y0 is the unique maximizer of G0. Hence yt → y0
and (2.1) is proved. �

3. Essentially continuity and the variation Formula

We now begin our proof of Theorem 1.8. The following fact about essen-
tially continuous log-concave functions was proved in [7]:

Proposition 3.1. For every f ∈ LCn with 0 <
∫
f <∞ we have

∫
|∇f | <

∞. If f is essentially continuous then
∫
∇f = 0.

The following result is the main place essential continuity is used in our
proof. It may be of independent interest:

Theorem 3.2. Fix f ∈ LCn with 0 <
∫
f <∞ and let K = {x : f(x) 6= 0}

denote its support. Then
∫ ∞

0
Hn−1 ({x : f(x) = t}) dt =

∫

Rn

|∇f |dx+

∫

∂K
fdHn−1.



SURFACE AREA MEASURES OF LOG-CONCAVE FUNCTIONS 10

In particular, f is essentially continuous if and only if we have the classic
co-area formula

(3.1)

∫ ∞

0
Hn−1 ({x : f(x) = t}) dt =

∫

Rn

|∇f |dx.

Proof. We will use the co-area formula for BV functions – see e.g. [8] for the
statement and the necessary definitions. By translating f we may assume
without loss of generality that 0 is in the interior of K. Let Φ : Rn → R

n

be a C1 vector field with compact support. Choose a ball B such that
support(Φ) ⊆ B. For every λ < 1 the set λK∩B is convex, hence a Lipschitz
domain. Since convex functions are locally Lipschitz on the interior of their
support, it follows that f is Lipschitz on λK∩B. Hence fΦ is also Lipschitz
and we may apply the divergence theorem:

∫

∂(λK∩B)
〈fΦ, nλK∩B〉 dH

n−1 =

∫

λK∩B
div (fΦ) =

∫

λK
div (fΦ)

=

∫

λK
〈∇f,Φ〉+

∫

λK
f divΦ.

Here of course nλK∩B denotes the outer unit normal to the set λK ∩ B,
which exists Hn−1-almost everywhere.

Since Φ ≡ 0 on ∂B we also have∫

∂(λK∩B)
〈fΦ, nλK∩B〉dH

n−1 =

∫

∂(λK)
f(y) 〈Φ(y), nλK(y)〉 dHn−1(y)

= λn−1

∫

∂K
f(λx) 〈Φ(λx), nλK(λx)〉 dH

n−1(x)

= λn−1

∫

∂K
f(λx) 〈Φ(λx), nK(x)〉 dH

n−1(x).

Letting λ→ 1− and using the dominated convergence theorem we obtain
∫

∂K
f 〈Φ, nK〉 dH

n−1 =

∫

K
〈∇f,Φ〉+

∫

K
f divΦ,

and since f is supported on K we may also write
∫

Rn

f divΦ = −

∫

Rn

〈∇f,Φ〉+

∫

∂K
f 〈Φ, nK〉dH

n−1.

By definition, this means that f is a function of locally bounded variation,
and its variation measure ‖Df‖ satisfies

(3.2) d ‖Df‖ = |∇f |dx+ f · dHn−1
∣∣
∂K

(see Section 5.1 of [8]). In particular, we may apply the co-area formula
(Section 5.5 of [8]) and conclude that
∫ ∞

0
Hn−1 ({x : f(x) = t}) dt = ‖Df‖ (Rn) =

∫
|∇f |dx+

∫

∂K
fdHn−1,

which is what we wanted to prove.
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Finally, for the “in particular” part of the theorem, we see from the last
equation that (3.1) holds if and only if

∫
∂K fdH

n−1 = 0. This holds if and

only if f ≡ 0 Hn−1-a.e. on ∂K, which exactly means that f is essentially
continuous. �

Remark 3.3. Equation (3.2) actually shows that f is essentially continuous if
and only if its variation measure ‖Df‖ is absolutely continuous with respect
to the Lebesgue measure. This is equivalent to f belonging to the Sobolev
space W 1,1

loc (R
n) – see again Section 5.1 of [8]. By (3.2) and Proposition 3.1

we know that in this case

‖Df‖ (Rn) =

∫
|∇f | <∞,

so we actually obtain the following characterization: a function f ∈ LCn
with 0 <

∫
f <∞ is essentially continuous if and only if f ∈W 1,1 (Rn). We

will not need this characterization in this paper.

We can already prove the “moreover” part of Theorem 1.8. In fact we will
show something slightly more general:

Proposition 3.4. Fix f ∈ LCn with 0 <
∫
f <∞. Write g = λ · 1mBn

2
for

some λ,m > 0. Then

(3.3) δ(f, g) =

∫
hgdSf

if and only if f is essentially continuous.

Proof. We first observe that multiplying g by a constant cannot change the
validity of (3.3). Indeed, define g̃ = ec · g for some c ∈ R. Then on the left
hand side we obtain

δ(f, g̃) =
d

dt

∣∣∣∣
t=0+

∫
(f ⋆ (t · g̃)) =

d

dt

∣∣∣∣
t=0+

[
etc ·

∫
(f ⋆ (t · g))

]

= c ·

∫
f +

d

dt

∣∣∣∣
t=0+

∫
(f ⋆ (t · g)) = c

∫
f + δ(f, g),

While on the right hand side we obtain
∫
hg̃dSf =

∫
(hg + c) dSf = c

∫
dSf +

∫
hgdSf = c

∫
f +

∫
hgdSf .

Since both sides changed by the same additive term, the validity of (3.3) did
not change. Hence we may assume without loss of generality that λ = 1, i.e.
g = 1mBn

2
.

Let us compute both sides of (3.3). Write ft = f ⋆ (t · g), so by definition

ft(x) = sup
y∈Rn

f(x− y)1mBn
2

(y
t

)t
= sup

y∈tmBn
2

f(x− y).

It follows that if we set Ks = {x : f(x) ≥ s} then

{x : ft(x) ≥ s} = Ks + tmBn
2 ,
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so by the layer cake representation we have
∫
ft −

∫
f

t
=

∫∞
0 |Ks + tBn

2 |ds−
∫∞
0 |Ks| ds

t
=

∫ ∞

0

|Ks + tmBn
2 | − |Ks|

t
ds.

For every s > 0 we have

|Ks + tmBn
2 | − |Ks|

t
= m

|Ks + tmBn
2 | − |Ks|

tm

t→0+
−−−→ m · |∂Ks| .

Moreover, Minkowski’s polynomiality theorem (see e.g. Theorem 5.1.7 of
[20]) implies that for every fixed s > 0 the left hand side is a polynomial in t
with non-negative coefficients, and hence monotone in t. Therefore we may
apply the monotone convergence theorem and deduce that

lim
t→0+

∫
ft −

∫
f

t
= m

∫ ∞

0
|∂Ks| ds.

On the other hand, we have hg(y) = m |y|, so
∫
hgdSf = m

∫
|∇ (− log f)| f = m

∫
|∇f | .

Therefore in the case g = 1mBn
2
, formula (3.3) reduces to the co-area

formula (3.1). By Theorem 3.2, it holds if and only if f is essentially con-
tinuous. �

Proposition 3.4 explains the role of essential continuity in the subject,
but the full proof of Theorem 1.8 is more technically involved. We will need
Proposition 2.1 from Section 2, as well as two more results. The first is
contained e.g. in Lemma 3.2 of [1]:

Proposition 3.5. Let f, f1, f2, . . . : R
n → [0,∞) be log-concave functions

such that fi
i→∞
−−−→ f pointwise. Then

∫
fi →

∫
f .

The second is a very simple measure theoretic lemma:

Lemma 3.6. Let {ut}t>0 , {vt}t>0 , {wt}t>0 be families of integrable func-

tions ut, vt, wt : R
n → R such that ut

t→0+
−−−→ u , vt

t→0+
−−−→ v and wt

t→0+
−−−→ w

almost everywhere. Assume that:

(1) ut ≤ vt ≤ wt for all t > 0.

(2)
∫
wt

t→0+
−−−→

∫
w <∞.

(3)
∫
ut

t→0+
−−−→

∫
u > −∞.

Then we also have
∫
vt

t→0+
−−−→

∫
v.

Proof. Applying Fatou’s lemma to wt − vt we have
∫
w − lim sup

t→0+

∫
vt = lim inf

t→0+

∫
(wt − vt) ≥

∫
(w − v) =

∫
w −

∫
v,
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so lim supt→0+
∫
vt ≤

∫
v. Similarly we may apply Fatou’s lemma to vt − ut

and obtain

lim inf
t→0+

∫
vt −

∫
u = lim inf

t→0+

∫
(vt − ut) ≥

∫
(v − u) =

∫
v −

∫
u,

so lim inft→0+
∫
vt ≥

∫
v. The claim follows. �

We are now ready to prove Theorem 1.8. We will need a bit of notation
for the proof. First, we write f = e−ϕ and g = e−β. We also set ψ =
hf = ϕ∗ and α = hg = β∗. Finally we define ψt = ψ + tα, ϕt = ψ∗

t and
ft = e−ϕt = f ⋆ (t · g).

We first prove the theorem under the extra assumption α grows very
slowly:

Lemma 3.7. Under the assumptions of Theorem 1.8 assume further that

−m ≤ hg(y) ≤ m |y|+ c

for some m, c > 0. Then

δ(f, g) =

∫
hgdSf .

Remark 3.8. Unlike the more general Theorem 1.8, the equality in the lemma
is always an equality of finite quantities. Indeed,∫
hgdSf =

∫
hg (∇ϕ) e

−ϕ ≤

∫
(m |∇ϕ|+ c) e−ϕ = m

∫ ∣∣∇
(
e−ϕ

)∣∣+c
∫
e−ϕ,

which is finite by Proposition 3.1.

Proof. Write g̃ = ec · 1mBn
2
, and observe that hg̃(y) = m |y|+ c. Define

f̃t(x) = (f ⋆ (t · g̃)) (x) = etc · max
z: |z−x|≤mt

f(z).

Since hg ≤ hg̃ we also have g ≤ g̃, so for all t > 0 we have ft ≤ f̃t. On the
other hand, we also have

ft = e−(ψ+tα)∗ ≥ e−(ψ−tm)∗ = e−(ϕ+tm) = e−tmf.

Therefore if we define ut = e−tmf−f
t , vt = ft−f

t and wt = f̃t−f
t then

ut ≤ vt ≤ wt for all t > 0.
We claim that

(3.4) vt → α (∇ϕ) f

almost everywhere, where we interpret the right hand side to be 0 whenever
f = 0.

Indeed, this will follow from Proposition 2.1. More precisely, let K =
{x : f(x) 6= 0} denote the support of f . As a convex function ϕ is differ-
entiable almost everywhere on K, so at almost every x ∈ K we may apply
Proposition 2.1 and deduce that

d

dt

∣∣∣∣
t=0+

ϕt(x) = −α (∇ϕ(x)) .
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By the chain rule we then have

d

dt

∣∣∣∣
t=0+

ft(x) =
d

dt

∣∣∣∣
t=0+

e−ϕt(x) = α (∇ϕ(x)) · f(x)

like we wanted. On the other hand, for every x /∈ K we have d(x,K) = δ > 0,

and then for every t < δ
m we have f̃t(x) = 0. Hence ft(x) = 0 as well for all

small enough t > 0, so we obviously have limt→0+ vt(x) = 0. This concludes
the proof of (3.4).

The same proof with g replaced by g̃ shows that wt → (m |∇ϕ|+ c) f
almost everywhere, and basic calculus implies that ut → −mf . Let us call
these three pointwise limits v, w and u. It is trivial that

∫
ut

t→0+
−−−→ −m

∫
f =

∫
u > −∞.

Since f is essentially continuous we may apply Proposition 3.4 and deduce
that

lim
t→0+

∫
wt =

d

dt

∣∣∣∣
t=0+

∫
f̃t =

∫
hg̃dSf =

∫
w.

Moreover, remark 3.8 explains why
∫
w <∞.

Hence we may apply Lemma 3.6 and deduce that

lim
t→0+

∫
vt =

∫
lim
t→0+

vt =

∫
α (∇ϕ) f =

∫
hgdSf ,

completing the proof. �

Now we can finally prove Theorem 1.8 in its full generality:

Proof of Theorem 1.8. First we claim that translating g does not change the
validity of the theorem. Indeed, the left hand side clearly doesn’t change
when we replace g by g̃(x) = g(x − v). For the right hand side we have
hg̃(x) = hg(x) + 〈x, v〉, so by Proposition 9 we have

∫
hg̃dSf =

∫
hgdSf +

∫
〈x, v〉 dSf =

∫
hgdSf +

∫
〈∇ϕ, v〉 f

=

∫
hgdSf −

〈∫
∇f, v

〉
=

∫
hgdSf .

Hence we may translate and assume that max g = g(0) > 0, which means
that minβ = β(0) < ∞. This implies that α ≥ −β(0) > −∞ is bounded
from below.

For every integer i > 0 we define

gi(x) =

{
g(x) |x| ≤ i

0 otherwise.

Define ft,i = f ⋆ t · gi and αi = hgi . We claim that αi(x) ր α(x) and
ft,i(x) ր ft(x) as i→ ∞, where x ∈ R

n and t > 0 are fixed.
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Let us show that ft,i(x) ր ft(x). Since gi is increasing in i and gi ≤ g it
follows that ft,i is also increasing in i and ft,i ≤ f . Therefore we only have
to prove that

sup
i≥1

ft,i(x) ≥ ft(x).

Indeed, for every ε > 0 there exists y0 ∈ R
n such that

ft(x) = sup
y∈Rn

f(x− y)g
(y
t

)t
≤ f(x− y0)g

(y0
t

)t
+ ε.

Therefore for every i0 > |y0/t| we have

sup
i≥1

ft,i(x) ≥ ft,i0(x) = sup
y∈Rn

f(x− y)gi0

(y
t

)t
≥ f(x− y0)gi0

(y0
t

)t

= f(x− y0)g
(y0
t

)t
≥ ft(x)− ε.

Since ε > 0 was arbitrary the claim is proved. The proof that αi(x) → α(x)
is similar.

Note that

αi(y) = sup
x∈Rn

(〈x, y〉 − βi(x)) = sup
|x|≤i

(〈x, y〉 − β(x)) ≤ i |y| − β(0),

and that αi(y) ≥ −βi(0) = −β(0). Hence we may apply Lemma 3.7 and
conclude that

δ(f, gi) = lim
t→0+

∫
ft,i −

∫
f

t
=

∫
hgidSf .

In particular, as was explained in Remark 3.8 these expressions are finite.
Since αi ր α we have by monotone convergence

∫
hgidSf ր

∫
hgdSf .

For the left hand side, define ρi(t) =
∫
ft,i and ρ(t) =

∫
ft, and set ρi(0) =

ρ(0) =
∫
f . By Proposition 3.5 we have ρi(t)

i→∞
−−−→ ρ(t) for all t > 0.

For every i the function

ϕi,t(x) = (ψ + tαi)
∗ (x) = sup

y∈Rn

[〈x, y〉 − ψ(y) − tαi(y)]

is jointly convex in (t, x) ∈ R
n+1 as the supremum of linear functions. The

Prékopa-Leindler inequality then implies that ρi(t) =
∫
e−ϕi,t(x)dx is log-

concave as well. Similarly ρ is log-concave. Hence

(log ρ)′+ (0) = lim
t→0+

log ρ(t)− log ρ(0)

t
= sup

t>0

log ρ(t)− log ρ(0)

t

= sup
t>0

sup
i

log ρi(t)− log ρi(0)

t
= sup

i
sup
t>0

log ρi(t)− log ρi(0)

t

= sup
i

(log ρi)
′
+ (0) = sup

i

(ρi)
′
+ (0)∫
f

= sup
i

∫
αidSf∫
f

=

∫
αdSf∫
f

.

On the other hand, we also have (log ρ)′+ (0) =
ρ′
+
(0)∫
f
. One has to be

careful here, since we do not know if ρ is even continuous at t = 0, let
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alone differentiable. Therefore we interpret this equality to mean that if
(log ρ)′+ (0) = +∞ then ρ′+(0) = +∞ as well. Under this convention we see
that indeed

lim
t→0+

∫
ft −

∫
f

t
= ρ′+(0) =

∫
αdSf ,

and the proof is complete. �

4. Minkowski’s theorem and Lp-surface area measures

It is now time to discuss a classic problem we avoided so far: What
measures are surface area measures? In the classic case of convex bodies,
the answer is known as Minkowski’s existence theorem:

Theorem 4.1. Let µ be a finite Borel measure on S
n−1. Then µ = SK for

some convex body K if and only if it satisfies the following two conditions:

(1) µ is centered, i.e.
∫
Sn−1 xdµ(x) = 0.

(2) µ is not supported on any great sub-sphere of Sn−1.

In this classical setting, the uniqueness is also well known – if SK = SL for
some convex bodies K and L then necessarily K = L+ v for some v ∈ R

n.
For a proof of these facts see e.g. Sections 8.1 and 8.2 of [20].

In [7] Cordero-Erausquin and Klartag proved a functional version of The-
orem 4.1. In our notation their result reads as follows:

Theorem 4.2 ([7]). Let µ be a finite Borel measure on R
n. Then µ = Sf

for an essentially continuous f ∈ LCn with 0 <
∫
f < ∞ if and only µ

satisfies the following two conditions:

(1) µ is centered (so in particular
∫
Rn |x|dµ(x) <∞).

(2) µ is not supported on any lower dimensional linear subspace of Rn.

Moreover, f is uniquely determined up to translations.

Besides its geometric content this theorem can also be viewed analytically,
as an existence and uniqueness theorem for generalized solutions of a Monge-
Ampère type differential equation. Indeed, assume that dµ

dx = g for a smooth
function g, and that the solution f = e−ϕ to the equation Sf = µ is smooth
as well. Then using (1.3) and the classic change of variables formula we see
that

g (∇ϕ(x)) · det
(
∇2ϕ(x)

)
= e−ϕ(x)

for all x ∈ R
n. This point of view is further explained in [7]. We also remark

that the “uniqueness”part of the theorem was also proved in [6] under some
technical conditions.

For the rest of this paper we will be mostly interested in an extension
of the surface area measure, known as the Lp-surface area measure. Given
two convex bodies K,L containing the origin and a number p ≥ 1, the
Lp-combination K +p (t · L) of K and L is defined via its support function
by

(4.1) hK+pt·L =
(
hpK + t · hpL

)1/p
.
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Note that since 0 ∈ K,L we know that hK , hL ≥ 0, so the right hand side is
well-defined. Moreover, using the fact that the Lp norm is indeed a norm it is
not hard to check that the right hand side defines a convex, 1-homogeneous
function, and hence the body K+p t ·L exists. For p = 1 the Lp-addition +1

coincides with the usual Minkowski addition. Lp additions of convex bodies
were first defined by Firey ([9]), and the Brunn-Minkowski theory of such
bodies was developed by Lutwak ([13], [14]). In particular, in [13] Lutwak
proved an extension of (1.1) for this case: For every pair convex bodies K,L
containing the origin we have

(4.2) lim
t→0+

|K +p t · L| − |K|

t
=

1

p

∫

Sn−1

hpLh
1−p
K dSK.

We refer to the measure h1−pK dSK as the Lp-surface areas measure of K,
and denote it by SK,p. In the same paper Lutwak proved an extension of
Minkowski’s existence theorem for p ≥ 1:

Theorem 4.3 ([13]). Fix p ≥ 1, and let µ be an even finite Borel measure
on S

n−1 which is not supported on any great sub-sphere. Then:

(1) If p 6= n there exists an origin-symmetric convex body K (i.e. K =
−K) such that SK,p = µ.

(2) For p = n there exists an origin-symmetric convex body K such that
SK,n = c · µ for some c > 0.

Moreover, the body K is unique.

In order to explain some peculiarities about the statement of Theorem
4.3, it is useful to say a few words about its proof. In the proof one finds
the body K by minimizing the functional

Φ(L) = |L|−
p
n

∫

Sn−1

hpLdµ

over the class of origin symmetric convex bodies. If the minimum is attained
at some body K, then it turns out that the first order optimality condition
“∇Φ(K) = 0” implies that SK = c · µ for some c > 0. If p 6= n we can dilate
K to have exactly SK = µ, by noticing that SλK,p = λn−pSK,p. Obviously
this scaling idea cannot work when p = n, as in this case SλK,n = SK,n.
This explains why the case p = n is special.

This very rough sketch of the proof can also explain why µ is assumed
to be even, an assumption that was unnecessary in the case p = 1. Indeed,
the use of the first order optimality condition “∇Φ(K) = 0” requires the
minimizer K to be an interior point of the domain of Φ. When p > 1, Φ
can only be defined on convex bodies containing the origin, to make hpL well
defined. Without the assumption that L is origin symmetric the minimum
of Φ may be obtained at some body K containing 0 at its boundary, which
will make the argument impossible. Variants of Theorem 4.3 are known for
non-even measures (see [5] and [10]), but we will not require them here.
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In recent years there has been a lot of interest in the Lp theory, and in
particular in Lp-surface area measures, for 0 < p < 1. When p < 1 one
cannot define K +p t ·L using (4.1), as the right hand side is not necessarily
a convex function. Instead, for any function ρ : Sn−1 → (0,∞), convex or
not, one defines the Alexandrov body (or Wulff shape) of ρ as

A [ρ] =
{
x ∈ R

n : 〈x, θ〉 ≤ ρ(θ) for all θ ∈ S
n−1

}
.

In other words, A[ρ] is the largest convex body with hA[ρ] ≤ ρ. In particular
for every convex body K we have A[hK ] = K. Then one can define

K +p t · L = A
[(
hpK + thpL

)1/p]

for any p > 0. Using the saw called Alexandrov Lemma, one can verify that
(4.2) remains true for 0 < p < 1. Furthermore, as Schneider observes in [20]
(see Theorem 9.2.1), the existence part of Theorem 4.3 continues to hold in
this case, with the same proof. However, for p < 1, the uniqueness problem
is highly non-trivial. In fact it was proved by Böröczky, Lutwak, Yang and
Zhang ([4]) that this uniqueness problem is equivalent to the so called Lp-
Brunn-Minkowski conjecture, a major open problem in convex geometry.
While this relation was one of our original motivation to study Lp-surface
area measures it will not play any role in the sequel, so we will not give any
further details.

We will be interested in functional Lp-addition and functional Lp-surface
area measures. The definitions are fairly straightforward:

Definition 4.4. Let ψ : Rn → (−∞,∞] be a lower semi-continuous function
(which may or may not be convex). The Alexandrov Function of ψ is f =
A [ψ] = e−ψ

∗

.

Note that hf = ψ∗∗ , so f is the largest log-concave function with hf ≤ ψ
in analogy to the classical theory. We then define:

Definition 4.5. Fix p > 0 and fix functions f, g ∈ LCn with hf , hg ≥ 0.
The Lp-combination f ⋆p t · g is defined by

f ⋆p t · g = A

[(
hpf + thpg

)1/p
]
.

Let us compute the first variation of
∫
(f ⋆p t · g). Unlike the case p = 1

we will not do it rigorously under minimal assumptions, but use (2.2) to
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derive the answer formally assuming sufficient regularity:

d

dt

∣∣∣∣
t=0+

∫
(f ⋆p t · g) =

∫
d

dt

∣∣∣∣
t=0+

(f ⋆p t · g)

=

∫
d

dt

∣∣∣∣
t=0+

exp

(
−

[(
hpf + thpg

)1/p
]∗)

= −

∫ (
e−ϕ ·

d

dt

∣∣∣∣
t=0+

[(
hpf + thpg

)1/p
]∗)

=

∫ (
e−ϕ ·

(
d

dt

∣∣∣∣
t=0+

[(
hpf + thpg

)1/p
]
◦ ∇ϕ

))

=
1

p

∫
e−ϕ · h1−pf (∇ϕ) · hpg (∇ϕ) =

1

p

∫
hpgh

1−p
f dSf .

As expected, the result is completely analogous to the case of convex bodies,
so we make the following definition:

Definition 4.6. For f ∈ LCn with 0 <
∫
f < ∞ and 0 < p < 1 we define

the Lp-surface area measure of f to be Sf,p = h1−pf dSf .

Remark 4.7. For Sf,p to be well defined and not identically equal to +∞ we
should verify that hf (x) < ∞ for Sf -almost every x. This is true since at
every point x ∈ R

n where f(x) > 0 and ϕ(x) = − log f(x) is differentiable
we have by Lemma 2.2

ϕ(x) = 〈x,∇ϕ(x)〉 − hf (∇ϕ(x)) ,

so in particular hf (∇ϕ(x)) <∞. Hence

Sf ({y : hf (y) = ∞}) =

∫
1{hf (∇ϕ(x))=∞}f(x)dx = 0,

so Sf -almost everywhere we have hf <∞.

The second major goal of this paper is to prove a Minkowski existence
theorem for functional Lp-surface area measures. More concretely we will
prove the following:

Theorem 4.8. Fix 0 < p < 1. Let µ be an even finite Borel measure on
R
n. Assume that:

(1)
∫
|x| dµ <∞ (and then of course µ is centered, as it is even)

(2) µ is not supported on any hyperplane

Then there exists c > 0 and an even function f ∈ LCn with hf ≥ 0 such
that Sf,p = c · µ.

If again we assume that dµ
dx = g for some smooth function g and that the

solution f = e−ϕ to Sf,p = c · µ is also smooth, then ϕ solves the Monge-
Ampère type differential equation

c · g (∇ϕ(x)) · det
(
∇2ϕ(x)

)
= (ϕ∗(x))1−p e−ϕ(x).
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Note that we claim nothing about the uniqueness of f . As was explained
above this is a much more delicate issue that we will not address here. Also
note that we only prove the result for even measures µ, and we can only
deduce that Sf,p coincides with the measure µ up to a constant c > 0. This
is very similar to the case p = n of Theorem 4.3, and happens for essentially
the same reasons.

We will prove Theorem 4.8 in the next section.

5. A functional Lp Minkowski’s existence theorem

In this section we prove Theorem 4.8. Not surprisingly, we will find the
function f we are looking for by solving a certain optimization problem.
Unlike the proofs of Theorems 4.2 and 4.3 however, it will be much more
convenient to work with a constrained optimization problem. First we will
need a result guaranteeing the existence of a minimizer:

Proposition 5.1. Assume µ satisfies the assumptions of Theorem 4.8. Fix
0 < p < 1, and consider the minimization problem

min

{∫
ψpdµ :

ψ : Rn → [0,∞] is even,
measurable and

∫
e−ψ

∗

≥ a

}
.

If a > 0 is large enough then the minimum is attained for a lower semi-
continuous convex function ψ0. Moreover, ψ0(0) > 0 and

∫
e−ψ

∗

0 = a.

In order to prove this proposition we will need two lemmas, which are
both variants of lemmas from [7]. First let us state our version of Lemma
15 from this paper:

Lemma 5.2. Assume µ satisfies the assumptions of Theorem 4.8. Let ψ :
R
n → [0,∞] be an even lower semi-continuous convex function with ψ(0) =

0. Write ϕ = ψ∗ and fix 0 < p < 1. Then
∫
ψpdµ ≥ cµ

(∫
e−ϕ

) p
n

− Cµ

for cµ, Cµ > 0 that depend on µ and p but not on ψ.

For completeness we provide a proof of the lemma. The fact that we only
deal with even functions and measures makes the proof shorter than the
corresponding proof in [7]:

Proof. If
∫
ψpdµ = ∞ there is nothing to prove, so we may assume that∫

ψpdµ <∞. Therefore ψ is finite on the support of µ, and since ψ is convex
it is also finite on its convex hullK = conv(supp(µ)). By our assumptions on
µ the bodyK is an origin symmetric convex body with non-empty interior, so
it must contain 0 in its interior. In particular ψ is bounded in a neighborhood
of 0. If |ψ(y)| ≤M for |y| ≤ δ then

ϕ(x) = sup
y∈Rn

[〈x, y〉 − ψ(y)] ≥

〈
x,
δx

|x|

〉
− ψ

(
δx

|x|

)
≥ δ |x| −M,
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So in particular
∫
e−ϕ < ∞. If

∫
e−ϕ = 0 again there is nothing to prove,

so we may assume 0 <
∫
e−ϕ <∞. By the Blaschke-Santaló inequality (see

[1]) it follows that ∫
e−ψ ·

∫
e−ϕ ≤ (2π)

n
2 .

Next we define

K = {y ∈ R
n : ψ(y) ≤ 1} .

We also define r = minθ∈Sn−1 hK(θ), and let θ0 ∈ S
n−1 be the direction in

which this minimum is attained. It follows that

(2π)n/2∫
e−ϕ

≥

∫

Rn

e−ψ ≥

∫

K
e−ψ ≥

1

e
|K| ≥

1

e
|rBn| = cn · r

n,

so r ≤ Cn ·
(∫
e−ϕ

)−1/n
. Here and everywhere else cn, Cn > 0 are some

constants that depend only on the dimension n.
For every y ∈ K we have r = hK(θ0) ≥ |〈y, θ0〉|. Equivalently, if |〈y, θ0〉| >

r then x /∈ K, so ψ(y) > 1. It follows that if 2r ≤ |〈y, θ0〉| then

1 < ψ

(
2r

|〈y, θ0〉|
y

)
= ψ

((
1−

2r

|〈y, θ0〉|

)
· 0 +

2r

|〈y, θ0〉|
· y

)
≤

2r

|〈y, θ0〉|
ψ(y),

so ψ(y) + 1 ≥ ψ(y) ≥ |〈y,θ0〉|
2r . Obviously if |〈y, θ0〉| < 2r this inequality still

holds trivially, so it holds for every y ∈ R
n. Hence

∫
(ψp + 1)dµ ≥

∫
(ψ + 1)pdµ ≥

1

(2r)p

∫
|〈y, θ0〉|

p dµ.

The function θ 7→
∫
|〈y, θ〉|p dµ(y) is continuous on S

n−1 by the dominated
convergence theorem, and is strictly positive since µ is not supported on any
hyperplane. Hence it has a positive minimum which we may denote by c̃µ.
It follows that

∫
(ψp + 1)dµ ≥

c̃µ
(2r)p

≥ cµ

(∫
e−ϕ

) p
n

,

completing the proof. �

The second lemma we will need is a variant of Lemma 17 from [7]:

Lemma 5.3. Assume µ satisfies the assumptions of Theorem 4.8. Let
{ψi}

∞
i=1 be non-negative, even, lower semi-continuous convex functions such

that

sup
i

∫
ψpi dµ <∞.

There there exists a subsequence
{
ψij

}∞

j=1
and an even lower semi-continuous

convex function ψ : Rn → [0,∞] such that
∫
ψpdµ ≤ lim inf

j→∞

∫
ψpijdµ and

∫
e−ψ

∗

≥ lim sup
j→∞

∫
e
−ψ∗

ij .
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In fact, Lemma 17 of [7] is exactly the same statement in the case p = 1,
and with the assumption of evenness replaced with the assumption ψi(0) =
0. The proofs are identical, as writing the extra power p everywhere doesn’t
affect the argument in any way. The assumption ψi(0) = 0 is only used in
[7] to know that ψi(λx) is increasing in λ. This is trivial when ψi is even,
so this assumption may be omitted. Since the proofs are otherwise identical
we omit a proof of Lemma 5.3.

Using these two lemma we can prove Proposition 5.1:

Proof of Proposition 5.1. Without loss of generality assume that µ is a prob-

ability measure. Consider the function ψ̃(y) = log a+ cn |y|, where the con-

stant cn is chosen such that |cnB
n
2 | = 1. Then ψ̃∗(x) = − log a + 1∞cnBn

2
, so

∫
e−ψ̃

∗

= a. For a ≥ e we have ψ̃ ≥ 1, so
∫
ψ̃pdµ ≤

∫
ψ̃dµ = log a+ cn

∫
|y|dµ(y) = log a+ Cµ.

In particular we see that

m = inf

{∫
ψpdµ :

ψ : Rn → [0,∞] is even,
measurable and

∫
e−ψ

∗

≥ a

}
<∞.

Next we choose a sequence {ψi}
∞
i=1 of even, measurable functions with∫

e−ψ
∗

i ≥ a and such that
∫
ψpi dµ→ m. By replacing each ψi with its second

Legendre conjugate ψ∗∗
i we may assume the functions {ψi} are all lower semi-

continuous and convex. Obviously
∫
ψpi dµ < m+1 for all but finitely many

values of i. Hence we can apply Lemma 5.3 and find a subsequence
{
ψij

}

and an even lower semi-continuous convex function ψ : Rn → [0,∞] such
that ∫

ψpdµ ≤ lim inf
j→∞

∫
ψpijdµ = m

and ∫
e−ψ

∗

≥ lim sup
j→∞

∫
e
−ψ∗

ij ≥ a.

It follows that
∫
ψpdµ = m and therefore ψ is the minimizer we were looking

for.
Assume by contradiction that ψ(0) = 0. Then by Lemma 5.2 we have

∫
ψpdµ ≥ cµ

(∫
e−ψ

∗

) p
n

− Cµ ≥ cµa
p
n − Cµ.

Therefore for large enough a > 0 we have
∫
ψpdµ >

∫
ψ̃pdµ, which is a

contradiction to the minimality of ψ. Hence ψ(0) > 0 for a > 0 large
enough.

Finally, assume by contradiction that
∫
e−ψ

∗

> a. Since ψ(0) > 0 the

function ψε = ψ− ε is non-negative for small enough ε > 0. Since
∫
e−ψ

∗

ε =

e−ε
∫
e−ψ

∗

we see that ψε is in our domain for small enough ε > 0. But this



SURFACE AREA MEASURES OF LOG-CONCAVE FUNCTIONS 23

is impossible since ψ is a minimizer and
∫
ψpεdµ <

∫
ψpdµ. This complete

the proof. �

Now that we have our minimizer, Theorem 4.8 will follow by writing
the first order optimality condition. In order to do this, we will need the
following result, which is a much simpler variant of Theorem 1.8:

Proposition 5.4. Fix f ∈ LCn with 0 <
∫
f < ∞ and set ψ = hf . Let

v : Rn → R be bounded and continuous. Then

d

dt

∣∣∣∣
t=0

∫
e−(ψ+tv)∗ =

∫
vdSf .

Proof. Fix a point x0 where ϕ = − log f is differentiable. By Proposition
2.1 we know that

d

dt

∣∣∣∣
t=0+

(ψ + tv)∗ (x0) = −v (∇ϕ(x0)) .

(Recall that we very explicitly did not assume in Proposition 2.1 that the
function v is convex). Applying the same proposition to −v instead of v we
see that

d

dt

∣∣∣∣
t=0−

(ψ + tv)∗ (x0) = −

(
d

dt

∣∣∣∣
t=0+

(ψ − tv)∗ (x0)

)
= −v (∇ϕ(x0)) ,

so the two sided derivative exists. Therefore if we write ft = e−(ψ+tv)∗ then
by the chain rule we have d

dt

∣∣
t=0

ft(x0) = v (∇ϕ(x0)) f .

Choose M > 0 such that |v| ≤ M . Then the functions ft = e−(ψ+tv)∗

satisfy e−tMf ≤ ft ≤ etMf . In particular all functions ft have the same
support which we denote by K. Moreover for |t| ≤ 1 we have

∣∣∣∣
ft − f

t

∣∣∣∣ ≤ max

{∣∣∣∣
etMf − f

t

∣∣∣∣ ,
∣∣∣∣
e−tMf − f

t

∣∣∣∣
}

= f ·max

{∣∣∣∣
etM − 1

t

∣∣∣∣ ,
∣∣∣∣
e−tM − 1

t

∣∣∣∣
}

≤
(
eM − 1

)
· f

which is an integrable function. Hence by dominated convergence we have

d

dt

∣∣∣∣
t=0

∫
e−(ψ+tv)∗ =

d

dt

∣∣∣∣
t=0

∫

K
ft =

∫

K

(
d

dt

∣∣∣∣
t=0

ft

)
=

∫

K
v (∇ϕ) f

=

∫
v (∇ϕ) f =

∫
vdSf .

�

We can now complete the proof of Theorem 4.8. In theory, since we are
working with a constrained optimization problem, the first order optimality
condition should involve Lagrange multipliers. Luckily our functions are
simple enough that we may compute this optimality condition directly and
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we do not have to worry about the theory of Lagrange multipliers on an
infinite dimensional space:

Proof of Theorem 4.8. Fix a > 0 large enough and Let ψ be the mini-
mizer from Proposition 5.1. Write f = e−ϕ = e−ψ

∗

and define K =
{x : ψ(x) <∞}. Since

∫
ψpdµ < ∞ the measure µ is supported on K.

From Remark 4.7 the measure Sf is also supported on K.
Fix an even, bounded and continuous function v : Rn → R whose support

is contained in the interior of K. Define

ψt = ψ + tvψ1−p + log a− log

∫
e−(ψ+tvψ

1−p)
∗

.

Note that

ψ∗
t =

(
ψ + tvψ1−p

)∗
− log a+ log

∫
e−(ψ+tvψ

1−p)
∗

so that
∫
e−ψ

∗

t = a. Moreover vψ1−p is a bounded function, since v is
bounded on R

n and ψ is bounded on the support of v. Let us write
∣∣vψ1−p

∣∣ ≤
M . We then also have

log

∫
e−(ψ+tvψ

1−p)
∗

≤ log

∫
e−(ψ+|t|M)∗ = log

(
e|t|M

∫
e−ψ

∗

)
= log a+|t|M

and similarly log
∫
e−(ψ+tvψ

1−p)
∗

≥ log a− |t|M . Hence |ψt − ψ| ≤ 2 |t|M .
In particular, since minψ = ψ(0) > 0, there exists δ > 0 such that ψt ≥ δ if
|t| is small enough.

By Proposition 5.4 we have

d

dt

∣∣∣∣
t=0

ψt = vψ1−p −
1

a
·

∫
vψ1−pdSf .

The function x 7→ xp is p
δ1−p -Lipschitz on the interval [δ,∞). Since for small

enough |t| we have ψ,ψt ≥ δ we obtain

(5.1)

∣∣∣∣
ψpt − ψp

t

∣∣∣∣ ≤
p

δ1−p

∣∣∣∣
ψt − ψ

t

∣∣∣∣ ≤
2Mp

δ1−p
.

From the fact that ψ is a minimizer it follows that
∫
ψpt dµ ≥

∫
ψpdµ for

all |t| small enough. Because of (5.1) we may apply dominated convergence
and conclude that

0 =
d

dt

∣∣∣∣
t=0

∫
ψpt dµ =

∫ (
d

dt

∣∣∣∣
t=0

ψpt

)
dµ

=

∫ (
pψp−1 ·

(
vψ1−p −

1

a

∫
vψ1−pdSf

))
dµ

= p

∫
vdµ−

1

a

∫
vψ1−pdSf ·

∫
pψp−1dµ.

We see that ∫
vdµ = c ·

∫
vψ1−pdSf = c ·

∫
vdSf,p
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for some constant c > 0 that depends on µ and ψ but not on v. Since µ and
Sf,p are even and supported on K, and since this equality holds for every
even, bounded and continuous function v whose support is contained in the
interior of K, it follows that µ = c · Sf,p . This completes the proof. �
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