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Surface-Based Labeling of Cortical Anatomy
Using a Deformable Atlas

Stephanie Sandor and Richard Leahy,*Member, IEEE

Abstract—We describe a computerized method to automatically
find and label the cortical surface in three-dimensional (3-D)
magnetic resonance (MR) brain images. The approach we take is
to model a prelabeled brain atlas as a physical object and give
it elastic properties, allowing it to warp itself onto regions in a
preprocessed image. Preprocessing consists of boundary-finding
and a morphological procedure which automatically extracts the
brain and sulci from an MR image and provides a smoothed
representation of the brain surface to which the deformable
model can rapidly converge. Our deformable models are energy-
minimizing elastic surfaces that can accurately locate image
features. The models are parameterized with 3-D bicubic B-spline
surfaces. We design the energy function such that cortical fissure
(sulci) points on the model are attracted to fissure points on
the image and the remaining model points are attracted to the
brain surface. A conjugate gradient method minimizes the energy
function, allowing the model to automatically converge to the
smoothed brain surface. Finally, labels are propagated from the
deformed atlas onto the high-resolution brain surface.

Index Terms—Brain atlas, deformable surface models, feature
extraction, matching.

I. INTRODUCTION

M UCH of the anatomical structure of the brain surface is
delineated by complex patterns of cortical sulci. These

sulcal patterns are routinely used as landmarks for predicting
areas of functional localization within the cortex. Since there is
not a simple relationship between individual cortical topology
and functional localization, activation studies using positron
emission tomography (PET), functional magnetic resonance
imaging (fMRI), or magnetoencephalography (MEG) must be
used to more accurately localize these functional areas. An
automated method for extraction of the cortical surface, and
subsequent labeling of the major sulci could provide a valuable
research tool for the study of the relationship between cortical
anatomy and functional localization in individual subjects, and
studies of intersubject variability.

This automated procedure could also be used to provide
anatomical constraints for use in imaging or localization of
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functional activity. For example, MEG provides measurements
of the magnetic fields produced by neural activity in the brain.
These measurements can be used as the basis for imaging or
localizing the neural activity which produces these fields. It is
generally accepted that the primary current sources which give
rise to these evoked fields are confined to cortex and oriented
normal to the surface [1]. Hence knowledge from magnetic
resonance (MR) images about the location and orientations of
cortical folds can be used to improve the MEG current source
estimate [2]. Labeling of the cortical surface offers the poten-
tial for utilization of probabilistic information about the rela-
tionship between cortical anatomy and functional localization.

The goal of our work is to develop a technique that is
automatic and accurate in labeling the convoluted regions
of the cerebral cortex. In its most basic form, anatomical
labeling is performed by an expert tracing out and labeling
boundaries of desired structures in an image. This procedure is
extremely time consuming and often impractical, particularly
for three-dimensional (3-D) data sets. A variety of comput-
erized labeling techniques have been proposed. While some
of these techniques require significant user interaction, others
have difficulties labeling the more intricate regions of the
cerebral cortex.

Many atlas model matching approaches have been proposed
for extracting regions from brain images and for anatomically
labeling these images. In most existing schemes either rigid
models or models with limited ranges of deformation represent
a brain atlas and significant user interaction is required to
find a correspondence between atlas and image. For example,
the stereotactic atlas of Talairach and Tournoux [3] is a
widely used manual method of anatomic localization. This
atlas is based on an orthogonal proportional grid system
centered on the brain’s AC-PC line, and atlas dimensions are
rescaled using standard landmarks from an individual subject’s
brain. Rescaling allows a localization of major structures in
the brain by assuming a one-to-one correspondence to the
spatial location of structures in the scaled atlas. This atlas
and procedure can be computerized and would require little
user interaction, but a disadvantage of this method is that
it is particularly sensitive to intersubject variations in local
structure due to the global nature of the scaling procedure.

In the work of Evanset al., structures in an MR image are
localized using a template matching procedure [4]. An atlas
consisting of standard regions of interest (ROI’s), defined on
a set of parallel, regularly spaced, planes is globally adjusted
to obtain an initial match to a subject’s MR image. Individual
ROI’s on each plane are then scaled, rotated, and translated to
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achieve the best visual fit to the MR image. This procedure,
which has been extended to a 3-D volume of interest (VOI)
atlas [5], is interactive, since decisions, such as whether or not
to translate or scale template regions, must be made by a user.

Since complex brain structures can exhibit significant shape
differences between subjects, rigid atlas models cannot accu-
rately account for normal anatomical variation among different
brains. The computerized brain atlas described by Greitzet al.
[6] employs a similar matching technique to that described in
[4], however, this method incorporates into the atlas matching
procedure simulated elastic transformations, such as skews
and variable scalings. These nonrigid deformations account for
large differences in overall brain shape between subjects and
improve correspondence between atlas and subject images. As
in the work of Evanset al. [4], parameters determining rigid
and nonrigid atlas transformations are all chosen interactively.

Bookstein [7] uses a thin-plate spline mechanism to warp an
MR image onto a neuroanatomical atlas. An image is treated
as labeled point data, i.e., a user identifies certain landmark
points in a subject’s image, and the image is warped to bring
these points into correspondence with the atlas. This technique
is employed to study specimen-by-specimen variability around
a normative image of the brain.

All these atlas matching techniques are interactive; a user
must manipulate the atlas or data to obtain a fit between atlas
and subject images; this is a time-consuming operation. An
automated technique would significantly decrease the amount
of time a specialist must spend with an imaging system. A
promising approach for automated matching is to give a model
elastic properties and allow it to adapt itself to features of the
subject’s image. In the work of Bajcsyet al. [8] an atlas is
modeled as though it occurs on a rubber sheet and is deformed
by forces derived from a feature space representation of a
subject’s image. This feature space representation emphasizes
certain characteristics of an image, usually edges. In this work,
subject data consists of X-ray computed tomography (CT)
head scans, and automated matching is performed by minimiz-
ing a cost functional involving both a deformation constraint
and a similarity measure. Extensions of this approach to 3-D
data using MR brain images is described by Geeet al. [9].
The deformable volume atlas described by Christensenet al.
[10] is a “textbook” of normal human neuroanatomy which
is transformed to fit images of other normal neuroanatomies.
These transformations map one volume into another and do not
specifically address the problem of matching surface features.
In this method, probabilistic transformations on the textbook
coordinate system deform the textbook to account for shape
differences between the textbook and subject images. The
transformations are consistent with the physical properties of
deformable elastic solids or viscous fluids. Since the methods
in [9] and [10] are based on matching of the raw image volume
to an atlas, they can be very sensitive to initialization of the
matching procedure and the choice of the parameters gov-
erning the deformations. Furthermore, while the viscous-fluid
transformations in [10] are guaranteed to preserve topology,
they are not guaranteed to map specific features of the atlas,
such as cortical sulci, to the corresponding features in the
subject anatomy.

All of the matching methods described above are based on
matching of the entire brain volume to an atlas. Researchers
interested primarily in the shape and organization of the
cerebral cortex have concentrated instead on representation of
the cortex as a surface. Procedures for unfolding of the cortical
surface are described in [11]–[13]. These methods concentrate
primarily on providing mappings of the cortical surface and
do not directly address the automatic atlas matching problem
described here.

The approach we have taken is to model a prelabeled brain
atlas as a surface. We parameterize the atlas with 3-D bicubic,
B-spline surfaces, and label surface points corresponding to
lobe regions and major sulci. This atlas is globally registered
(by rotation, translation, and scaling) to a subject’s brain and
given elastic properties, allowing it to automatically warp itself
onto regions in a subject’s brain image.

At the heart of our technique, is the assumption that varia-
tions in normal brain anatomy from subject to subject can be
accounted for by global scaling and local shape differences.
Therefore, we label a subject’s MR image by matching this
image to an anatomic model of a normal brain. From a
volume MR image of an anatomically normal brain, we have
developed a B-spline surface model of that brain and attached
anatomic labels to all points on the surface. To match the
atlas model to an image, this spline model is registered to
a subject’s MR image and treated as a deformable model’s
initial position. The model is automatically warped to match
the subject’s image, and labels are transferred from the model
to the image.

II. MR I MAGE PREPROCESSING

The deformable models which we use in our brain labeling
method converge rapidly to unambiguous image features, such
as smooth image boundaries. However, matching these models
to images containing complex shapes or several neighboring
regions is an underconstrained problem, since image contours
that are in close proximity to one another can leave the model
with many possible local solutions to the boundary-finding
task. Thus, in order to constrain the model to warp to the
brain surface, we preprocess the MR images.

A. Edge Detection

In our work, we rely on an edge detector as one step of our
preprocessing, because MR images have undesirable charac-
teristics which adversely affect techniques that are based on
absolute intensity information. For example, inhomogeneities
in the radio-frequency (RF) field generated by an MR scanner
can cause voxel intensity values to vary with respect to their
location in the image volume. That is, the same tissues can
yield different gray-level intensities depending on location.
Because of these radiometric variations, tissue classification
techniques based on absolute intensity measurements may
produce noisy or inaccurate results [14].

Further difficulties in processing MR images come from
partial volume effects which blur boundaries and cause ap-
parent connections between anatomically separate regions.
Also, problems appear when we attempt to incorporate tissue
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regions’ mean intensity values into a region classification
procedure. In MR, direct use of region means requires accurate
knowledge of appropriate tissue parameters (, , and
PD) and the specific pulse sequence employed in the image
acquisition process. But, it has not yet been shown that MR is
a sufficiently quantitative modality to provide accuratein vivo
measures of these parameters, notwithstanding that for any
given pulse sequence, the ordering of mean tissue intensities
e.g., mean (grey matter) mean (white matter) mean
cerebro-spinal fluid (csf) is usually known.

To detect anatomical boundaries in MR brain images, we de-
cided to resort to a computationally inexpensive preprocessor,
the 3-D Marr-Hildreth edge detector [15], [16]. The perfor-
mance of edge detectors can be problematic, as witnessed
by many articles published about the ongoing search for
an improved edge detector ([15], [17]–[20]). However, our
experience is that the spatial resolution of the Marr-Hildreth
filter can be chosen so that the operator is effective in finding
a closed brain surface which is a necessary requirement for
the input to the morphological procedure described below.
We convolve the images with a 77 7 Laplacian of a
Gaussian operator with 0.75. Since our images were
isotropically resampled to 1-mm cubic voxels, this operator
has a spatial dimension of 7 mm on a side. A binary image is
then created by setting zeros crossings to a “0” value and all
other pixels to “1.” The performance of the Marr-Hildreth edge
detector can be improved for noisy images by preprocessing
the MR volume with a nonlinear anisotropic edge-preserving
filter [21], however, this filter was not used for the MR data
presented here.

A close examination of the surface extracted using the Marr-
Hildreth operator, reveals that the boundary tends to wander
between the true outer brain surface (grey/csf boundary)
and the inner cortical surface (grey/white boundary). This
is primarily due to the partial volume effects that occur in
deep cortical folds in such a way that the two sides of
the sulcus appear to merge. While boundary-finding results
may be improved using a more sophisticated edge detector,
such as the Canny–Deriche method [22], [23], these partial
volume effects make it essentially impossible for any edge-
based segmentation method to accurately find the outer brain
surface without smoothing over the deeper sulci. Since the
average thickness of the cortex is on the order of 2–3 mm
[24], we anticipate that the boundary mislocation will be
tolerable for many applications. Such is the case in which
the cortical surface is used to constrain inverse solutions for
magnetoencephalographic imaging [2] due to the inherently
limited resolution of the modality. If very accurate localization
of the outer brain surface is required, this may be achieved
either by using a more sophisticated intensity-based segmen-
tation scheme [14], [25] or by iterative relaxation of the brain
surface boundary after it is extracted using the morphological
methods described below.

B. Morphological Algorithm for Extraction of the Cortex

Mathematical morphology is an image analysis approach
which is directly concerned with measurement of size and

shape of objects in an image. Morphological image trans-
formations via set structuring elements are nonlinear filtering
operations which locally change the geometry of image objects
[26], [27]. When appropriately chosen, morphological oper-
ators can simplify an image to a form amenable to feature
identification. In our morphological algorithm, we perform
operations which: 1) eliminate details in the processed MR
head image to develop a smooth template of the overall brain
shape and 2) detect sulcal features of the cortical surface.

We use standard notation from mathematical morphology
[27], [28] to describe the steps of our algorithm. A dilation
of binary set by structuring element is denoted ,
and erosion is represented by . Morphological opening
and closing are denoted by and , respectively,
and we denote a set difference operation between setsand

by .
Performing 3-D Marr-Hildreth edge detection on an MR

head image results in a binary image, where image pixels
corresponding to edges are white (“0”) and all others are
black (“1”). We represent this binary head image by a 3-
D set, denoted , comprising the set of black pixels. The
brain is then a connected 3-D subset of. To sever unwanted
connections and extract only the brain from an image, we first
perform an erosion with a 3-D rhombus structuring element
of discrete size one ( ), which is a 3-D digital cross, three
voxels wide in the and directions. Transforming by
will eliminate regions which have a size of two voxels or less
in any direction and shrink a majority of the brain surface
by one voxel. The erosion has the effect of separating brain
voxels from surrounding image regions.

Next we perform a 3-D flood filling operation to select
only brain voxels. A 3-D flood filling routine finds all voxels
connected to a seed point in the brain. Specification of an
arbitrary seed point is the only user interaction required for
our entire labeling procedure; every other step is automatic.
We will denote this morphologically processed and flood filled
set of brain voxels as .

We fill holes in by first dilating the set with a
rhombus structuring element of size one and then closing
with an octagon of size two, denoted . This isotropic
octagon structuring element, which is a digital approximation
to a sphere in Euclidean space, has a width of nine voxels.
Therefore, these operations will result in a brain volume in
which boundaries are smooth and all holes less than nine
voxels wide are closed [see Fig. 1(a)]. We will denote the
result of this operation

Set is a smooth image that serves as a template on
which we can reintroduce fine details from the original binary
volume, . That is, when we take the difference
we obtain a set which represents all gaps and holes belonging
to the brain [see Fig. 1(b)]. We denote this set . A
difference operation between the closed brain and its set of
holes yields our final brain volume
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Fig. 1. (a) A transverse slice through the morphologically closed brain surface(XDCBrain). (b) A transverse slice showing the detected sulci openings with
the boundary of the closed brain surface superimposed on the image(XHoles). (c) A surface rendering of a brain which was automatically extracted
from MR head images using our morphological algorithm(XBrain).

Fig. 1(c) shows a surface rendering of a brain which was
automatically extracted using the morphological processing
described above.

We summarize five processing steps which we require for
extracting a brain from a head image. These steps comprise
the first part of our automated algorithm.

1) .
2) Flood-fill to arrive at .
3) .
4) .
5) .

The algorithm’s next portion labels elements of
corresponding to cortical regions. The cortical surface is the
outer contour of our binary brain image, , and sulci
appear as regions bordering holes and gaps in . By
tracing this outer contour one two-dimensional (2-D) slice at a
time, we find portions of corresponding to the cortical
surface (the outer contour of a binary object is found with
a simple boundary following routine). Because the brain has
a convoluted surface, finding its outline one slice at a time
simplifies cortex-tracing procedures. However, we must take
into account the brain’s complexity as a 3-D object if we are to
process it successfully on a 2-D basis. For example, on certain
2-D slices, deep sulci make the brain appear to be comprised
of disconnected regions. Therefore, the outer contour of every
patch of connected pixels on every 2-D slice is traced and
labeled as part of the cortical surface. We will call the set of
surface points found by this procedure . Furthermore,
because the cortex folds over on itself, on some 2-D slices
the cortical surface may appear to be interior to the brain; the
contour tracing routine will miss these regions, since it traces
only exterior boundaries. Interior regions are found by further
morphological processing steps, and the extracted surface is
labeled as “sulcus” or “nonsulcus.”

In step 4) of our algorithm, we created , a set
representing all gaps and holes in a brain image. A portion
of these holes are due to sulci, but others are created by noise
or interior brain structures. A feature which differentiates a
sulcus opening from any other is that given any point in this
opening, we can find a connected path of voxels from that point

to the image background which lies outside the brain. If we
compare corresponding slices of and , we find
that sulci openings intersect the boundary of , the
closed brain image, somewhere in the volume. We conclude
this section by providing a detailed list of necessary steps to
find all sulci openings in the cortex. These steps form the
second part of our automated algorithm.

1) Trace the boundary of and initialize the next
processing steps on the first slice of . In
addition, initialize a set called which starts
out as an empty set, but after this part of the algorithm
is complete, it will contain all voxels corresponding to
sulci openings.

2) Find a point on ’s boundary that intersects
and mark it as a sulcus point.

3) Find all voxels in connected to the sulcus point
found in step 2) (we denote this set of connected voxels

). As in the first part of our algorithm, we use
a 3-D flood filling routine to find all voxels connected
to a particular point.

4) Perform the following set union:
. That is, add to the set of all brain sulci.

5) Redefine as . That is,
remove from .

6) Return to step 2), and continue processing in this manner
until volume has been traversed in its entirety.

7) Redefine the set of cortical surface locations as
.

8) Label all surface points on the outer boundary of
as cortical sulci.

Once this processing is complete, we arrive at a set
which is a point-by-point description of the cortical surface.
Also, is labeled as to which surface points correspond
to sulci. Fig. 2(b) shows one slice through , the cortical
surface found by the above processing steps; Fig. 2(c) shows
points that the morphological processing labels as sulci—these
points are superimposed on the original gray scale image of
the slice.

An advantage of using morphological processing is that we
can obtain a smoothed representation of the brain surface. This
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Fig. 2. (a) Transverse slice through extracted binary brain image(XBrain). (b) The extracted cortical surface(XCortex). (c) The sulci detected by
the morphological algorithm(XAllSulci).

type of representation is necessary because without interactive
guidance, deformable models cannot be guaranteed to con-
verge to highly convoluted image features. By performing
a morphological closing operation on the extracted brain,
we smooth the image, closing all gaps caused by sulci and
other cortical structures. Fig. 1(b) shows the boundary of
the morphologically closed brain surface superimposed on
the sulci image so that we can see where sulci intersect
the closed brain surface. Therefore, morphological processing
results in a smoothed image to which the model will accurately
converge and which still retains information as to where
cortical convolutions occur on the brain surface.

III. T HE ATLAS

The processing steps discussed in Section II extract a
pointwise surface description of a brain from an MR image
and attach general anatomical (i.e., sulcus or nonsulcus) labels
to this surface. In order to perform a more detailed surface
labeling, we take advantage of significanta priori knowledge
about normal brain anatomy and introduce this knowledge
into our processing in the form of an anatomically labeled
brain atlas model. Assuming that variations in normal brain
anatomy from subject to subject can be accounted for by
global scaling and local shape differences, a more detailed
labeling is accomplished by matching this atlas model to the
morphologically extracted brain surface.

A. Cortical Anatomy

The convoluted cerebral cortex can be divided into regions
or lobes whose boundaries are, for the most part, defined by
major cortical fissures; each lobe also has its own specific sul-
cal patterns. Generally, the external surfaces (i.e., the convex
lateral surfaces) of the hemispheres are divided into four lobes:
frontal, parietal, occipital, and temporal. Lobe boundaries are
formed by anatomical structures, such as the central and lateral
sulci, or by artificial lines like the parietotemporal border (see
Fig. 3).

Major sulci are critical landmarks since they define the
boundaries of lobe regions and serve as rough indicators
of functional areas of the cerebral cortex. In normal brains
these sulci have the following features: 1) they occur in

Fig. 3. Major anatomical features on the convex lateral surface of the brain:
the four lobes are labeled asP—parietal lobe,F—frontal lobe,T—temporal
lobe, andO—occipital lobe. The major fissures are indicated, and the
boundary between the occipital lobe and its neighboring regions is designated
by a dashed line.

approximately the same location and orientation on different
subjects; 2) they run long distances across the brain surface
without being interrupted by secondary cortical folds; 3) they
are the deepest fissures on the cortex. Although they can have
quite complex shapes, these sulci are among the most constant
features on the brain surface.

Except for major convolutions and fissures, cerebral struc-
tures on the surfaces of the hemispheres can be difficult to
recognize, due to many secondary folds and interruptions
which alter the shape of cortical convolutions. Also, there is
a large amount of variability in cortical sulcal patterns, not
only among individual brains but also between hemispheres
of the same brain; however, basic recurring sulcal patterns
can be identified and categorized. For example, the work of
Onoet al. gives an in-depth description of sulcal patterns of 25
specimen brains [29]. Certain trends can be found which cause
particular sulci to be more readily identified. For instance,
part of the reason the central sulcus and Sylvian fissure are
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Fig. 4. A contour for one slice of the atlas model. The atlas contours are traced from the outer boundary of a morphologically closed brain.

recognizable is that in the majority of normal brains the sulcus
travels from one point to another on the brain surface without
being interrupted by a cortical fold. From data gathered on
these brain specimens it was found that in 100% of the cases,
the Sylvian fissure was never interrupted and this was true for
the central sulcus in 92% of the specimens.

Many sulci exhibit patterns of frequent interruption, which
greatly increase the difficulty of the recognition and label-
ing task—even for an expert in cortical anatomy. However,
additional information about sulci can be used in their identifi-
cation. The locations of sulci interruption can be important. For
example, in the case of the superior frontal sulcus interruptions
occur more frequently as one heads toward the extreme end of
the frontal lobe. Also, the cerebral fissures have orientations
which are typical of lobes in which they lie [3]. That is,
the general layout of the cortex is relatively constant among
subjects, and once the main sulci (those already included in
our atlas) are found, other important sulci can be found since
they occur in a particular location and orientation with respect
to the major sulci.

B. B-Splines and Atlas Construction

To develop the atlas model we used a 3-D MR volume
image of a male brain which did not show any visible anatomic
abnormalities. This image is an updated MRI-version of the
original phantom described in [30]. The images were acquired
on a 1.5-T GE scanner in a volume acquisition mode. A
spoiled grass pulse sequence was used ( 40 ms and

13 ms) with flow compensation to eliminate artifacts
due to moving fluids. The images were isotropically sampled
with voxel dimensions of 1.09 mm in all three directions. The
morphological algorithm (see Section II) for extracting a brain
from a head image was applied to this MR data.

With morphology we also can find regions of a brain image
corresponding to the cortical surface and to sulci openings.
By morphologically closing a binary brain image, we obtain
a smoothed representation of the brain surface, and it is the
outer contour of this smooth surface that we use as our
model of the cortex. Fig. 4 shows a slice through the closed

brain and the contour which represents the brain atlas on that
slice. With results from morphological processing we can find
those surface points corresponding to locations of sulci. That
is, by taking the intersection of the outer boundary of the
closed brain with the set of sulci openings we find points on
the closed surface which correspond to locations of different
sulci [see Fig. 1(b)]. We then select and label surface points
corresponding to the sulci we want included in our atlas, and
points lying between these sulci are labeled according to the
lobe in which they occur.

By this procedure the atlas surface is described by a list
of points representing the outer surface of the brain as it
appears on each slice of the closed brain image. Each surface
point has an anatomical label attached to it, and we call this
collection of points our “original atlas.” A B-spline surface
representation provides us with a closed form expression for
the atlas surface and also requires fewer points than the
original atlas description. Hence, we use an approximating
B-spline surface to depict our atlas.

A B-spline surface is generated by breaking a surface
into a number of patches, representing each patch separately,
and joining these patches together to form a continuous
surface. The 3-D surface is approximated by summing scaled
versions of basis functions, , which are piecewise
in two parameters [31]. B-spline control vertices,

, are arranged in a rectangular topology called
a control mesh. If is an approximated surface, then it
can be expressed as a double summation

(1)

In order that have rectangular parametric regions
of support, we form basis functions as products of univariate
B-splines

(2)

These 3-D basis functions are called tensor product B-splines.
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(a) (b) (c)

Fig. 5. (a) Example of the sampling method used to obtain B-spline control mesh. The contour represents one slice of a closed brain image and the asterisks
are our sample points which occur at the intersection of the curve with lines drawn from the center of the contour. (b) Lateral view of the atlas’ B-spline
control mesh obtained with the sampling method shown in (a). (c) Top view of control mesh.

Cubic B-splines, such as the tensor product spline, are
well suited for representing nonlinear surfaces. These splines
are assembled bicubic surfaces that have positional, first and
second derivative continuity (2 continuity) in every direction
at breakpoints. The nonzero portion of a bicubic basis patch
spans a region defined by 16 breakpoints in parameter space,
allowing local control of a B-spline surface patch, i.e., moving
a single control vertex causes a change in only a part of the
surface. Furthermore, specification of repeated control vertices
or a closed control mesh causes a spline curve to generate
predefined behavior at its boundaries.

Our original atlas description consists of lists of points
corresponding to closed contours on each slice of a closed
brain image. In order to obtain a B-spline control mesh,
we sample these contours one slice at a time. Our sampling
procedure consists of first taking a closed contour and finding
its center. From the center, lines are drawn until they intersect
the contour. These intersections are our sample points (see
Fig. 5). After the first line, all following lines are drawn from
the same center with a 10angle separating each line, since
we found that this procedure gives a sufficient number of
points for our description. These surface sample points serve
as the control mesh for a B-spline atlas surface. The control
mesh boundaries are formed by tripling boundary control
vertices. This tripling of vertices brings the surface closer
to the periphery of the control mesh and in fact causes the
surface to interpolate the corner vertices of the control mesh.
Fig. 5 shows two different 3-D views of the atlas control mesh
obtained using this sampling technique. We use this method
rather than least squares surface spline fitting because this
computationally fast and simple technique yields a very regular
control mesh whose fidelity to the data can be easily adjusted
by increasing or decreasing the number of sample points.

Once we have a control mesh, we evaluate the spline surface
at points in the parameter space, and we obtain a

precise description of the surface. Fig. 6 shows two views of

the final labeled atlas surface. We attach anatomical labels to
all surface points, which in this case numbered close to 5000
points. Specifically, in the atlas presented here we label the
lobe points corresponding to the frontal, parietal, and temporal
lobes, and sulci points corresponding to the central, lateral,
and longitudinal fissures. The occipital lobe was not labeled,
due to the difficulty in accurately determining its boundaries,
but the lobes and sulci included in the atlas are sufficient to
demonstrate our technique of atlas labeling.

IV. DEFORMABLE MODELS FORBRAIN LABELLING

Since brain images are highly complex, contain irregularly
shaped regions, and exhibit significant intersubject variation,
standard model matching techniques do not perform well
on these images. A more promising approach is to use a
deformable model, i.e., a brain atlas is modeled as a physical
object, given elastic properties, and allowed to warp itself onto
a brain surface.

A. 3-D B-Spline Energy Equations for Atlas-Guided Matching

The deformable models which we incorporate into our sys-
tem are based on “snakes,” active contour models developed
by Kass et al. [32]. Snakes are energy-minimizing elastic
curves that can accurately locate image features, such as edges.
In other words, an energy function is designed whose minima
occur at desired image features, and if a snake is placed near
a minimum, it falls into it through an energy minimization
process. It is important to note that snakes search for local
minima instead of a global solution and rely on higher-level
processes to place them near a desired solution. In our atlas
matching procedure, we define a novel energy function that
is designed to ensure that sulci points on the brain model are
attracted to sulci points in the subject’s image.

We have extended 2-D snakes to 3-D deformable spline
models by modifying the snake energy equations and pa-
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(a)

(b)

Fig. 6. A lateral view of the labeled atlas surface. The spline surface has
been evaluated, and each surface point has an anatomical label attached to
it. The asterisks indicate sulci positions on the surface. (b) A frontal view of
the labeled atlas surface.

rameterizing a surface with tensor product B-splines. Let
be a parametric descrip-

tion of a surface model, as in (1), and be a parametric
description of an atlas model. The total energy can be written

(3)
Internal energy is given by

(4)

where coefficients specify mechanical properties of a surface
such as elasticity , rigidity , and twist

[33]. In our application we are interested in matching
a brain atlas to individual anatomy. We define the external
energy term to reflect the distance between the deformed atlas
and the subject’s extracted brain surface

(5)

where is the Chamfer distance (an approximation
of the Euclidean distance of each voxel to the nearest edge)
between the deformable surface and image features [34]. The
discrete form of the total surface energy equation is then

(6)

By expressing model energy in terms of a B-spline surface
we restrict our search for an energy minimizing surface to a
finite dimensional subspace parametrized by the control ver-
tices . Note also that the cubic B-spline is the interpolating
surface that inherently minimizes the energy corresponding to
the integral of the squared second derivatives of a continuous
surface. This fact is exploited in the 2-D case by Leitneret
al. [35] to drop the explicit and consider only ,
using the spline to smooth. However, without the first-order
term in the internal energy function the solution to the energy
minimization problem may be overly smooth.

For a fully automatic matching procedure, convergence
behavior of deformable models must be well understood.
In [36], Davatzikos and Prince present a detailed study of
convergence and convexity of their own deformable model
algorithms. The authors determine model parameters which
guarantee both a convex objective function and convergence
to the unique global minimum of that function. Convexity is
guaranteed only when restrictive conditions are placed on the
image data and convergence to a global minimum is dependent
upon the starting position of the model. Our energy function,
(6), is not convex due to the nonconvexity of the Chamfer
distance. In general there will be a number of solutions which
represent local minima of . The solution found will
depend on the initial placement of the atlas with respect to the
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Fig. 7. Flow chart showing an overview of our automatic brain labeling
technique.

Fig. 8. Surface rendering of the subject’s brain. The deformable model is
warped to the morphologically closed version of this brain and the anatomical
labels are transferred to this high-resolution surface.

extracted surface and the optimization algorithm used (we use
a conjugate gradient method). This nonconvexity problem is
inherent in the use of active surface models in which distance

(a)

(b)

Fig. 9. (a) Lateral view of the 3-D deformable model after it has been warped
to match the subject’s brain surface. Each point of the warped surface is
anatomically labeled and (b) frontal view of the 3-D deformable model after
it has been warped to match the subject’s brain surface.

metrics are used to attract the surface to the desired features
[33]. However, we note that in contrast to methods that apply
active curves and surfaces to grey scale imagery, we are
applying the active model to a single surface representing the
extracted brain and therefore the atlas will always be attracted
to the cortical surface.

V. MATCHING A 3-D ATLAS

MODEL TO THE CORTICAL SURFACE

The principal goal of this work is to carry out 3-D atlas
guided labeling of the cortical surface. In 3-D automatic brain
labeling with deformable models, the major problem is to find
a method such that the deformable model will converge with
high probability to the desired regions. This is the core problem
of our work. Without interactive guidance, deformable models
can not be assured to converge to highly convoluted brain
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Fig. 10. (a) Frontal view of the final labeled brain surface and (b) lateral view of the final labeled brain surface.

image features. The solution we found is to generate an
atlas, which is the initial position of a deformable model,
from a smoothed representation of an MR image. We then
warp the deformable model to a subject’s MR image that has
been smoothed with morphological operations equivalent to
those used to create the atlas. This avoids the problem of
trying to directly match highly convoluted regions in the atlas
to highly convoluted regions in the individual MR images.
Moreover, we are able to achieve accurate labeling with the
smoothed representation of the atlas and subject’s brain, using
the following procedure: 1) propagating label information
from the original atlas brain to its smoothed representation
as described in Section III-B; 2) using a novel external energy
function that causes sulci in the atlas to warp to sulci in the
smoothed individual brains; 3) propagating the labels from the
warped atlas back to the high-resolution MR brain surface.
Fig. 7 shows an overview of this labeling methodology.

To perform 3-D image labeling we use the atlas described in
Section III-B (see Fig. 6). This atlas is an anatomically labeled
B-spline surface which is registered to a subject’s volume MR
image. First, the subject’s image is resliced along the same
planes as the image that was used to create the atlas, then a
gross registration is performed by scaling and translating the
atlas. This registration consists of creating bounding boxes
around both the subject’s brain and the atlas brain, where
the dimensions of these boxes are determined by the objects’
maximum and minimum coordinates in each direction. Linear
scaling and translation factors are calculated such that the
atlas’ bounding box matches the subject brain’s bounding
box. We then scale and translate the atlas’ control mesh by
the amount computed from the bounding boxes. These atlas
registration operations are performed on the spline control
mesh and not on the surface itself, since the surface’s shape
is invariant with respect to translation, rotation, and scaling of
the control mesh. The registered atlas serves as the deformable
model’s initial position.

In order to warp the B-spline surface, we specify the
parameters which control the model’s bending. Since the

Fig. 11. Lateral view of the warped deformable surface model. The top
horizontal line indicates the level at which we have sliced the surface to
obtain the images which appear in the following figures.

deformable model is initialized in a shape and location close
to its desired final configuration, we weight a model’s internal
energy terms by parameters computed directly from its initial
position. For example, let be a parametric description
of an anatomical atlas, which is the initial position of a surface
model, then we set model parameters as
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Fig. 12. One 2-D slice through the labeled brain surface. In this example, portions of the frontal lobe, parietal lobe, and major sulci are included in
the slice: (a) shows the brain’s surface points where different gray levels correspond to different anatomical regions and (b) shows the brain surface
with the corresponding slice of the warped atlas model (indicated by asterisks) superimposed on the image. The anatomical labels were transferred from
this warped model to the surface points.

where is an offset term which prevents a parameter from
becoming infinite when a partial derivative goes to zero. We
choose equal to 0.1% of the maximum derivative magnitude
over the entire surface. This weighting of internal energy terms
normalizes a model’s bending with respect to an atlas. Thus, if
a portion of an atlas is highly twisted, then the corresponding
region of a deformable surface can become quite convoluted
without incurring a large cost in internal energy. The opposite
is true for flat areas of the anatomical atlas, since small
movements are subject to a large cost in internal energy. In
other words, the model’s internal energy weighting parameters
are automatically computed from the atlas.

Since the atlas was generated from a smoothed represen-
tation of an MR image we warp the deformable model to a
subject’s smoothed MR image. This type of representation is
necessary because without user interaction deformable models
can not be guaranteed to converge to complex and convoluted
image features. With results from morphological processing
we can find those surface points in the subject’s MR images
which correspond to sulci locations. By finding all openings
in the binary brain image and then detecting which openings
intersect the outer contour of the closed brain image, we
are able to accurately locate sulci on the outer brain surface
[see Fig. 1(b)]. Therefore, morphological processing results
in a subject’s image to which the model will accurately
converge and which still retains information as to where
cortical convolutions occur on the brain surface.

A Chamfer distance image serves as an external energy
function. We use a Chamfer distance function which includes
information about sulci locations. We calculate both the Cham-
fer distance of each pixel to the nearest point on the brain
surface and the Chamfer distance of each pixel to the
nearest sulcus point on the outer brain surface . If we
let be a set of sulci points on the model, the external energy
function can be expressed as

if
otherwise.

(7)

We substitute the external energy term in (7) into the model’s
discrete energy function (6), and we use the Polak–Ribiere
conjugate gradient method for minimizing the model’s energy,
deforming the model to fit an extracted brain. In this way,
model sulci points are attracted to image sulci points, and
remaining model points are attracted to the brain surface.

The final step in the labeling procedure is the transfer of
anatomical labels from the model to the original (unsmoothed)
brain surface. As described in Section III-B, the B-spline
surface representing the atlas is evaluated at a number of points
in the parameter space, and each of these points has an
anatomical label associated with it. Once the model is warped,
these same points in parameter space are the locations at which
we evaluate the deformable B-spline surface, and thus each
point on the deformed model is anatomically labeled. Finally,
for each point on the extracted brain surface, we search for the
closest point (in Euclidean distance) on the deformed surface
and assign its label to the brain surface point.

In Figs. 8–13 we illustrate the application of this atlas
matching method to 3-D MR head images. We used the atlas
described in Section III-B to label regions on the brain surface
corresponding to the frontal, parietal, and occipital lobes and
the central, lateral, and interhemispheric sulci (see Fig. 6).
The original spline surface was globally registered to match
the subject brain’s coordinates, where Fig. 8 shows a surface
rendering of the subject’s morphologically extracted brain. The
model was then allowed to deform, and Fig. 9 depicts different
views of the warped spline model after it was matched to the
morphologically closed brain surface.

Labels were transferred from the deformed model to the
original brain surface. Fig. 10 depicts renderings of different
views of the final labeled brain surface, where different colors
correspond to different anatomical labels. Fig. 11 shows a
lateral view of the warped model where the top horizontal
line indicates where the slice in Figs. 12 and 13 occurs.
Figs. 12 and 13 show that not only the visible outer surface
has been labeled but also every other surface point of the
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Fig. 13. Labeled surface points. Asterisks highlight the different anatomical labels that were attached to the surface points: (a) shows the points that were
labeled as frontal lobe, (b) shows parietal lobe points, and (c) shows points that were labeled as major sulci.

Fig. 14. (a) Lateral view of a final labeled brain surface. The different gray levels correspond to different anatomical labels. (b) Frontal view of the
final labeled brain surface.

morphologically extracted brain. Thus, all points which lie on
the surfaces of the cortical convolutions are labeled.

In Fig. 14 we show another example of an automatically
labeled brain surface. This data was processed using the
method described above, except in this case the initial bound-
ing box registration method was replaced with a 12-parameter
affine coordinate transformation determined by applying the
automated image registration (AIR) software of Woodset
al. which is a direct extension to intersubject registration of
the method described in [37] for multimodal registration. We
found that using this more sophisticated initial registration
method lead to some improvement in the labeling, primarily
by preventing the temporal lobe label from extending down
to the cerebellum.

VI. DISCUSSION AND CONCLUSION

There are two major problems with using deformable mod-
els for 3-D brain labeling. Deformable models cannot be
guaranteed to automatically converge to the surface of the

brain in raw MR images. In other words, in the presence of
neighboring image features, these models may latch on to in-
correct boundaries. Also, without user interaction, deformable
models can have difficulty converging to complicated object
boundaries. Mathematical morphology can help to overcome
these problems. Thus, we have developed a morphological
algorithm for preprocessing these images. Once boundaries in
an MR head image are detected, we apply a specific sequence
of morphological operators to extract the brain as a binary
object from the head image. Moreover, the morphological
processing identifies points which correspond to sulci locations
on the brain’s surface. By extracting solely the brain we
overcome one of the difficulties of matching a deformable
model to these images, because we eliminate other anatomical
boundaries in the image to which a deformable model may
incorrectly converge.

With the images resulting from morphological processing
we also overcome the problem of matching a deformable
model to a convoluted surface. We generate the atlas, which
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is the initial position of a deformable model, from a smoothed
representation of an MR image. Then we warp the deformable
model to an extracted brain surface that has been processed
with the equivalent smoothing operations as those used in
the creation of the atlas. Therefore, the deformable model
converges to the smooth outer boundary of the brain’s surface.
Also, since our morphological processing finds sulci locations
on the smoothed brain’s surface, we constrain sulci locations
on the model to converge to sulci locations on the subject’s
brain.

Although our approach does not depend on a particular
boundary-finding technique, the algorithm is highly dependent
on information provided by a low-level processor, and accurate
detection of region boundaries is important to all further
processing. The Marr-Hildreth operator is accurate in finding
brain boundaries that approximate step edges, but like any
low-level processor, it is not error free. Portions of the gray-
csf boundary may be blurred, and the Marr-Hildreth operator
does not in general find blurred region boundaries. Also, if
misplaced edges cause a sulcus not to satisfy the conditions of
our brain model, then that sulcus is not recognized. For these
reasons, the brain surface found by morphological operations
based on Marr-Hildreth processing may require corrections.

There are improvements and extensions that can be made to
our anatomical atlas which will enhance the accuracy of our
automatic labeling method. As we indicated in Section III-
B, our brain atlas was created from MR data acquired from
an anatomically normal brain. We labeled this brain by using
standard anatomy textbooks to identify brain structures. The
results of our automatic labeling procedure depend upon the
information in this atlas model; therefore, our model should be
checked for correctness by experts in neuroanatomy. Improve-
ments in the accuracy of the atlas model will directly affect the
final labeling results. Furthermore, our overall brain extraction
and labeling method must be validated by comparing our
automatic results with those obtained by an expert. Also,
we can measure the sensitivity of our method to low-level
processing by comparing the brain surfaces extracted from an
image using different boundary-finding techniques.

A modification we can make to our model is to include
more anatomical features in the atlas. The atlas we presented
in Section III-B contains significant structures on the brain
surface; in particular, major sulci are included in this model.
Important information can also be obtained by locating and
labeling some of the smaller or less-regular sulci. To complete
our atlas, the next sulcal features which could be added to it
are those large sulci that have a somewhat lower incidence of
continuity across the cortex. For example, we could add the
inferior frontal, superior frontal, and superior temporal sulci
which, respectively, have a 48%, 36%, and 32% uninterrupted
rate [29].

The atlas-guided deformable model must be modified to ac-
count for these smaller sulci. One way to incorporate additional
sulcal patterns into our labeling technique is to extract more in-
formation from the subject’s morphologically processed brain
image before performing deformable atlas matching. Our
morphological algorithm labels points on the brain surface
which correspond to sulci locations. By tracing connected

sulci points, it may be possible to determine whether these
points are part of large, uninterrupted sulci and also to find the
approximate orientation of the sulci. We could then add further
terms to the deformable model’s external energy function,
thereby allowing model sulci points and image sulci points
with similar orientations to be attracted to one another. While
we have demonstrated that it is possible to automatically label
the major fissures of the brain using a deformable model
approach, it is an open question as to whether this approach
will also work for those sulci that exhibit a greater degree of
intersubject variability.

Finally, the performance of our image labeling technique
can be improved by changing our global model to image regis-
tration method. Since deformable model behavior is dependent
on the model’s initial position with respect to image features,
a more accurate initial registration technique can improve
the model’s performance and ensure a correct labeling. For
example, we have observed that the 12-parameter affine trans-
formation based on the AIR technique developed by Woodset
al. [37] can lead to improvements in the final labeling.

ACKNOWLEDGMENT

The authors would like to thank G. Zubal of Yale University
and C. Aine of Los Alamos Research Lab. for access to volume
MR data. They would also like to thank S. Grafton of Emory
University for discussions about cortical anatomy and labeling
and R. Woods of the University of California, Los Angeles for
access to his MR-MR registration software.

REFERENCES

[1] Y. Okada, “Neurogenesis of evoked magnetic fields,” inBiomag-
netism: An Interdisciplinary Approach, S. J. Williamson, Ed. New
York: Plenum, 1983, pp. 399–408.

[2] A. M. Dale and M. I. Sereno, “Improved localization of cortical activity
by combining EEG and MEG with MRI cortical surface reconstruction:
A linear approach,”J. Cognitive Neurosci., vol. 5, pp. 162–176, 1993.

[3] J. Talairach and P. Tournoux,Co-Planar Stereotaxic Atlas of the Human
Brain. Stuttgart, Germany: Georg Thieme Verlag, 1988.

[4] A. C. Evans, C. Beil, S. Marrett, C. J. Thompson, and A. Hakin,
“Anatomical-functional correlation using an adjustable MRI-based re-
gion of interest atlas with positron emission tomography,”J. Cerebral
Blood Flow and Metabolism, vol. 8, pp. 513–530, 1988.

[5] A. C. Evans, S. Marrett, J. Torrescorzo, S. Ku, and L. Collins, “MRI-
PET correlation in three dimensions using a volume-of-interest (voi)
atlas,” J. Cerebral Blood Flow and Metabolism, vol. 11, pp. A69–A78,
1991.

[6] T. Greitz, C. Bohm, S. Holte, and L. Eriksson, “A computerized
brain atlas: Construction, anatomical content, and some applications,”
J. Comput. Assist. Tomogr., vol. 15, pp. 26–38, Jan./Feb. 1991.

[7] F. L. Bookstein, “Thin-plate splines and the atlas problem for biomedical
images,” in Proc. 12th Int. Conf. Information Processing in Medical
Imaging, July 1991.

[8] R. Bajcsy, R. Lieberson, and M. Reivich, “A computerized system for
the elastic matching of deformed radiographic images to idealized atlas
images,”J. Comput. Assist. Tomogr., vol. 7, pp. 618–625, Aug. 1983.

[9] J. C. Gee, M. Reivich, and R. Bajcsy, “Elastically deformable 3-D atlas
to match anatomical brain images,”J. Comput. Assist. Tomogr., vol. 17,
pp. 225–236, 1993.

[10] G. E. Christensen, R. D. Rabbitt, and M. I. Miller, “3-D brain mapping
using a deformable neuroanatomy,”Phys. Med. Biol., vol. 39, pp.
609–618, 1994.

[11] E. Schwartz, B. Merker, E. Wolfson, and A. Shaw, “Applications of
computer graphics and image processing to 2-D and 3-D modeling of
the functional architecture of visual cortex,”IEEE Comput. Graphics
Applicat., pp. 13–23, July 1988.



54 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 16, NO. 1, FEBRUARY 1997

[12] C. A. Davatzikos and R. N. Bryan, “Using a deformable surface model
to obtain a shape representation of the cortex,” inProc. IEEE Computer
Vision Symp., Nov. 1995, pp. 212–217.

[13] G. Carman, H. Drury, and D. V. Essen, “Computational methods for
reconstructing and unfolding the cerebral cortex,”Cerebral Cortex, vol.
5, pp. 506–517, 1995.

[14] G. Gerig, J. Martin, R. Kikinis, O. Kubler, M. Shenton, and F. Jolesz,
“Automating segmentation of dual-echo MR head data,” inProc. 12th
Int. Conf. Information Processing in Medical Imaging, July 1991.

[15] D. Marr and E. Hildreth, “Theory of edge detection,”Proc. Roy. Soc.
London, vol. 207, pp. 187–217, 1980.

[16] M. Bomans, K.-H. Hohne, U. Tiede, and M. Riemer, “3-D segmentation
of MR images of the head for 3-D display,”IEEE Trans. Med. Imag.,
vol. MI-9, pp. 177–183, 1990.

[17] R. Nevatia and K. R. Babu, “Linear feature extraction and description,”
Comput. Graphics Image Processing, vol. 13, pp. 257–269, 1980.

[18] R. M. Haralick, “Digital step edges from zero crossings of second
directional derivatives,”IEEE Trans. Pattern Anal. Machine Intell., vol.
PAMI-6, pp. 58–68, Jan. 1984.

[19] J. Canny, “A computational approach to edge detection,”IEEE Trans.
Pattern Anal. Machine Intell., vol. PAMI-8, pp. 679–698, Nov. 1986.

[20] P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,”IEEE Trans. Pattern Anal. Machine Intell., vol.
12, pp. 629–639, July 1990.

[21] G. Gerig, O. Kubler, R. Kikinis, and F. Jolesz, “Nonlinear anisotropic
filtering of MRI data,” IEEE Trans. Med. Imag., vol. 11, pp. 221–232,
June 1992.

[22] R. Deriche, “Using Canny’s criteria to derive a recursively implemented
optimal edge detector,”Int. J. Comput. Vision, pp. 167–187, 1987.

[23] O. Monga, R. Deriche, and J. Rocchisani, “3-D edge detection using
recursive filtering: Application to scanner images,”Comput. Vision
Graphics and Image Processing: Image Understanding, vol. 53, pp.
76–87, Jan. 1991.

[24] M. C. Diamond, A. B. Scheibel, and L. M. Elson,The Human Brain
Coloring Book. New York: Barnes & Noble, 1985.

[25] M. X. H. Yan and J. S. Karp, “Segmentation of 3-D brain MR using an
adaptive k-means clustering algorithm,” in1994 IEEE Nuclear Science
Symp. and Medical Imaging Conference Record, Nov. 1994, vol. 4, pp.
1529–1533.

[26] G. Matheron,Random Sets and Integral Geometry. New York: Wiley,
1975.

[27] J. Serra,Image Analysis and Mathematical Morphology. New York:
Academic, vol. 1, 1982.

[28] R. M. Haralick, S. R. Sternberg, and X. Zhuang, “Image analysis using
mathematical morphology,”IEEE Trans. Pattern Anal. Machine Intell.,
vol. PAMI-9, pp. 532–550, Jan. 1987.

[29] M. Ono, S. Kubik, and C. D. Abernathey,Atlas of the Cerebral Sulci.
Stuttgart, Germany: Georg Thieme Verlag, 1990.

[30] I. G. Zubal, C. R. Harrell, E. O. Smith, Z. Rattner, G. Gindi, and P.
B. Hoffer, “Computerized 3-dimensional segmented human anatomy,”
Med. Phys., vol. 21, pp. 299–302, Feb. 1994.

[31] R. H. Bartels, J. C. Beatty, and B. A Barsky,An Introduction to Splines
for Use in Computer Graphics and Geometric Modeling. Los Altos,
CA: Morgan Kaufmann, 1987.

[32] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour
models,” Int. J. Comput. Vision, vol. 1, pp. 321–331, Jan. 1988.

[33] I. Cohen, L. Cohen, and N. Ayache, “Using deformable surfaces to
segment 3-D images and infer differential structures,”CVGIP: Image
Understanding, vol. 56, pp. 242–263, 1992.

[34] G. Borgefors, “Distance transformations in arbitrary dimensions,”Com-
put. Vision, Graphics, Image Processing, vol. 27, pp. 321–345, 1984.

[35] F. Leitner, I. Marque, S. Lavallee, and P. Cinquin, “Dynamic segmen-
tation: Finding the edge with snake splines,” inCurves and Surfaces,
P. J. Laurent, A. L. Mehaute, and L. L. Schumaker, Eds. Boston:
Academic, 1991.

[36] C. A. Davatzikos and J. L. Prince, “An active contour algorithm for
mapping the cortex,”IEEE Trans. Med. Imag., pp. 65–80, Mar. 1995.

[37] R. P. Woods, S. R. Cherry, and J. C. Mazziotta, “MRI-PET registration
with automated algorithm,”J. Comput. Assist. Tomogr., vol. 17, pp.
536–546, 1993.


