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1 Introduction

The T T̄ deformed 2D CFTs attract a lot of interests because of its integrability and holo-
graphic duality [1–3]. The action of T T̄ deformation is defined by a flow triggered by the
determinant of the stress tensor, which is also called T T̄ operator. Although the deforma-
tion is irrelevant and the T T̄ flow pushes a theory from IR to UV, many physical quantities
can be expressed in terms of the un-deformed quantities, such as the Lagrangian [4], finite-
size spectrum [2], and partition function [5, 6]. The T T̄ deformation has many equivalent
descriptions from various perspective. The T T̄ deformation can be treated as the original
theory dressed by the JT gravity [7–9]. It can be also realized by a random coordinate
transformation [10]. Further, in [11, 12], T T̄ deformed theories can be obtained by a spe-
cific field-dependent local change of coordinates in the undeformed theories. More recently,
T T̄ deformed theory can be also reformulated as non-critical string theory [13, 14].

In AdS3/CFT2 context, it was proposed that the T T̄ deformed CFT corresponds to the
cutoff AdS3 gravity at finite radial [3, 15], and the cutoff radius is related to the deformation
parameter. The finite-size spectrum turned out to be the quasi-local energy of the BTZ
black hole at finite radius. The T T̄ flow equation coincides with the Hamilton-Jacobi
equation governing the radial evolution of the classical gravity action in AdS3 [3, 16, 17]. It
was known that the Dirichlet boundary conditions at finite radius correspond to the mixed
boundary conditions at infinity [18–20]. An alternative holographic description is imposing
a mixed boundary condition at the asymptotic AdS3 boundary [21]. It turned out that the
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mixed boundary condition leads to a deformed bulk solution, which can be constructed by
a field-dependent coordinate transformation [21]. AdS3 gravity with the mixed boundary
condition also reproduced the deformed spectrum. The boundary dynamics of AdS3 with
the mixed boundary condition can be described by the T T̄ deformed coadjoint orbit of
the Virasoro group [22, 23]. Many holographic features of the T T̄ deformed CFT have
been explored [24–37]. For more recent progresses, one can refer to the review of the T T̄
deformation [38].

It has been shown that the T T̄ deformation preserves integrability of the original the-
ories [1, 39]. Alternatively, it is interesting topic to investigate quantum integrable/chaotic
signals of chaotical CFTs with T T̄ deformation. The out of time ordered correlation func-
tion (OTOC) has been used to capture quantum integrability/chaos. As basic ingredients
of OTOC, the correlation functions for T T̄ deformation are also studied [40–46]. Recently,
The T T̄ deformations have been considered in other theories including integrable lattice
models and non-relativistic integrable field theories [47–52]. To understand the underline
algebra/symmetry structure of the deformation in holography, the associated charges and
their algebras have been explored on boundary field side and gravity side. The calculation
from the boundary field side shows that some additional winding terms in Poisson brackets
are not fixed due to certain ambiguities of the field-dependent coordinates [53, 54]. On
the gravity side, the charge algebra was obtained by considering 3D gravity with Dirich-
let boundary conditions on a finite boundary [21, 55]. In AdS3/CFT2, the Chern-Simons
formalism is a powerful tool to study the boundary dynamics and asymptotic symme-
tries [56–59]. Even more, it can be naturally generalized to higher spin gravity [60–62].

In the present work, we prefer to use the Chern-Simons form to study the asymptotic
symmetries of AdS3 with mixed boundary conditions. An analogy to the Bañados geometry,
we rewrite the deformed AdS3 solution into Chern-Simons gauge fields, which are also
parametrized by two independent functions. After imposing the mixed boundary condition,
we find the residual gauge symmetries and associated surface charges in Chern-Simons
theory. The resulting charge algebra turns out to be a non-linear deformation of the
Virasoro algebra. The same charge algebra was also obtained by using the covariant phase
space method [55]. Further, we systematically construct the time-independent charges
which satisfy the field-dependent Virasoro algebra. This result is in agreement with the
conclusion in [21].

This paper is organized as follows: section 2 is a review of the global symmetries
in Chern-Simons theory. In section 3, we rewrite the deformed solutions of AdS3 in the
Chern-Simons form. The T T̄ deformed gauge field can be parametrized by two classes of
independent deformed charges. In section 4, we obtain a set of residual gauge transforma-
tions which keep the deformed gauge connections asymptotically invariant. The residual
gauge transformations generate a set of surface charges which satisfy the non-linear de-
formed Virasoro algebra. We comment on the surface charges and the charge algebra in
section 5. Conclusions and discussions are given in section 6. Some calculation details are
presented in the appendices.
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2 Review of surface charges in Chern-Simons theory

This section is to review some well-known facts about Chern-Simons theory following the
refs. [63, 64]. We start from the Chern-Simons theory defined on a manifold with topology
M = R× Σ, whose action is

I(A) = k

4π

∫
M

Tr
(
A ∧ dA+ 2

3A ∧A ∧A
)
. (2.1)

In the Hamiltonian form, the action can be expressed as

I(A) = k

4π

∫
R
dt

∫
Σ
d2xεijgab(ȦaiAbj +AatF

b
ij) +B, (2.2)

where the gab is the Cartan-Killing metric of the gauge group. The B is a boundary term
that depends on the imposed boundary condition. The boundary term plays a crucial role
in the charges and the symmetry algebra [65]. As a consequence, we may get the different
charges and symmetries by imposing various boundary conditions in Chern-Simons theory.

From the Hamiltonian form, we learn that the Aai are the dynamics fields and Aat is
the Lagrange multiplier. Varying with respect to Aai , one can get the equation of motion

Fti = ∂tA
a
i − ∂iAat + fabcA

b
tA

c
i = 0. (2.3)

The Lagrange multiplier gives the constraint

Ga ≡
k

4πgacε
ijF cij = 0. (2.4)

The canonical momenta of the dynamical fields Aai are Abj , which satisfy the canonical
Poisson bracket

{Aai (x), Abj(y)} = 2π
k
gabεijδ(x− y). (2.5)

One can choose different boundary conditions, there will be different boundary terms B
in (2.2) but the canonical Poisson bracket does not change. The Poisson bracket for any
two functions G,H can be calculated by

{G(Aai ), H(Abj)} = 2π
k

∫
d2xεijg

ab δG

δAai

δH

δAbj
. (2.6)

Therefore, one can find the constraints satisfy the Poisson algebra

{Ga(x), Gb(y)} = f cabGc(x)δ(x− y), (2.7)

which implies Ga = 0 are the first class constraints.
Moreover, we should also consider the smeared generator

G(η) =
∫

Σ
Gaη

a +Q(η), Q(η) = − k

2π

∫
∂Σ
ηaA

a. (2.8)
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The supplemented term Q(η) is to make the smeared generator differentiable [63]. In
general, the parameter η is the set of gauge transformations that preserve the imposed
boundary conditions. The Poisson bracket of the smeared generators is

{G(η), G(λ)} = G([η, λ]) + C(η, λ), C(η, λ) = k

2π

∫
∂Σ
ηadλ

a,

where C(η, λ) is the central charge term. As a consequence, the Poisson bracket of the
smeared generator is a central extension of the algebra of the gauge generator (2.7). The
central extension comes from the surface term Q(η) in the definition of the smeared gen-
erator. It is worth noting that the smeared generator does not always vanish when the
constraints Ga = 0 are imposed. The transformations generated by G(η) are not always
the trivial gauge transformations, which can transform one physical state to another [57].
While the trivial gauge transformations correspond to vanishing G(η). The asymptotic
symmetry, also called global symmetry, is defined as the quotient of the group of gauge
transformations modulo the group of the trivial gauge transformations. This is the origin
of infinitely many boundary degrees of freedom in Chern-Simons theory.

After disentangling the constraints (2.4), the Q(η) define the surface charges of the
Chern-Simons theory. It turns out the surface charges satisfy the same Poisson bracket
algebra

{Q(η), Q(λ)} = Q([η, λ]) + C(η, λ). (2.9)

Furthermore, the variation of a function in phase space can be generate by the surface
charges

δλF = {Q(λ), F} (2.10)

Given a certain boundary condition, we can find the gauge transformations preserving
the boundary condition. The corresponding charges induced by the boundary condition
can also be obtained. This technique was widely used in AdS3 with various boundary
conditions [57, 66–73]. In this paper, we would like to apply this approach to study the
surface charges of the Chern-Simons gravity theory with the mixed boundary condition for
T T̄ deformation [21].

3 Chern-Simons formalism and T T̄ deformation

The AdS3 gravity can be formulated as SL(2,R)×SL(2,R) Chern-Simons theory [74]. The
action can be written as the sum of the left-moving part and right-moving part

S(A, Ā) = I(A)− I(Ā), with k = 1
4G, (3.1)

where the gauge fields are the combination of vielbein and spin connection

Aa = ωa + ea, Āa = ωa − ea. (3.2)

The equations of motion are

dA+A ∧A = 0, dĀ+ Ā ∧ Ā = 0. (3.3)
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which agree with first order gravitational field equations. Given an AdS3 solution, we have
an equivalent description in the Chern-Simons formalism.

In particular, the Bañados geometry [57] in Fefferman-Graham gauge is following

ds2 = dr2

r2 + r2
(
dzdz̄ + 1

r2L(z)dz2 + 1
r2 L̄(z̄)dz̄2 + 1

r4L(z)L̄(z̄)dzdz̄
)
, (3.4)

where the L(z) and L̄(z̄) are arbitrary holomorphic and antiholomorphic functions, respec-
tively. For the case of BTZ black hole, the parameters are constants associated with the
mass and angular momentum of the black hole

L = M + J

2 , L̄ = M − J
2 . (3.5)

Up to the Lorentz rotation, the corresponding Chern-Simons gauge connections can be
fixed as

Ã = dr

r
L0 + rdzL−1 + 1

r
LdzL1, (3.6)

˜̄A = −dr
r
L0 −

1
r
L̄dz̄L−1 − rdz̄L1. (3.7)

where the L−1, L0, L1 are the generators of SL(2,R). In this paper, we use the following
generators of SL(2,R)

L−1 =
(

0 0
1 0

)
, L0 = 1

2

(
1 0
0 −1

)
, L1 =

(
0 1
0 0

)
, (3.8)

with the commutation relations1

[L−1, L0] = L−1, [L−1, L1] = −2L0, [L0, L1] = L1. (3.9)

The non-zero components of Cartan-Killing metric are

Tr (L−1L1) = Tr (L1L−1) = 1, Tr (L0L0) = 1
2 . (3.10)

In this paper, we will use the (Ã, ˜̄A) denote the original gauge fields and (A, Ā) denote the
deformed gauge fields. Following [75], the r-dependent of the gauge fields can be eliminated
through a gauge transformation

Ã = b−1(d+ ã)b, ˜̄A = b(d+ ˜̄a)b−1, b = eln rL0 . (3.11)

The induced gauge fields take the form

ã = (L−1 + LL1)dz, ˜̄a = (L̄L−1 + L1)dz̄, (3.12)

which can be treated as the gauge connection defined on the boundary. For the Bañados
geometry, the residual gauge symmetry generates the Virasoro algebra [57].

1In our convention, we use the different sign of L1 rather than the usual convention in [68, 78]. The
commutation relations of the generators become (3.9).
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The T T̄ deformed CFTs correspond to the AdS3 gravity with a mixed boundary con-
dition [21, 76]. The deformed AdS3 solutions can also be constructed from original one
via a field-dependent coordinate transformation [21]. For the Bañados geometry, the field-
dependent coordinate transformation reads

dz = 1
1− µ2LµL̄µ

(dw − µL̄µdw̄), dz̄ = 1
1− µ2LµL̄µ

(dw̄ − µLµdw), (3.13)

where Lµ ≡ L(z(µ,w, w̄)), L̄µ ≡ L(z(µ,w, w̄)), and µ is the deformation parameter. Then,
we can obtain the deformed the gauge fields

A = 1
r
L0dr + 1

1− µ2LµL̄µ

(
rL−1 + 1

r
LµL1

)
(dw − µL̄µdw̄), (3.14)

Ā = −1
r
L0dr −

1
1− µ2LµL̄µ

(1
r
L̄µL−1 + rL1

)
(dw̄ − µLµdw). (3.15)

The Bañados geometry is parametrized by the holomorphic function L(z) and anti-
holomorphic function L̄(z̄). The deformed metric is parametrized by Lµ and L̄µ. The
coordinate transformation implies the deformed parameter Lµ and L̄µ obey

∂w̄Lµ + µL̄µ∂wLµ = 0, (3.16)
∂wL̄µ + µLµ∂wL̄µ = 0. (3.17)

Since these gauge connections satisfy the equation of motions, the deformed metrics are still
the solution of AdS3. In [21], it is also shown that the deformed parameters are following

L = Lµ(1− µL̄µ)2

(1− µ2LµL̄µ)2 , L̄ = L̄µ(1− µLµ)2

(1− µ2LµL̄µ)2 . (3.18)

We prefer to use the coordinates θ = (w+ w̄)/2, t = (w− w̄)/2, where t represents the
time direction while θ represents a circle at the boundary with the identification θ ∼ θ+2π.
In this coordinate, the gauge fields can be written as

Ar = 1
r
L0, Ār = −1

r
L0 (3.19)

Aθ = 1− µL̄µ
1− µ2LµL̄µ

(
rL−1 + 1

r
LµL1

)
, At = KAθ, (3.20)

Āθ = − 1− µLµ
1− µ2LµL̄µ

(1
r
L̄µL−1 + rL1

)
, Āt = K̄Āθ. (3.21)

where we define
K = 1 + µL̄µ

1− µL̄µ
, K̄ = −1 + µLµ

1− µLµ
. (3.22)

In the Bañados geometry, the parameters L and L̄ relate to the charges. The new
parameters Lµ and L̄µ do not play the role of charges in the deformed geometry. In analogy
with the un-deformed case, we can construct the new parameters using the spectrum and
angular momentum. The deformed spectrum and angular momentum can be obtained
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from gravity side [3, 21]. In Chern-Simons form, the boundary term consistent with the
mixed boundary condition turns out to be

B = κ

4π

∫
∂M

dtdθ
1
µ

(√
1− 2µ

(
Xθθ + X̄θθ

)
+ µ2

(
Xθθ − X̄θθ

)2
− 1

)
. (3.23)

where
Xij = Tr(AiAj), X̄ij = Tr(ĀiĀj). (3.24)

One refer to [76] for general form of the boundary term. The resulting deformed spectrum
and angular momentum are as follows

E = 1
µ

(
1−

√
1− 2µ(L+ L̄) + µ2(L − L̄)2

)
, J = L − L̄. (3.25)

We then introduce the new parameters

q = E + J
2 , q̄ = E − J2 , (3.26)

In section 4, the q and q̄ are turned out to be the surface charges. The charges reduced to
the Virasoro charges when µ → 0. As a consequence, we have three ways to parametrize
the deformed gauge fields, by (L, L̄), (Lµ, L̄µ) and (q, q̄). The relations between different
parameters are

1− µL̄µ
1− µ2LµL̄µ

= 1
2

[
1 + µ(L − L̄) +

√
1− 2µ(L+ L̄) + µ2(L − L̄)2

]
= 1− µq̄, (3.27)

1− µLµ
1− µ2LµL̄µ

= 1
2

[
1− µ(L − L̄) +

√
1− 2µ(L+ L̄) + µ2(L − L̄)2

]
= 1− µq. (3.28)

In the latter of this paper, we will use different parameters to simplify the expressions, and
they can be transformed to each other with the help of the above relations.

Finally, the deformed gauge connection can be expressed in terms of (q, q̄)

Aθ = r(1− µq̄)L−1 + 1
r
qL1, At = K

(
r(1− µq̄)L−1 + 1

r
qL1

)
, (3.29)

Āθ = −1
r
q̄L−1 − r(1− µq)L1, Āt = −K̄

(1
r
q̄L−1 + r(1− µq)L1

)
, (3.30)

with
K = 1 + µ(q̄ − q)

1− µ(q + q̄) , K̄ = −1− µ(q̄ − q)
1− µ(q + q̄) . (3.31)

Moreover, (3.16) and (3.17) imply the parameters (q, q̄) satisfy the equations

∂tq = ∂θ(Kq), (3.32)
∂tq̄ = ∂θ(K̄q̄), (3.33)

from which we can also see that the deformed charges are no longer holomorphic or an-
tiholomorphic. When taking the limit µ → 0, the gauge connection would reduce to the
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undeformed case. For the deformed geometry, the radial degree of freedom can also be
eliminated through the gauge transformation (3.11), the induced gauge connections are

aθ = (1− µq̄)L−1 + qL1, at = K
(
(1− µq̄)L−1 + qL1

)
, (3.34)

āθ = −q̄L−1 − (1− µq)L1, āt = −K̄
(
q̄L−1 + (1− µq)L1

)
. (3.35)

These gauge fields are defined on the boundary. We then will apply the induced gauge
fields to study the symmetry of T T̄ deformation in the next section.

4 Surface charges and their algebra

In this section, we would like to calculate the surface charges induced by asymptotic sym-
metries of Chern-Simons theory with T T̄ deformation. Firstly, we have to find the residual
gauge symmetry generators of the T T̄ deformed gauge fields. We then calculate the sur-
face charges associated with the gauge symmetries. Finally, we obtain the algebra of the
deformed surface charges.

4.1 Boundary condition and symmetries of the deformed gauge fields

For the deformed gauge fields, we assume the variation of the charges q, q̄ induced by gauge
transformation of the deformed gauge field as following forms

λ : q → q + δλq, q̄ → q̄ + δλq̄, (4.1)
λ̄ : q → q + δλ̄q, q̄ → q̄ + δλ̄q̄. (4.2)

Where λ and λ̄ are defined as the left-moving part and the right-moving part respectively

λ =
1∑

i=−1
λiLi, λ̄ =

1∑
i=−1

λ̄iLi. (4.3)

Then the variation of the gauge fields can be expressed as

δλaθ = −µδλq̄L−1 + δλqL1, (4.4)
δλat = δλ (K(1− µq̄))L−1 + δλ(Kq)L1, (4.5)
δλ̄āθ = −δλ̄q̄L−1 + µδλ̄qL1, (4.6)

δλ̄āt = −δλ̄
(
K̄µq̄

)
L−1 − δλ̄(K̄(1− µq))L1, (4.7)

where the variation of K, K̄ can also expressed in terms of the variation of q, q̄

δλK = 2µ (µq̄δλq + (1− µq)δλq̄)
1− (µ (q̄ + q))2 , (4.8)

δλ̄K̄ = −2µ ((1− µq̄) δλ̄q + µqδλ̄q̄)
(1− µ (q̄ + q))2 . (4.9)
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Then, we have to find the relations between (δλq, δλq̄) and (δλ̄q, δλ̄q̄) by using the mixed
boundary condition. In our setting, the gauge fields can reproduce the deformed metric
through

gµν = 1
2Tr[(Aµ − Āµ)(Aν − Āν)]. (4.10)

The induced boundary metric at the finite cutoff surface r = rc turns out to be a flat one

ds2
∣∣∣
r=rc

= 1
µ

(dθ2 − dt2), (4.11)

where we have invoked the holographic relation r2
c = 1/µ in T T̄ deformation [3]. It follows

that the variation of the metric on the boundary should be vanishing

δgµν
∣∣∣
r=rc

= Tr[(δλAµ − δλ̄Āµ)(Aν − Āν)]
∣∣∣
r=rc

= 0. (4.12)

It means that the residual gauge symmetries become the exact symmetries on the surface
r = rc. The equation (4.12) gives

(δλ̄q̄ − δλq̄) + (δλq − δλ̄q) = 0, (4.13)
(δλ̄q̄ − δλq̄)− (δλq − δλ̄q) = 0, (4.14)

δλ(K(1− µq̄)) + δλ̄(µKq̄) + δλ(µKq) + δλ̄(K̄(1− µq)) = 0, (4.15)
δλ(K(1− µq̄)) + δλ̄(µKq̄)− δλ(µKq)− δλ̄(K̄(1− µq)) = 0. (4.16)

The unique solution for these equations implies the constraints

δλq − δλ̄q = 0, (4.17)
δλ̄q̄ − δλq̄ = 0. (4.18)

These relations mean that the gauge transformations on the left-moving part and right-
moving part are entangled.

Under the infinitesimal gauge transformation, variation of the deformed gauge fields are

δλa = dλ+ [a, λ], δλ̄ā = dλ̄+ [ā, λ̄]. (4.19)

The gauge transformation that preserve the asymptotic behavior of aθ, āθ gives

−µδλq̄ = λ′−1 + λ0(1− µq̄), (4.20)

0 = λ′0 + 2
(
λ−1q − λ1(1− µq̄)

)
, (4.21)

δλq = λ′1 − λ0q, (4.22)
−δλ̄q̄ = λ̄′−1 − λ̄0q̄, (4.23)

0 = λ′0 + 2
(
λ̄1q̄ − λ̄−1(1− µq)

)
, (4.24)

µδλ̄q = λ̄′1 + λ̄0(1− µq). (4.25)
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The gauge transformation that preserves the asymptotic behavior of at, āt gives

δλ (K(1− µq̄)) = ∂tλ−1 +Kλ0(1− µq̄), (4.26)

0 = ∂tλ0 + 2K
(
λ−1q − λ1(1− µq̄)

)
, (4.27)

δλ (Kq) = ∂tλ1 −Kλ0q, (4.28)
−δλ̄(K̄q̄) = ∂tλ̄−1 − K̄λ̄0q̄, (4.29)

0 = ∂tλ̄0 + 2K̄
(
λ̄1q̄ − λ̄−1(1− µq)

)
, (4.30)

−δλ̄
(
K̄(1− µq)

)
= ∂tλ̄1 + K̄λ̄0(1− µq). (4.31)

For later convenience, one can choose the following parameters

ε = λ−1 − µλ̄−1, ε̄ = λ̄1 − µλ1, (4.32)

to parametrize the gauge transformation generators. By solving the equations (4.20)–
(4.25), we can express the variation of the charges δλq and δλ̄q̄ in terms of the parameters
(ε, ε̄)

δλq = δλ̄q = ε(θ)C ′ + ε̄(θ)A′ + 1
2 ε̄
′(θ)B′′ − 1

2ε
′(θ)(B′′ − 4C)

− 1
2 ε̄
′′(θ)(D′ −B′)− 3

2ε
′′(θ)B′ − 1

2 ε̄
′′′(θ)D − 1

2ε
′′′(θ)(2B + 1), (4.33)

δλq̄ = δλ̄q̄ = −ε(θ)Ā′ − ε̄(θ)C̄ ′ − 1
2ε
′(θ)B̄′′ + 1

2 ε̄
′(θ)(B̄′′ − 4C̄)

+ 1
2ε
′′(θ)(D̄′ − B̄′) + 3

2 ε̄
′′(θ)B̄′ + 1

2ε
′′′(θ)D̄ + 1

2 ε̄
′′′(θ)(2B̄ + 1), (4.34)

where we have introduced the following auxiliary variables to simplify the expressions

A = Ā = µqq̄

1− µ (q̄ + q) , (4.35)

B = µ
(
2q̄ − µ(q + q̄)2)

2(1− µ(q + q̄))2 , B̄ = µ
(
2q − µ(q + q̄)2)

2(1− µ(q + q̄))2 , (4.36)

C = (1− µq)q
1− µ(q + q̄) , C̄ = (1− µq̄)q̄

1− µ(q + q̄) , (4.37)

D = −D̄ = µ (q − q̄)
(1− µ (q̄ + q))2 . (4.38)

One can turn to the appendix A for details about solving the variation of the charges.
From (4.26)–(4.31), one can find the variables ε and ε̄ satisfy

−∂tε = ε′ − 2µq̄ (1− µq̄)
(1− µ (q̄ + q))2

(
ε′ + ε̄′

)
, (4.39)

∂tε̄ = ε̄′ − 2µq (1− µq)
(1− µ (q̄ + q))2

(
ε′ + ε̄′

)
. (4.40)

The details for deriving these equations are given in appendix B. In [55], the same result
was obtained by using the Killing vector that leaves all components of the metric invariant
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at the cutoff boundary. For the undeformed case, namely µ → 0, the equations reduce to
that the ε and ε̄ are holomorphic and antiholomorphic functions, respectively, which indeed
correspond to the infinitesimal conformal transformation. The equations (4.39) and (4.40)
can be identified as the T T̄ deformed conformal Killing equations.

4.2 Surface charges and their algebra

Given the gauge transformation preserving the asymptotic behavior of gauge fields, we can
obtain the associated surface charge using (2.8). The variation of the charges spanned by
gauge parameters λ and λ̄ in the Chern-Simons formalism read

δQε,ε̄ =
∫
∂Σ

(
Tr(λδAθ)− Tr(λ̄δĀθ)

)
dθ

=
∫
∂Σ

(−µλ1(δλq̄ + δλ̄q̄) + λ−1(δλq + δλ̄q)) dθ

−
∫
∂Σ

(
−λ̄1(δλq̄ + δλ̄q̄) + µλ̄−1(δλq + δλ̄q)

)
dθ

=
∫
∂Σ

2 (δλqε− δλ̄q̄ε̄) dθ. (4.41)

The charges Qε,ε̄ are the generator of residual symmetries which combined λ and λ̄. We
divide the variations of q and q̄ into two parts in the second step. In the third step, we
have used equations (4.17) and (4.18). The charges can be defined as

Qε,ε̄ =
∫ 2π

0
2
(
q(θ)ε(θ)− q̄(θ)ε̄(θ)

)
dθ. (4.42)

With help of the parameter ε and ε̄, the charges split into two independent parts. For
convenience, we can define the charges

Q = 1
2Qε =

∫ 2π

0
q(θ)ε(θ)dθ, (4.43)

Q̄ = 1
2Qε̄ =

∫ 2π

0
q̄(θ)ε̄(θ)dθ. (4.44)

The variation of the charges under the symmetry transformation can be expressed as
Poisson bracket algebra

δλq = δλ̄q = 1
2δλ,λ̄q = 1

2{Qε,ε̄, q} =
∫ 2π

0

(
{q(θ′), q(θ)}ε(θ′)− {q̄(θ′), q(θ)}ε̄(θ′)

)
dθ′, (4.45)

δλq̄ = δλ̄q̄ = 1
2δλ,λ̄q̄ = 1

2{Qε,ε̄, q̄} =
∫ 2π

0

(
{q(θ′), q̄(θ)}ε(θ′)− {q̄(θ′), q̄(θ)}ε̄(θ′)

)
dθ′, (4.46)

which allows us to identify the Poisson brackets of q and q̄ on the phase space of asymp-
totically AdS3 solutions. According to (4.33) and (4.34), after performing integration by
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parts and dropping some total derivative terms, we obtain the Poisson brackets

i{q(θ′),q(θ)}=C ′δ(θ−θ′)−1
2(B′′−4C)δ′(θ−θ′)−3

2B
′δ′′(θ−θ′)−1

2(2B+1)δ′′′(θ−θ′), (4.47)

i{q̄(θ′),q(θ)}=−A′δ(θ−θ′)−1
2B
′′δ′(θ−θ′)+1

2(D′−B′)δ′′(θ−θ′)+1
2Dδ

′′′(θ−θ′), (4.48)

i{q(θ′),q̄(θ)}=−Ā′δ(θ−θ′)−1
2B̄
′′δ′(θ−θ′)+1

2(D̄′−B̄′)δ′′(θ−θ′)+1
2D̄δ

′′′(θ−θ′), (4.49)

i{q̄(θ′),q̄(θ)}=C̄ ′δ(θ−θ′)−1
2(B̄′′−4C̄)δ′(θ−θ′)−3

2B̄
′δ′′(θ−θ′)−1

2(2B̄+1)δ′′′(θ−θ′). (4.50)

The modes expansion of the charges is following

Qn =
∫ 2π

0
q(θ)e−inθdθ, Q̄m =

∫ 2π

0
q̄(θ)e−imθdθ. (4.51)

We arrive at the following Poisson brackets

i{Qn, Qm} = (n−m)Cn+m −
1
2mn(n−m)Bn+m + 1

2n
3δn+m,0, (4.52)

i{Qn, Q̄m} = (n+m)An+m −
1
2mn(n+m)Bn+m + 1

2m
2nDn+m

= (n+m)Ān+m −
1
2mn(n+m)B̄n+m + 1

2mn
2D̄n+m, (4.53)

i{Q̄n, Q̄m} = (n−m)C̄n+m −
1
2mn(n−m)B̄n+m + 1

2n
3δn+m,0, (4.54)

where

An+m = Ān+m =
∫ 2π

0
A(θ)e−i(m+n)θdθ =

∫ 2π

0

µqq̄

1− µ(q + q̄)e
−i(m+n)θdθ, (4.55)

Bn+m =
∫ 2π

0
B(θ)e−i(m+n)θdθ = µ

2

∫ 2π

0

2q̄ − µ(q + q̄)2

(1− µ(q + q̄))2 e
−i(m+n)θdθ, (4.56)

Cn+m =
∫ 2π

0
C(θ)e−i(m+n)θdθ =

∫ 2π

0

(1− µq)q
1− µ(q + q̄)e

−i(m+n)θdθ, (4.57)

B̄n+m =
∫ 2π

0
B̄(θ)e−i(m+n)θdθ = µ

2

∫ 2π

0

2q − µ(q + q̄)2

(1− µ(q + q̄))2 e
−i(m+n)θdθ, (4.58)

C̄n+m =
∫ 2π

0
C̄(θ)e−i(m+n)θdθ =

∫ 2π

0

(1− µq̄)q̄
1− µ(q + q̄)e

−i(m+n)θdθ, (4.59)

Dn+m = −D̄n+m =
∫ 2π

0
D(θ)e−i(m+n)θdθ =

∫ 2π

0

µ(q − q̄)
(1− µ(q + q̄))2 e

−i(m+n)θdθ. (4.60)

This algebra coincides with the result in [55]. In [55], the authors consider the 3D gravity
in a box with Dirichlet boundary conditions. The boundary charges associated with the
boundary preserving vectors give the deformed Virasoro algebra. We obtain the same
result from Chern-Simons gravity with mixed boundary conditions. The quantization of
this algebra is also studied in [55, 77]. Taking the limit of µ → 0, this algebra reduces to
the Virasoro algebra. For the non-zero µ, the deformed algebra turns on a deformation of
the Virasoro algebra. The central charge can be restored by multiplying the third order of
(m,n) by the Chern-Simons level k = c/6.
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An analogy to the Virasoro algebra, we find the zero modes of the charges give the
Hamiltonian and momentum

H = Q0 + Q̄0, P = Q0 − Q̄0. (4.61)

From (3.32) and (3.33), one can obtain

i{H,Qn} = ∂tQn, i{H, Q̄m} = ∂tQ̄m, (4.62)
i{P,Qn} = −nQn, i{P, Q̄m} = −mQ̄m. (4.63)

In order to see the effect of the T T̄ deformation, we consider the perturbative expansion
of this algebra for small µ. After restoring the central charge, we can obtain the first order
expansion

i{Qn, Qm} = (n−m)Qn+m + c

12n
3δn+m,0 (4.64)

+ µ

(
(n−m)(QQ̄)n+m −

c

12mn(n−m)Qm+n

)
+O(µ2), (4.65)

i{Qn, Q̄m} = µ

(
(n+m)(QQ̄)n+m −

c

12(mn2Qn+m + nm2Q̄n+m)
)

+O(µ2), (4.66)

i{Q̄n, Q̄m} = (n−m)Q̄n+m + c

12n
3δn+m,0 (4.67)

+ µ

(
(n−m)(QQ̄)n+m −

c

12mn(n−m)Q̄m+n

)
+O(µ2), (4.68)

where
(QQ̄)n+m =

∑
k∈Z

QkQ̄n+m−k. (4.69)

The leading order reproduces the Virasoro algebra. The first-order correction provides a
coupling between Qn and Q̄m.

To close this section, we would like to point out that these charges are not conserved ex-
cept for the energy and momentum.2 Even for Virasoro only L0 is conserved. For Virasoro
the general Ln have simple time dependence, and these charges therefore impose symmetry
relations on correlators. In principle, the algebra in the cutoff case also imposes symmetry
or algebra relations, but these are harder to work with due to the nonlinear properties of
the algebra. It remains to be seen whether the deformed algebra is “useful” or not.

5 Comments on the charges

The charges or the symmetry generators Qn and Q̄m do not remain constant with time
evolutes. In other words, the non-zero modes of the charges are not conserved. As explained
in [78], the charges we obtained are not invariant but covariant under this algebra. One can
refine charges by adding an explicitly time-dependent factor, such that the refined charges
become time independent ones. We would like to find the explicitly time-dependent factor
X, X̃ in equation (5.1). The strategy is to find a time-dependent modes expansion instead

2We would like to thank Per Kraus for his comments on this point.
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of (4.51) so that the refined charges still correspond to the asymptotic symmetry of AdS3
with mixed boundary conditions.

Following the strategy in [78], we assume the refined charges take the following general
form

Q̃n =
∫ 2π

0
qe−in(θ+X)dθ, ˜̄Qm =

∫ 2π

0
q̄e−im(θ+X̄)dθ (5.1)

where X and X̄ depend on (θ, t). Then the time derivative of the charges become

∂tQ̃n =
∫ 2π

0

(
∂θ(Kq)ein(θ+X) + inqein(θ+X)∂tX

)
dθ, (5.2)

∂t
˜̄Qm =

∫ 2π

0

(
∂θ(K̄q̄)eim(θ+X̄) + imq̄eim(θ+X̄)∂tX̄

)
dθ, (5.3)

which would be vanishing if we set the integrand to be a total derivative on the right hand
side. One of the simple settings is

∂θ(Kq)ein(θ+X) + inqein(θ+X)∂tX = ∂θ(Kqein(θ+X)), (5.4)

∂θ(K̄q̄)eim(θ+X̄) + imqeim(θ+X̄)∂tX̄ = ∂θ(K̄q̄eim(θ+X̄)). (5.5)

We then obtain the equations for X, X̄

∂tX −K∂θX = K, ∂tX̄ − K̄∂θX̄ = K̄. (5.6)

According to the coordinate transformation (3.13), we can write the differential operator
on the left hand side as

∂t −K∂θ = − 2
1− µL̄(z̄)

∂z̄, ∂t − K̄∂θ = 2
1− µL(z)∂z. (5.7)

where the (z, z̄) are the original coordinates in the Bañados geometry. In these coordinates,
we can write down the general solutions

X = − z̄2 −
µ

2

(∫ z̄

0
L̄(z̄)dz̄ +WL̄

)
− f(z), WL̄ = N

∫ 2π/κ̄

0
L̄(z̄)dz̄, (5.8)

X̄ = −z2 −
µ

2

(∫ z

0
L(z)dz +WL

)
− f̄(z̄), WL = M

∫ 2π/κ

0
L(z)dz, (5.9)

where the f(z) and f̄(z̄) are arbitrary functions of z and z̄ respectively, WL̄ andWL are the
winding terms with some integers M,N . If the boundary is a plane, there is no winding
term. If the boundary is a cylinder, the winding terms WL and WL̄ appear, and z (or z̄)
ranges from 0 to 2π/κ (or 2π/κ̄). Substituting X and X̄ back into (5.1), we obtain the
refined charges

Q̃n =
∫ 2π

0
qe
−in
(
θ− z̄2−

µ
2

(∫ z̄
0 L̄(z̄)dz̄+WL̄

)
−f(z)

)
dθ, (5.10)

˜̄Qm =
∫ 2π

0
q̄e−im(θ− z2−µ2 (

∫ z
0 L(z)dz+WL)−f̄(z̄))dθ. (5.11)
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The result shows the refined charges are just another different kind of modes expansion.
Here we have to emphasize that the two different kinds of resulting algebras correspond
to different commutation relations. One is time-dependent algebra and the other is time-
independent algebra. The main difference comes from different kinds of Fourier expansion,
which is closely related to state-dependence [54]. It seems the time-dependence of the
generators (5.10) and (5.11) are in contradiction with the fixed time-dependence of Killing
vectors, which were shown in the equations (B.12) and (B.13). The Killing vectors have the
fixed time-dependence, as argued by [55], one can use any initial data to define the charges
on a time slice, such as equation (4.51). As for the refined charges, we choose different initial
data for different time slices, namely time-dependent initial data. The time-dependence of
the generators come from the initial date rather than the equations (B.12) and (B.13).

It is convenient to express these refined charges in terms of the original coordinates
(z, z̄). From the coordinate transformation (3.13), we get

θ = (w + w̄)
2 = z + z̄

2 + µ

2

(∫ z̄

0
L̄(z̄)dz̄ +WL̄ +

∫ z

0
L(z)dz +WL

)
. (5.12)

On a constant time slice, we find the relations

dθ = 1− µ2L(z)L̄(z̄)
1− µL(z) dz, dθ = 1− µ2L(z)L̄(z̄)

1− µL̄(z̄)
dz̄. (5.13)

The periodicity of θ would lead to the period of z and z̄

z ∼ z + 2π
κ
, z̄ ∼ z̄ + 2π

κ̄
, (5.14)

where κ, κ̄ are constants and they depend on the explicit form of L and L̄. In general, we
can not give the specific formula of κ, κ̄. If L and L̄ are constants, namely the BTZ black
holes, we have

κ = 4− µ2(M2 − J2)
4− 2µ(M − J) , κ̄ = 4− µ2(M2 − J2)

4− 2µ(M + J) . (5.15)

Once the µ vanishes, the κ and κ̄ go back to the undeformed period.
Finally, the refined charges end up with

Q̃n =
∫ 2π

κ

0
L(z)e−in(

z
2 +µ

2 (
∫ z

0 L(z)dz+WL)+f(z))dz, (5.16)

˜̄Qm =
∫ 2π

κ̄

0
L̄(z̄)e

−im
(
z̄
2 +µ

2

(∫ z̄
0 L̄(z̄)dz̄+WL̄

)
+f̄(z̄)

)
dz̄. (5.17)

In particular, one can always choose

f(z) =
(
κ− 1

2

)
z − µ

2

(∫ z

0
L(z)dz +WL

)
, (5.18)

f̄(z̄) =
(
κ̄− 1

2

)
z̄ − µ

2

(∫ z̄

0
L̄(z̄)dz̄ +WL̄

)
, (5.19)
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so that the charges can be expressed as

Q̃n =
∫ 2π

κ

0
L(z)e−inκzdz, (5.20)

˜̄Qm =
∫ 2π

κ̄

0
L̄(z̄)e−imκ̄z̄dz̄. (5.21)

The refined charges are the same as the Virasoro ones, and their algebra becomes a field-
dependent Virasoro algebra. This result coincides with the conclusion in [21].

In addition, for various f(z), f̄(z̄) and winding terms, the refined surface charges and
their algebra structure are also different. Although one can choose specific f(z) and f̄(z̄) to
cancel the winding terms, the charge algebra results in a certain ambiguity because of the
winding terms. A similar situation happens in the field theory calculation shown in [54].
It will be an interesting future problem to connect this ambiguity to the one shown in the
field theory side [54].

6 Conclusion and discussion

It is proposed that the T T̄ deformed 2D CFTs dual to the cutoff AdS3 with Dirichlet
boundary condition or equivalently a mixed boundary condition. The mixed boundary
condition can be realized by a field-dependent coordinate transformation from the Brown-
Henneaux boundary condition [21]. The Chern-Simons formalism of AdS3 is a powerful
tool to explore the holographic aspects of the AdS3 with various boundary conditions. In
this paper, we apply the Chern-Simons formalism to study the charges of T T̄ deformed
CFT. We start from the Bañados geometry, which is the most general AdS3 solution with
Brown-Henneaux boundary condition. The deformed Chern-Simons gauge connections
were obtained through the field-dependent coordinate transformation. An analogy to the
Bañados geometry, we parametrize the deformed gauge connections by two independent
functions, which corresponds to the T T̄ deformed charges.

After gauge fixing of the deformed gauge fields and imposing the mixed boundary con-
dition, the residual gauge symmetries can be found. The left-moving gauge fields and the
right-moving gauge fields are entangled. The residual gauge generators can be parametrized
by ε = λ−1−µλ̄−1 and ε̄ = λ̄1−µλ1. Then the variations of the charges give the algebra of
the charges under the gauge transformation concerning ε, ε̄. The resulting charge algebra is
a non-linear deformation of the Virasoro algebra. We expand the Poisson bracket algebra
of the charges perturbatively around µ = 0 and the leading order reproduces the Virasoro
algebra. The first-order correction induces coupling between the deformed charges Q and Q̄.

In [21], the asymptotic symmetry of AdS3 with the mixed boundary condition is de-
scribed by two commuting copies of field-dependent Virasoro algebra. The different algebra
structure was obtained in [55] when they consider the asymptotic symmetry of the deformed
metric on the finite surface r = rc with Dirichlet boundary condition. In [54], it turns out
that there are some uncertain winding terms in the deformed charge algebra. We show
the difference between the two algebras offered by [21] and [55] comes from the ambiguous
definition of the deformed charges.
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A Solving the variation of the charges

In this appendix, we treat in more detail how to solve the generator of the residual gauge
transformation. We will also extract the variation of the charges under the gauge transfor-
mation. For convenience, we rewrite the equations as following

−µδλq̄ = λ′−1 + λ0(1− µq̄), (A.1)
0 = λ′0 + 2(λ−1q − λ1(1− µq̄)), (A.2)

δλq = λ′1 − λ0q, (A.3)
−δλ̄q̄ = λ̄′−1 − λ̄0q̄, (A.4)

0 = λ′0 + 2
(
λ̄1q̄ − λ̄−1(1− µq)

)
, (A.5)

µδλ̄q = λ̄′1 + λ̄0(1− µq), (A.6)
δλq = δλ̄q, δλq̄ = δλ̄q̄. (A.7)

First of all, from (A.1), (A.3), (A.4) and (A.6), by eliminating δλq and δλ̄q̄ we can get the
equations for λ0, λ̄0

µ
(
λ̄0(θ)− λ0(θ)

)
q̄(θ) + ε′(θ) + λ0(θ) = 0, (A.8)

ε̄′(θ) + λ̄0(θ)(1− µq(θ)) + µλ0(θ)q(θ) = 0, (A.9)

Solving these equations, we obtain

λ0(θ) = (ζ(θ)− 1)ε̄′(θ)− ζ(θ)ε′(θ), (A.10)

λ̄0(θ) =
(
ζ̄(θ)− 1

)
ε′(θ)− ζ̄(θ)ε̄′(θ), (A.11)

where
ζ(θ) = 1− µq

1− µ (q̄ + q) , ζ̄ = 1− µq̄
1− µ (q̄ + q) . (A.12)

Substituting these solutions into (A.2) and (A.5), the equations are following

2λ−1(θ)
(
ζ̄(θ)−1

)
−2µλ1(θ)ζ̄(θ)

µ
(
ζ̄(θ)+ζ(θ)−1

) +ζ ′(θ)
(
ε̄′(θ)−ε′(θ)

)
+(ζ(θ)−1)ε̄′′(θ)−ζ(θ)ε′′(θ)=0, (A.13)

2λ̄1(θ)(ζ(θ)−1)−2µλ̄−1(θ)ζ(θ)
µ
(
ζ̄(θ)+ζ(θ)−1

) +ζ̄ ′(θ)
(
ε′(θ)−ε̄′(θ)

)
+
(
ζ̄(θ)−1

)
ε′′(θ)−ζ̄(θ)ε̄′′(θ)=0. (A.14)

– 17 –



J
H
E
P
0
3
(
2
0
2
2
)
0
4
4

Combining with the definition of ε and ε̄,

ε(θ)− (λ−1(θ)− µλ̄−1(θ)) = 0, ε̄(θ)− (λ̄1(θ)− µλ1(θ)) = 0, (A.15)

The solution implies one can express λ−1, λ1, λ̄−1, λ̄1 in terms of the new parameters ε and
ε̄, which read

λ−1(θ) = ζ(θ)ζ̄(θ)ε(θ)
ζ̄(θ)+ζ(θ)−1

+ (ζ(θ)−1)ζ̄(θ)ε̄(θ)
ζ̄(θ)+ζ(θ)−1

(A.16)

+ 1
2µ
(
ζ̄(θ)ζ̄ ′(θ)−(ζ(θ)−1)ζ ′(θ)

)
ε′(θ)+ 1

2µ
(
(ζ(θ)−1)ζ ′(θ)− ζ̄(θ)ζ̄ ′(θ)

)
ε̄′(θ)

+ 1
2µ
((
ζ̄(θ)−1

)
ζ̄(θ)−ζ(θ)2 +ζ(θ)

)
ε′′(θ)+ 1

2µ
(
(ζ(θ)−1)2− ζ̄(θ)2

)
ε̄′′(θ),

λ1(θ) =
ε(θ)ζ(θ)

(
ζ̄(θ)−1

)
µ
(
ζ̄(θ)+ζ(θ)−1

) +
(ζ(θ)−1)ε̄(θ)

(
ζ̄(θ)−1

)
µ
(
ζ̄(θ)+ζ(θ)−1

) (A.17)

+ 1
2ε
′(θ)

((
ζ̄(θ)−1

)
ζ̄ ′(θ)−ζ(θ)ζ ′(θ)

)
+ 1

2 ε̄
′(θ)

(
ζ(θ)ζ ′(θ)−

(
ζ̄(θ)−1

)
ζ̄ ′(θ)

)
− 1

2
(
ζ(θ)− ζ̄(θ)

)(
ζ̄(θ)+ζ(θ)−1

)
ε̄′′(θ)

− 1
2
(
−ζ̄(θ)+ζ(θ)+1

)(
ζ̄(θ)+ζ(θ)−1

)
ε′′(θ),

λ̄−1(θ) =
ε(θ)(ζ(θ)−1)

(
ζ̄(θ)−1

)
µ
(
ζ̄(θ)+ζ(θ)−1

) + (ζ(θ)−1)ε̄(θ)ζ̄(θ)
µ
(
ζ̄(θ)+ζ(θ)−1

) (A.18)

+ 1
2ε
′(θ)

(
ζ̄(θ)ζ̄ ′(θ)−(ζ(θ)−1)ζ ′(θ)

)
+ 1

2 ε̄
′(θ)

(
(ζ(θ)−1)ζ ′(θ)− ζ̄(θ)ζ̄ ′(θ)

)
+ 1

2
(
−ζ̄(θ)+ζ(θ)−1

)(
ζ̄(θ)+ζ(θ)−1

)
ε̄′′(θ)

− 1
2
(
ζ(θ)− ζ̄(θ)

)(
ζ̄(θ)+ζ(θ)−1

)
ε′′(θ),

λ̄1(θ) =
ε(θ)ζ(θ)

(
ζ̄(θ)−1

)
ζ̄(θ)+ζ(θ)−1

+ ζ(θ)ε̄(θ)ζ̄(θ)
ζ̄(θ)+ζ(θ)−1

(A.19)

+ 1
2ε
′(θ)

(
µ
(
ζ̄(θ)−1

)
ζ̄ ′(θ)−µζ(θ)ζ ′(θ)

)
+ 1

2µε̄
′(θ)

(
ζ(θ)ζ ′(θ)−

(
ζ̄(θ)−1

)
ζ̄ ′(θ)

)
+ 1

2µ
(
ζ(θ)− ζ̄(θ)

)(
ζ̄(θ)+ζ(θ)−1

)
ε̄′′(θ)+ 1

2µ
(
(ζ̄(θ)−1)2−ζ(θ)2

)
ε′′(θ).

Finally, substituting back into (A.3) and (A.4), one can obtain

δq= δ̄q=
ε̄(θ)

(
(ζ̄(θ)−1)ζ̄(θ)ζ ′(θ)+(ζ(θ)−1)ζ(θ)ζ̄ ′(θ)

)
µ
(
ζ̄(θ)+ζ(θ)−1

)2 (A.20)

+
ε(θ)

((
ζ̄(θ)−1

)2
ζ ′(θ)+ζ(θ)2ζ̄ ′(θ)

)
µ
(
ζ̄(θ)+ζ(θ)−1

)2

+ 1
2ε
′(θ)

 4ζ(θ)
(
ζ̄(θ)−1

)
µ
(
ζ̄(θ)+ζ(θ)−1

)+ ζ̄ ′(θ)2 +
(
ζ̄(θ)−1

)
ζ̄ ′′(θ)−ζ(θ)ζ ′′(θ)−ζ ′(θ)2
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+ 1
2 ε̄
′(θ)

(
−ζ̄ ′(θ)2−

(
ζ̄(θ)−1

)
ζ̄ ′′(θ)+ζ(θ)ζ ′′(θ)+ζ ′(θ)2

)
− 3

2ε
′′(θ)

(
ζ(θ)ζ ′(θ)−

(
ζ̄(θ)−1

)
ζ̄ ′(θ)

)
+ 1

2
((

2−3ζ̄(θ)
)
ζ̄ ′(θ)+(3ζ(θ)−1)ζ ′(θ)

)
ε̄′′(θ)

− 1
2
(
ζ̄(θ)2−ζ(θ)2 +(ζ(θ))− ζ̄(θ)

)
ε̄′′′(θ)− 1

2ε
′′′(θ)

(
ζ(θ)2−(ζ̄(θ)−2)ζ̄(θ)−1

)
,

δq̄= δ̄q̄=
ε(θ)

(
−(ζ̄(θ)−1)ζ̄(θ)ζ ′(θ)−(ζ(θ)−1)ζ(θ)ζ̄ ′(θ)

)
µ
(
ζ̄(θ)+ζ(θ)−1

)2 (A.21)

−
ε̄(θ)

(
ζ̄(θ)2ζ ′(θ)+(ζ(θ)−1)2ζ̄ ′(θ)

)
µ
(
ζ̄(θ)+ζ(θ)−1

)2

+ 1
2ε
′(θ)

(
−ζ̄ ′(θ)2− ζ̄(θ)ζ̄ ′′(θ)+ζ(θ)ζ ′′(θ)−ζ ′′(θ)+ζ ′(θ)2

)
+ 1

2 ε̄
′(θ)

− 4(ζ(θ)−1)ζ̄(θ)
µ
(
ζ̄(θ)+ζ(θ)−1

)+ ζ̄ ′(θ)2 + ζ̄(θ)ζ̄ ′′(θ)−ζ(θ)ζ ′′(θ)+ζ ′′(θ)−ζ ′(θ)2


+ 1

2ε
′′(θ)

((
1−3ζ̄(θ)

)
ζ̄ ′(θ)+(3ζ(θ)−2)ζ ′(θ)

)
+ 3

2
(
ζ̄(θ)ζ̄ ′(θ)−(ζ(θ)−1)ζ ′(θ)

)
ε̄′′(θ)

+ 1
2ε
′′′(θ)

(
ζ(θ)2− ζ̄(θ)2 + ζ̄(θ)−ζ(θ)

)
+ 1

2
(
ζ̄(θ)2−(ζ(θ)−2)ζ(θ)−1

)
ε̄′′′(θ)

Fortunately, it is convenient to introduce the auxiliary variables

A = Ā =
(ζ(θ)− 1)

(
ζ̄(θ)− 1

)
µ
(
ζ̄(θ) + ζ(θ)− 1

) = µqq̄

1− µ (q̄ + q) , (A.22)

B = 1
2
(
ζ(θ)2 − (ζ̄(θ)− 2)ζ̄(θ)− 2

)
= µ

(
2q̄ − µ(q + q̄)2)

2(1− µ(q + q̄))2 , (A.23)

B̄ = 1
2
(
ζ̄(θ)2 − (ζ(θ)− 2)ζ(θ)− 2

)
= µ

(
2q − µ(q + q̄)2)

2(1− µ(q + q̄))2 , (A.24)

C =
ζ(θ)

(
ζ̄(θ)− 1

)
µ
(
ζ̄(θ) + ζ(θ)− 1

) = (1− µq)q
1− µ(q + q̄) , (A.25)

C̄ = (ζ(θ)− 1)ζ̄(θ)
µ
(
ζ̄(θ) + ζ(θ)− 1

) = (1− µq̄)q̄
1− µ(q + q̄) , (A.26)

D = −D̄ = ζ̄(θ)2 − ζ̄(θ)− ζ(θ)2 + ζ(θ) = µ (q − q̄)
(1− µ (q̄ + q))2 , (A.27)

Then

A′ = Ā′ =

(
ζ̄(θ)− 1

)
ζ̄(θ)ζ ′(θ) + (ζ(θ)− 1)ζ(θ)ζ̄ ′(θ)

µ
(
ζ̄(θ) + ζ(θ)− 1

)2 , (A.28)

B′ = ζ(θ)ζ ′(θ)−
(
ζ̄(θ)− 1

)
ζ̄ ′(θ), (A.29)

B′′ = ζ ′(θ)2 + ζ(θ)ζ ′′(θ)−
(
ζ̄(θ)− 1

)
ζ̄ ′′(θ)− ζ̄ ′(θ)2, (A.30)
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B̄′ = ζ̄(θ)ζ̄ ′(θ)− (ζ(θ)− 1)ζ ′(θ), (A.31)
B̄′′ = ζ̄ ′(θ)2 + ζ̄(θ)ζ̄ ′′(θ)− (ζ(θ)− 1)ζ ′′(θ)− ζ ′(θ)2, (A.32)

C ′ =

(
ζ̄(θ)− 1

)2
ζ ′(θ) + ζ(θ)2ζ̄ ′(θ)

µ
(
ζ̄(θ) + ζ(θ)− 1

)2 , (A.33)

C̄ ′ = ζ̄(θ)2ζ ′(θ) + (ζ(θ)− 1)2ζ̄ ′(θ)

µ
(
ζ̄(θ) + ζ(θ)− 1

)2 , (A.34)

D′ = −D̄′ =
(
2ζ̄(θ)− 1

)
ζ̄ ′(θ) + (1− 2ζ(θ))ζ ′(θ). (A.35)

Finally, δλq and δλ̄q̄ can be formulated as

δλq = δλ̄q = ε(θ)C ′ + ε̄(θ)A′ + 1
2 ε̄
′(θ)B′′ − 1

2ε
′(θ)(B′′ − 4C)

− 1
2 ε̄
′′(θ)(D′ −B′)− 3

2ε
′′(θ)B′ − 1

2 ε̄
′′′(θ)D − 1

2ε
′′′(θ)(2B + 1), (A.36)

δλq̄ = δλ̄q̄ = −ε(θ)Ā′ − ε̄(θ)C̄ ′ − 1
2ε
′(θ)B̄′′ + 1

2 ε̄
′(θ)(B̄′′ − 4C̄)

+ 1
2ε
′′(θ)(D̄′ − B̄′) + 3

2 ε̄
′′(θ)B̄′ + 1

2ε
′′′(θ)D̄ + 1

2 ε̄
′′′(θ)(2B̄ + 1). (A.37)

B Constraints on the gauge transformation

In this appendix, we would like to derive the evolution equation of the parameters ε, ε′ from
the following equations

δλ (K(1− µq̄)) = ∂tλ−1 +Kλ0(1− µq̄), (B.1)
0 = ∂tλ0 + 2K (λ−1q − λ1(1− µq̄)) , (B.2)

δλ (Kq) = ∂tλ1 −Kλ0q, (B.3)
−δλ̄(K̄q̄) = ∂tλ̄−1 − K̄λ̄0q̄, (B.4)

0 = ∂tλ̄0 + 2K̄
(
λ̄1q̄ − λ̄−1(1− µq)

)
, (B.5)

−δλ̄
(
K̄(1− µq)

)
= ∂tλ̄1 + K̄λ̄0(1− µq). (B.6)

Firstly, by using the definition of K, K̄, one can find the relations

K(1− µq̄) + µK̄q̄ = 1, µKq + K̄(1− µq) = 1 (B.7)

then

δλ (K(1− µq̄)) + µδλ̄(K̄q̄) = 0, (B.8)

δλ̄

(
K̄(1− µq)

)
+ µδλ(Kq) = 0. (B.9)

Combining (B.1), (B.4), (B.8), (4.17), and (4.18), one can obtain

∂tε = K(1− µq̄)λ0 + µK̄q̄λ̄0. (B.10)
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From (B.3) and (B.6), one can get

∂tε̄ = K̄(1− µq)λ̄0 + µKqλ0. (B.11)

Finally, plugging (A.10) and (A.11) into (B.10) and (B.11), one can arrive at

−∂tε = ε′ − 2µq̄ (1− µq̄)
(1− µ (q̄ + q))2

(
ε′ + ε̄′

)
, (B.12)

∂tε̄ = ε̄′ − 2µq (1− µq)
(1− µ (q̄ + q))2

(
ε′ + ε̄′

)
. (B.13)

In addition, from (A.2), (A.5), (B.2) and (B.5), the λ0 and λ̄0 obey

∂tλ0 = 1 + µ(q̄ − q)
1− µ(q + q̄)λ

′
0, (B.14)

∂tλ0 = −1− µ(q̄ − q)
1− µ(q + q̄) λ̄

′
0. (B.15)
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