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State distillation is the process of taking a number of imperfect copies of a particular quantum state and
producing fewer better copies. Until recently, the lowest overhead method of distilling states Aj i~ 0j izð
e
ip=4 1j iÞ

� ffiffiffi

2
p

produced a single improved jAæ state given 15 input copies. New block code state distillation
methods can produce k improved jAæ states given 3k1 8 input copies, potentially significantly reducing the
overhead associated with state distillation. We construct an explicit surface code implementation of block
code state distillation and quantitatively compare the overhead of this approach to the old. We find that,
using the best available techniques, for parameters of practical interest, block code state distillation does not
always lead to lower overhead, and, when it does, the overhead reduction is typically less than a factor of
three.

O
ne of the grand challenges of 21st-century physics and engineering is to construct a practical large-scale
quantum computer. One of the primary ways theoretical research can reduce the magnitude of this
challenge is to devise ways of performing a given quantum computation using fewer qubits and quantum

gates while simultaneously leaving all other engineering targets unchanged.
State distillation1,2 is a procedure required by the majority of concatenated quantum error correction (QEC)

schemes3–7, with the exception of the Steane code8, and required by the majority of topological QEC schemes9–19,
with the exception of a 3-D color code20 and a non-Abelian code21. As such, the search for lower overhead
methods of implementing state distillation is of great importance.

Two recent works22,23 are of particular note, both independently proposing block code basedmethods taking 3k
1 8 imperfect copies of a particular state and distilling k improved copies. These works built on the approach of24.
However, in all cases, a detailed analysis of the overhead in terms of qubits and quantum gates was not performed.
In this work, we explicitly construct a surface code19 implementation of one of these block code state distillation
methods23. Given a quantum computer consisting of a 2-D array of qubits with nearest neighbor interactions25–28,
there is compelling evidence that the surface code is the lowest overhead code achievable29. Furthermore, this code
can be used to achieve time-optimal quantum computation30. The surface code therefore provides an excellent
framework to gauge the cost of the new block code state distillation methods.

The discussion shall be organized as follows. We first illustrate a quantum circuit that can be used to perform
block code state distillation. Next we perform a detailed comparison of the overhead of concatenated 15-to-1 and
block code state distillation. We then summarize our results and discuss further work.

Results
Block code state distillation. Figure 1 illustrates a quantum circuit to implement the block code state distillation
protocol of Jones23. This protocol uses a delayed application of T gates to eliminate X errors as illustrated in
Figure 2. Details of the state distillation protocol can be found in the methods section.

In Figure 3 we show a rearranged version of Figure 1 that is more convenient for physical implementation. A
surface code CNOT is shown in Figure 412,13,19. This topological structure can be arbitrarily deformed without
changing the computation it implements. This permits direct implementation of the bent CNOTs (Figure 5). This
can be compressed to Figure 6. See the supplementary material for a step-by-step description of the compression
process and larger versions of these figures.

Overhead comparison. Suppose we desire logical jAæ states with error pout and can prepare logical jAæ states with
error pin.Wewill consider values pin5 1022, 1023, and 1024, as this covers the plausibly achievable range given the
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current state of quantum technology, and values pout 5 1025, …,
10220, as this covers essentially the entire range that could
forseeably be useful in a practical quantum algorithm.
The process of preparing arbitrary logical states is called state

injection, and in the surface code approximately 10 gates are required
to work before error protection is available19. It is therefore reas-
onable to assume the physical gate error rate pg is an order of mag-
nitude less than pin. The logical error rate per round of error
detection in a square patch of surface code as a function of pg and
code distance d is shown in Figure 731.
Focusing initially on the simpler 15-to-1 concatenated distillation

process, the topological structure required for a single level of distil-
lation is shown in Figure 8. Dark structures are called dual defects,
light structures are called primal defects. The geometric volume of
the structure can be defined as the number of primal cubes in a
minimum volume cuboid containing the structure. In this case, the
structure is 6 cubes high, 16 cubes wide, and 2 cubes deep, for a total
V 5 192. Each primal cube has dimensions d/4, each longer prism
has length d. Each unit of d in the temporal direction (up in Figure 8)
corresponds to a round of surface code error detection, each unit of d
in the two spatial directions corresponds to two qubits. It is therefore
straightforward to convert the geometric volume to an absolute
volume in units of qubits-rounds. A fragment of the complete struc-
ture of edge length 5d/4 with a primal cube potentially centered

within it is called a plumbing piece. Geometric volume is therefore
in units of plumbing pieces. In order to calculate the overhead of state
distillation, we will need to first reasonably upper bound the prob-
ability of logical error per plumbing piece.

Figure 1 | Extendable quantum circuit for block code state distillation.
This circuit takes 3k1 8 copies of |Aæ, each with probability p of error, and

producing k copies, each with approximate probability (3k1 1)p2 of error.

In the figure, k5 4. The repeating unit cell is highlighted. Note that kmust

be even. A box encircles output numbers. Each T gate consumes one |Aæ

state as shown in Figure 2.

Figure 2 | Circuit identities for application of T gates. (a) Circuit useful

for delaying the application of T and eliminating X errors. (b) Circuit

implementing a T gate using an ancilla state Aj i~ 0j izeip=4 1j i
� �� ffiffiffi

2
p

.

Figure 3 | Constant depth extendable circuit implementing block code
state distillation. This example takes (3k 1 8)-to-k state distillation for

k5 4. Boxes encircle output numbers. Using the surface code, bent CNOTs

can be implemented exactly as shown (see Figure 5). The repeating unit cell

is highlighted.

Figure 4 | CNOT circuits in the surface code. (a) CNOT quantum circuit

example. (b) Equivalent surface code CNOT12,13,19. Time runs from left to

right. The scale of the figure is set by the code distance d. Small cubes are

d/4 a side. Longer blocks have length d. Each unit of d in the temporal

direction represents a round of error detection. Each unit of d in the two

spatial directions represents two qubits. The structures are called defects,

and represent space-time regions in which error detection has been turned

off.

www.nature.com/scientificreports
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Consider a forest of straight, d separated parallel defects of cir-
cumference d, as shown in Figure 9. Each defect can be assumed
responsible for logical errors connecting it to two of its neighboring
defects and also self encircling logical errors. The probability of each
of these types of logical error per round of error detection can be
upper bounded by the probability of logical error per round of error
detection of a square surface. There are more potential logical errors
per round connecting opposing boundaries in a square surface of

distance d than there are connecting distinct defects or encircling a
single defect.
Given the per round probability of logical error pL(d, pg) of a

square surface, we can upper bound the logical error rate of a plumb-
ing piece PL(d,pg) by 23 33 5d/43 pL(d,pg), where the factor of 5d/4
is for the number of rounds of error detection in a plumbing piece,
the factor of 3 is for the number of distinct classes of logical error, and
the factor of 2 is due to the fact that a single plumbing piece can
contain both a primal and a dual defect. From Figure 7, pL(d,pg) ,
0.1(100pg)

(d11)/2, implying PL(d,pg) , d(100pg)
(d11)/2.

Given input error rate pin, with 15-to-1 state distillation the output
error rate can be made arbitrarily close to pdist 5 35p3 by using a
sufficiently large d to eliminate logical errors during distillation.
However, logical errors do not need to be completely eliminated,
and we define pdist to be the amount of logical error introduced.
For ~1, the logical circuitry introduces as much error as distillation
fails to eliminate, and pout~ 1zð Þpdist. We shall assume that logical
failure anywhere during distillation leads to the output being incor-
rect and accepted.
Let us consider a specific example. Suppose pin5 1023, our desired

pout 5 10215, and our chosen ~1. Our top level of state distillation
must therefore have a probability of logical error no more than
pout= 1zð Þ~5|10{16. Given V 5 192 for 15-to-1 state distil-
lation, this means we need VPL(d,pg) 5 192PL(d,10

24) , 5 3

10216, implying d5 19. The states input to the top level of distillation
must have an error rate no more than p~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pout=35 1zð Þ3
p

~2:4|10{6. Since this is less than pin, more state distillation is
required. Our second level of state distillationmust have a probability
of logical error no more than p= 1zð Þ~1:2|10{6, implying d5
9. The states input to the second level of distillation must have an
error rate no more than

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2:4|10{6=35 1zð Þ3
p

~3:3|10{3. Since
this is greater than pin, no further distillation is required. The absolute
volume of the d5 19 top level and 15 d5 9 second level distillation
structures is 3.13 107 qubits-rounds.
In practice, the computation of the previous paragraph is per-

formed for a range of values of , and the value leading to minimum
volume chosen. Table I contains the minimum volumes in qubits-
rounds for the range of input and output error rates of interest. Our
goal is to improve these numbers using block code state distillation.
Italicized entries indicate input-output parameters for which block
code state distillation failed to reduce the overhead.
Given values of pin and pout, we can choose an arbitrary value of k

and for a top level of block code state distillation, and calculate the

Figure 5 | Depth 31 canonical surface code implementation of block code
state distillation. This structure is a direct mapping of Figure 3. A larger

version of this figure can be found in the supplementary material.

Figure 6 | Depth 12 compressed surface code implementation block code
state distillation. A compressed version of of Figure 3. A larger version of

this figure can be found in the supplementarymaterial, along with step-by-

step images explaining how it was obtained.

Figure 7 | Failure rates for the surface code. Shown here is the probability
pL of logical X error per round of surface code error correction for various

code distances d and physical gate error rates pg. The asymptotic curves

(dashed lines) are quadratic, cubic, quartic for distances d 5 3, 5, 7

respectively.

www.nature.com/scientificreports
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required block input error rate pk~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pout= 3kz1ð Þ 1zð Þ
p

. Con-
catenated 15-to-1 distillation will then be used to reduce pin to pk.
The geometric volume of block code state distillation is 96k 1 216.
We must therefore choose a top level code distance sufficiently large
to satisfy 96kz216ð ÞPL d,pin=10ð Þv pout= 1zð Þ. Given the abso-
lute volume Vb of the block code used, and the absolute volume
V15 of each 15-to-1 concatenated structure used to produce an input
to the block code stage, the total absolute volume assigned to each
output will be (Vb 1 (3k 1 8)V15)/k.
The minimum absolute volume found for arbitrary k and is

shown in Table II. Italicized volumes are lower than the correspond-
ing concatenated 15-to-1 volumes (and two-level block code distilled
volumes to be discussed shortly). In all cases, the volume reduction is

less than a factor of three and was typically a factor of two for the
cases in which a reduction was observed at all. Note that a reduction
is observed when concatenated 15-to-1 distillation needs an addi-
tional level (bold entries in Table I). This makes sense, as when just a
little more distillation is required, it is better to use the lower over-
head block code approach.
Continuing similarly, we constructed Table III assuming two top

levels of block code state distillation. Note that errors can be corre-
lated in the output of a single instance of block code state distillation,

Figure 8 | Standard 15-1 state distillation in the surface code. State distillation method taking 15 input |Aæ states, each with error p, and producing with

probability 1 2 15p a single output |Aæ state with error 35p3 1,29. Each unit of d in the temporal direction (up in this figure) corresponds to a round of

surface code error detection, each unit of d in the two spatial directions corresponds to two qubits.

Figure 9 | Defect arrangement for the surface code. A forest of d separated

straight defects of circumference d. Two square surfaces of dimension d3

d have been included. The logical error rate of these surfaces upper bounds

the probability of a logical error connecting neighboring defects and

encircling a single defect. Time runs vertically. In the temporal direction,

each unit of d represents a round of error detection. In the spatial

directions, each unit of d represents two qubits.

Table I | Minimum achieved volumes in qubits-rounds for all com-
binations of pin and pout of interest when using concatenated 15-
to-1 state distillation. The approximate two orders of magnitude
volume ratio of pin5 1022 and 1024 for pout5 10220 is due to the
former requiring three levels of distillation of distance 13, 21 and
45 respectively, whereas the latter requires just two levels of dis-
tance 7 and 15 respectively. This is directly related to the assump-
tion that the gate error rate pg is pin/10, meaning much smaller
distances, and hence volumes, are required to achieve a given
reliability. Bold numbers indicate a transition to more levels of
distillation. For pin 5 1022, two levels are required even for pout
5 1025, with a transition to three levels at pout5 10212. For lower
pin, only one or two levels are required. Italicized entries are
smaller than their corresponding entries in Table II and Table III

pin

pout 1022 1023 1024

1025 4.03 107 1.33 106 2.63 105

1026 6.73 107 1.33 106 2.63 105

1027 7.23 107 2.13 106 5.63 105

1028 7.53 107 1.13 107 5.63 105

1029 1.03 108 1.23 107 1.33 106

10210 1.13 108 1.23 107 1.33 106

10211 1.73 108 1.43 107 5.33 106

10212 6.43 108 1.43 107 6.13 106

10213 6.53 108 2.83 107 6.13 106

10214 7.03 108 2.83 107 6.13 106

10215 1.13 109 3.13 107 7.73 106

10216 1.13 109 3.13 107 1.23 107

10217 1.23 109 3.53 107 1.23 107

10218 1.23 109 4.73 107 1.43 107

10219 1.23 109 5.03 107 1.43 107

10220 1.33 109 5.73 107 1.43 107

www.nature.com/scientificreports
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so with two levels of distillation one would arrange the topological
structures in two orthogonal layers so that outputs from the first layer
go into distinct block codes state distillation structures in the second
layer. This is discussed in more detail in23,24. We found the minimum
volume varying , k1 and k2, where k1 and k2 are the k values of the
first and second layers of block distillation, respectively. Where fur-
ther improvement was observed, this was typically quite modest,
usually less than a factor of two.

Discussion
We have presented an explicit extendable topological structure cor-
responding to computation in the surface code that implements the
block code state distillation procedure of23. Every effort was made to
make this topological structure as compact as possible using available
techniques29. Despite this, we found only a modest overhead reduc-
tion, on average a factor of two to three, when using block code state
distillation for favorable parameters. Parameter ranges were found in
which block code state distillation leads to higher overhead.
At first, it may seem surprising that (3k1 8)-to-k distillation is not

universally better than 15-to-1 distillation and that the advantage,
when observed, is so modest. However, 15-to-1 reduces the error by
farmore, taking p to 35p3, whereas (3k1 8)-to-k only takes p to (3k1
1)p2. Furthermore, the overhead per 15-to-1 output is 192 plumbing
pieces, versus our current best block code structure which uses (96k
1 216)/k plumbing pieces per output, which is not massively less.
These properties, when the appropriate code distance is chosen at
each level, particularly when one keeps in mind that larger values of
k lead to larger topological structures that require larger code
distances, lead to the 15-to-1 approach having lower asymptotic
overhead than (3k 1 8)-to-k for all values of k. Block code state
distillation is therefore only useful when one has first used 15-to-1
and not quite reached the target output error rate, with only a small
amount of additional distillation required. When 15-to-1 gets you
just below the target output error rate, block code state distillation at
present offers no advantages.
Even if one ignores the cost of Clifford gates and only considers the

cost of magic states, the analysis in23 shows that block codes are not

the most efficient choice for the early rounds of distillation. The
numerical results therein show that a hybrid scheme of 15-to-1 dis-
tillation followed by block codes leads to optimal performance for
output error 10212, though the performance improvement over a
concatenated 15-to-1 protocol is only about a factor of two or three,
which is consistent with our results.
Two research directions will be explored to further reduce the

overhead of state distillation. Firstly, block codes of distance higher
than two, and secondly, more advanced methods of compressing the
complex and extendable encoding circuitry of block codes.

Methods
Block code state distillation. The state we are interested in distilling is jAæ 5 (j0æ 1
eip/4j1æ)/

ffiffiffi

2
p

. An extendable quantum circuit taking 3k 1 8 copies of jAæ, each with
probability p of error, and producing k copies, each with probability approximately
(3k1 1)p2 of error23, is shown in Figures 1–2. The T5 exp(2ip/8sz) gate application
is delayed using the circuit of Figure 2a. This circuit has the additional advantage of
eliminating X errors from the T gate, leaving us only needing to detect Z errors. X and
Z stand for Pauli sx and sz, respectively. Each T gate consumes one jAæ state as shown
in Figure 2b. All output states are discarded if any errors are detected. Figure 1 has
been designed to detect aZ error during any singleT gate. All other quantum gates are
assumed to be perfect, or at least sufficiently reliable that the probability of error from
gate failure is negligible compared to the probability of error from multiple T gate
errors. The first order probability that the outputs will be rejected is therefore
approximately (3k1 8)p, with this expression being approximate due to the ability of
Figure 2b to introduce S errors and the ability of Figure 2a to filter out everything
except Z errors. First order expressions are appropriate as we restrict ourselves to
(3k 1 8)p= 1.

For k 5 2 1 4j, the block code has the property that transversal S{X implements
logical SX on each encoded logical qubit. Each logical qubit is prepared in jAæ, and
hence in the absence of errors the multiple jAæ block code will be in the11 eigenstate
of transversal S{X5 T{XT. The top qubit of Figure 1 should therefore report11, with
all output discarded if21 is reported. This singlemeasurement is sufficient to detect a
single Z error during the first two layers of T gates.

The block code has four stabilizers, specificallyX0X2X3…Xk12,X1X2…Xk11Xk13,
Z0Z2Z3… Zk12, and Z1Z2… Zk11Zk13. Detecting a Z error in the final layer ofT gates
involves using the stabilizers X0X2X3 … Xk12 and X1X2 … Xk11Xk13. For arbitrary
encoded logical states, in the absence of errors, the block code will be in the 11
eigenstate of these stabilizers. If the products of the individual X basis measurements
comprising these stabilizers are not both 11, all output is discarded.

Assuming the above three checks are passed, all output is accepted, with byproduct
Z operators noted as follows. For each encoded logical qubit 0# n, k, the associated
logical X operator takes the form Xn12Xk12Xk13. If the product of these measure-
ments is 21, a byproduct Z is associated with output n.

Table II | Minimum achieved volumes in qubits-rounds for all com-
binations of pin and pout of interest when using a top level of block
code state distillation followed by concatenated 15-to-1 state dis-
tillation. Bold numbers indicate a transition to more levels of dis-
tillation. For pin 5 1022, two levels, one block and one 15-to-1,
are required even for pout51025, with a transition to two levels of
15-to-1 atpout51029. For lower pin, initially no15-to-1 distillation
is required. Italicized entries are smaller than their corresponding
entries in Table I and Table III

pin

pout 1022 1023 1024

1025 2.33 107 1.43 106 1.53 105

1026 2.63 107 2.83 106 3.03 105

1027 4.23 107 3.03 106 5.93 105

1028 1.13 108 5.93 106 1.33 106

1029 2.03 108 6.13 106 1.53 106

10210 2.43 108 6.73 106 2.43 106

10211 2.53 108 7.83 106 2.73 106

10212 2.63 108 1.13 107 2.73 106

10213 2.73 108 1.33 107 2.83 106

10214 3.03 108 3.83 107 3.63 106

10215 3.73 108 4.43 107 3.93 106

10216 3.93 108 4.43 107 6.13 106

10217 4.13 108 4.63 107 6.63 106

10218 4.43 108 4.73 107 6.73 106

10219 4.73 108 5.33 107 8.33 106

10220 6.33 108 5.43 107 1.83 107

Table III | Minimum achieved volumes in qubits-rounds for all com-
binations of pin and pout of interest when using two top levels of
block code state distillation followed by concatenated 15-to-1
state distillation. Bold numbers indicate a transition to more levels
of distillation. For all values of pin, the first entry corresponds to no
15-to-1 distillation. Italicized entries are smaller than their corres-
ponding entries in Table I and Table II

pin

pout 1022 1023 1024

1025 4.83 107 1.73 106 6.23 105

1026 6.43 107 2.43 106 7.13 105

1027 7.43 107 4.13 106 7.63 105

1028 8.93 107 6.43 106 9.63 105

1029 9.83 107 1.13 107 1.63 106

10210 1.13 108 1.13 107 1.73 106

10211 1.33 108 1.23 107 2.33 106

10212 1.73 108 1.53 107 3.03 106

10213 2.23 108 1.83 107 5.23 106

10214 3.33 108 2.43 107 6.43 106

10215 5.83 108 2.53 107 6.63 106

10216 7.43 108 2.83 107 7.03 106

10217 8.13 108 3.03 107 8.83 106

10218 8.33 108 3.13 107 1.13 107

10219 8.53 108 3.43 107 1.13 107

10220 8.83 108 4.13 107 1.23 107
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