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Surface-Constrained Volumetric Brain Registration

Using Harmonic Mappings
Anand A. Joshi, David W. Shattuck, Paul M. Thompson and Richard M. Leahy

Abstract—In order to compare anatomical and functional
brain imaging data across subjects, the images must first be
registered to a common coordinate system in which anatomical
features are aligned. Intensity-based volume registration methods
can align subcortical structures well, but the variability in
sulcal folding patterns typically results in misalignment of the
cortical surface. Conversely, surface-based registration using
sulcal features can produce excellent cortical alignment but the
mapping between brains is restricted to the cortical surface.
Here we describe a method for volumetric registration that also
produces an accurate one-to-one point correspondence between
cortical surfaces. This is achieved by first parameterizing and
aligning the cortical surfaces using sulcal landmarks. We then
use a constrained harmonic mapping to extend this surface cor-
respondence to the entire cortical volume. Finally, this mapping
is refined using an intensity-based warp. We demonstrate the
utility of the method by applying it to T1-weighted magnetic
resonance images (MRI). We evaluate the performance of our
proposed method relative to existing methods that use only
intensity information; for this comparison we compute the inter-
subject alignment of expert-labeled sub-cortical structures after
registration.

Index Terms—Image Registration, deformable registration,
brain mapping, harmonic mapping.

I. INTRODUCTION

Morphometric studies of anatomical changes over time or of

differences between populations require that the data first be

transformed to a common coordinate system in which anatom-

ical structures are aligned. Similarly, inter-subject longitudinal

studies or group analyses of functional data also require that

the images first be anatomically aligned. Alignment is com-

monly performed either with respect to the entire volumetric

space [1] or is restricted to the cortical surface [2]. Here we

describe an approach to brain image registration based on

harmonic maps that combines these two approaches producing

a volumetric alignment in which there is also a one-to-one

correspondence between points on the two cortical surfaces.

Talairach normalization based on a piecewise affine transfor-

mation [3] was the first commonly used volumetric alignment

technique. Because it uses a restricted set of anatomical

landmarks and is piecewise affine, it results in relatively

poor alignment and has been largely replaced by automated

intensity-based alignment methods that also allow non-rigid

deformations [4], [5]. There are a vast array of such methods,
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differing in how they measure the fit between the two images

(e.g., squared error, correlation, mutual information), the pa-

rameterization of the transformation (e.g., polynomial, splines,

discrete cosine transform or other eigenfunction bases), and the

procedure used to regularize the transformation (e.g., elastic,

biharmonic, or viscous fluid models) [6]. Polynomial warps

and linear elastic deformations implicitly assume that deforma-

tions are small and do not guarantee preservation of topology

for larger deformations [7]. The viscous fluid approach [8] and

more recent approaches using large-deformation diffeomor-

phic metric mapping [9], [10] were developed to address the

problem of ensuring diffeomorphic maps and are better able to

register objects whose alignment requires large deformations

while conserving their topology.

Since these intensity-based methods do not explicitly model

the cortical surface, alignment can be rather poor. An illus-

tration of this is shown in Fig. 1, where we have used the

Automated Image Registration (AIR) software [5], [11] to

align two brain volumes using a 5th order polynomial (168

parameters). While the regions of cortical grey matter exhibit

reasonably good correspondence between the two images,

the cortical surfaces themselves do not align well. Since

cytoarchitectural and functional parcellation of the cortex is

intimately related to the folding of the cortex, it is important

when comparing cortical anatomy and function in two or more

subjects that the surfaces are aligned. For this reason, there has

been an increasing interest in analyzing the cerebral cortex

based on alignment of surfaces rather than volumes.

Various surface-based techniques have been developed for

inter-subject registration of two cortical models. One class of

techniques involves flattening the two cortical surfaces to a

plane [12] or to a sphere [13] using mechanical models or

variational methods and then analyzing the data in the common

flattened space [14]. Other surface based techniques work in

the surface geometry itself rather than a plane or a sphere and

choose to account for the surface metric in the inter-subject

registration [15], [16]. The advantage of such techniques is

that they produce registration results that are independent

of the intermediate flat space (or, equivalently, the specific

parameterization of the cortex) resulting in a more consistently

accurate registration throughout the cortex. These approaches

involve manually delineated sulcal landmark matching [16]

in the intrinsic surface geometry. While some progress has

been made recently towards automating the matching process

using mutual information [17] or optical flows of mean-

curvature images in the surface parameter space [18], [19],

fully automatic alignment of high resolution cortical surfaces

remains a challenging problem.
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While the volume registration methods described above do

not provide suitable cortical alignment, the cortical registration

methods do not define any volumetric correspondence. One

approach to this problem is to combine landmark points,

curves and surfaces as additional constraints in an intensity-

based warping method [20], [2], [21], [22], [23], [24], [25].

For example, landmarks, curves [25] and image matching [24]

can be applied in a hierarchical manner in a large deformations

framework ensuring generation of diffeomorphisms [26], [27].

Registration methods such as the Hierarchical Attribute Match-

ing Mechanism for Image Registration (HAMMER) algorithm

[28] incorporate surface as well as volume information for the

alignment using geometric attributes of the images. Alignment

of brain images often involves relatively large displacements

which need to be obtained incrementally using large deforma-

tion or fluid models [29], [30] and hence are computationally

expensive. Accurate alignment of the cortical surface as part

of a volumetric registration procedure remains a challenging

task mainly due to the complex folding pattern variability of

the cortex.

In this paper, we (i) propose a novel landmark based surface

matching technique based on elastic energy minimization

in the intrinsic geometry of the cortex, (ii) propose a new

method based on harmonic mappings for extending the surface

matching to the entire cortical volume, and (iii) present a

modified intensity alignment based on [31] to compute the

final map. The resulting method, comprising the three steps

outlined above, gives an inverse consistent map which is

capable of aligning both subcortical and sulcal features.

II. PROBLEM STATEMENT AND FORMULATION

Here we address the following problem: produce a one-to-

one mapping between two brain volumes such that subcortical

structures and sulcal landmarks are aligned and that there is

also a one-to-one correspondence between the cortical surfaces

of the two volumes. Equivalently, given 3D manifolds M and

N representing the two brain volumes, with boundaries ∂M

and ∂N representing their respective cortical surfaces, we want

to find a map from M to N such that ∂M , the surface of M ,

maps to ∂N , the surface of N , and the intensities of the images

in the interior of M and N are matched. In addition the map

must satisfy a sulcal matching constraint so that labelled sulci

on the surface ∂M map onto homologous sulci on ∂N . The

boundaries, ∂M and ∂N , are assumed to have a spherical

topology.

We solve the mapping problem in three steps:

1) Surface matching, which computes a map between ∂M

and ∂N , the cortical surfaces of the two brains. The

mapping is based on minimization of an elastic strain

energy subject to the constraint that a set of interactively

labelled sulci are aligned, as described in Section III.

2) Extrapolation of the surface map to the entire cortical

volume such that the cortical surfaces remain aligned.

This is done by computing a harmonic map between

M and N subject to a surface matching constraint.

As we describe in Section IV, an intermediate spher-

ical representation is used to facilitate enforcement of

Fig. 1. Cortical surface alignment after using AIR software for intensity
based volumetric alignment with a 168 parameter 5th order polynomial. Note
that although the overall morphology is similar between the brains, the two
cortical surfaces do not align well.

this constraint. We note also that while the sulci are

constrained to remain in correspondence, the cortical

surfaces can flow with respect to each other when

computing the volume harmonic map provided we retain

the one-to-one mapping between ∂M and ∂N .

3) Refinement of the harmonic map on the interiors of M

and N to improve intensity alignment of subcortical

structures. For this step we use an inverse consistent

linear elastic registration method as described in Section

V.

The mapping in Step 2 requires large scale deformation to

ensure that ∂M and ∂N are aligned. Linear elastic or thin-

plate spline registration based on landmarks cannot be used

for this purpose [32]. Harmonic maps on the other hand are

suitable since they are bijective provided that the boundary (the

cortical surface in this case) is mapped bijectively. Conversely,

the final step requires a more local refinement of the mapping

to align subcortical structures so that use of linear elastic

methods is appropriate.

III. SURFACE REGISTRATION

We describe a method that sets up one-to-one correspon-

dence between the surface ∂M of brain M and the surface

∂N of the brain N , using labeled sulcal curves as constraints.

Our earlier methods for surface registration were computed in

two stages: (i) for each subject, parameterize the surface of

each cortical hemisphere to either a unit square or disk, and

(ii) find a vector field with respect to this parameterization that

aligns sulcal landmarks between subjects. Registration can use

linear elastic [33] or thin-plate bending energy [16] for regular-

izing the displacement field and covariant derivatives to make

the alignment independent of parameterization. However, in

order to solve the resulting variational minimization problem,

numerical derivatives must be computed by resampling the

brain on a uniform grid with respect to the parameterization.

In addition to the computational cost of resampling and

interpolation, this step results in a loss of resolution since the

regular or semi-regular grid in flat space is not necessarily

optimal for representing the brain in 3D space. In our new

surface registration approach, we incorporate sulcal landmark

alignment directly in our parameterization method and thus

avoid the resampling and reparameterization step completely.

This approach also has the advantage that the computation cost

is relatively small and that the resulting alignment is inverse
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consistent [30] as will become clear from the symmetry of the

cost function defined below.

In order to generate such a parameterization with prealigned

landmarks, we model the cortical surface as an elastic sheet

and solve the associated linear elastic equilibrium equation

using the Finite Element Method (FEM). We choose the

more general elastic model over a surface based harmonic

mapping method [34], [35], [36] because we found that the

surface based harmonic mappings do not remain bijective

when multiple sulcal landmark constraints are imposed on

the interior of the flat parameter space. However, for the

elastic model, we have found improved bijective behavior

with appropriate choices of model parameters λ and µ. The

reason for this situation, intuitively, is that relative to the

power of the Laplacian alone, the Cauchy-Navier elasticity

operator provides additional control over the gradient of the

divergence of the surface vector field, and this indirectly

controls the Jacobian of the mapping, constraining it from

taking on extreme values and thereby violating the smoothness

assumption. If the smoothness were a problem, the flow could

be discretized in time and integrated to prevent singularities,

as described by Christensen et al. [8].

A. Mathematical Formulation

We map the surfaces of each cortical hemisphere of a pair

of brains M and N to the unit square such that in the flat map

the manually delineated sulcal landmarks align in the square

parameter space. The resulting parameterization then defines

a correspondence between the two cortices. We describe the

process for identifying the surfaces and delineating the sulci

in Section IIIC. For now it is sufficient to assume two

surfaces with spherical topology on which are traced two

homologous sets of continuous, non-intersecting sulcal curves.

The corpus callosum maps to the boundary of the square with

the boundary condition assuring continuity between the two

hemispheres of each brain when subsequently mapping these

flat maps to the surface of a sphere.

Let φ = [φ1, φ2]
T be the two coordinates assigned to every

point on a given cortical surface such that the coordinates φ

satisfy the linear elastic equilibrium equation with Dirichlet

boundary conditions on the boundary of each cortical hemi-

sphere, represented by the corpus callosum. We constrain the

corpus callosum to lie on the boundary of the unit square

mapped as a uniform speed curve.
We solve the linear elastic equilibrium equation in the

geometry of the cortical surface using the form:

µ∆φ + (µ + λ)∇(∇ · φ) = 0, (1)

where µ and λ are Lamé’s constants which model the elastic
material response to linear strain and shear respectively [37].
The operators ∆ and ∇ represent the Laplace-Beltrami and
covariant gradient operators, respectively, with respect to the
surface geometry. The solution of this equation can be obtained
variationally by minimizing the integral on the cortical surface
[38]:

E(φ) =

Z

S

µ

2
Tr (((Dφ)T + Dφ)2) + λ Tr (Dφ)2dS, (2)

where Dφ is the covariant derivative of the coordinate vector

field φ. The integral E(φ) is the total strain energy. Though the

elastic equilibrium equation models only small deformations,

we have found that in routine practice, our method is able

to produce a flat map of the cortex by using the parameters

µ = 100 and λ = 1. Intuitively, they control the ‘stretching’

and ‘bending’ properties of the desired map.
Let φM and φN denote the 2D coordinates to be assigned

to corresponding hemispheres of M and N respectively. Then
we define the cost function C(φM , φN ) as

C(φM , φN ) = E(φM ) + E(φN) + ρ

K
X

k=1

(φM (xk) − φN(yk))2,

(3)
where φM (xk) and φN(yk) denote the coordinates assigned to the set
of K sulcal landmarks xk ∈ M , yk ∈ N and ρ is a penalty parameter.
Here sulcal matching is represented by a set of point constraints
obtained by sampling each curve at a fixed number of points taken
along its length. Note that we do not constrain the locations of the
sulci in the flat map but simply constrain homologous landmarks in
the two maps to lie at the same coordinates. The method is easily
modified for subject to template matching by fixing the parameters
of the sulcal constraints in the template.

B. Finite Element Formulation

To minimize (3) on a tessellated surface we use an FEM to
discretize the strain energy E(φ). Since the strain energy at a point
is independent of coordinate system, it is justifiable to compute it
locally at each vertex point by assigning a local coordinate system
(x, y) to its neighborhood.

For each triangle the covariant derivative Dφ in the local coordi-
nates x, y becomes the Jacobian matrix:

Dφ =

 

∂φ1

∂x

∂φ1

∂y
∂φ2

∂x

∂φ2

∂y

!

. (4)

We compute the strain energy Ei(φ) for the ith triangle ∆i using
(2) as:

Ei(φ) =

Z

∆i

(2µ + λ)

„

(
∂φ1

∂x
)2 + (

∂φ2

∂y
)2
«

(5)

+ 2(µ + λ)

„

∂φ1

∂y

«„

∂φ2

∂x

«

+ µ

„

(
∂φ1

∂y
)2 + (

∂φ2

∂x
)2
«

dS.

We now describe the FEM discretization of the partial derivatives
with respect to the local coordinates. Let α be any piecewise
linear real-valued scalar function defined over the surface, and let
x, y denote local coordinates for triangle i. Also denote the local
coordinates of the three vertices as (x1, y1), (x2, y2) and (x3, y3)
respectively. Since α is linear on the ith triangle, we can write,

α(x, y) = a
i
0 + a

i
1x + a

i
2y. (6)

Writing this expression at three vertices of the triangle i in matrix
form,

0

@

1 x1 y1

1 x2 y2

1 x3 y3

1

A

| {z }

Ei

0

@

ai
0

ai
1

ai
2

1

A =

0

@

α(x1, y1)
α(x2, y2)
α(x3, y3)

1

A . (7)

The coefficients ai
0, a

i
1 and ai

2 can be obtained by inverting the matrix
Ei. From (6) and by inverting the matrix in (7), we obtain
„

∂α
∂x
∂α
∂y

«

=

„

ai
1

ai
2

«

(8)

=
1

|Ei|

„

y2 − y1 y3 − y1 y1 − y2

x1 − x2 x1 − x3 x2 − x1

«

0

@

α(x1, y1)
α(x2, y2)
α(x3, y3)

1

A .

(9)
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Fig. 2. (a),(b) Two cortical surfaces with labeled sulci as colored curves;
(c),(d) flat maps of a single hemisphere for each brains without the sulcal
alignment constraint; (e),(f) flat maps with sulcal alignment; (g),(h) overlay
of sulcal curves on the flat maps, without and with sulcal alignment.

Fig. 3. Result of mapping of sulcal landmarks from 5 subjects to a single
brain using the linear elastic mapping described here (left) without and (right)
with the sulcal alignment constraint.

Denote the discretization of ∂
∂x

and ∂
∂y

at triangle i by Di
x and Di

y

respectively. Also note that |Ei| = 2Ai where Ai is area of the ith

triangle. Then we have:

D
i
x =

1

2Ai

`

y2 − y1 y3 − y1 y1 − y2

´

(10)

D
i
y =

1

2Ai

`

x1 − x2 x1 − x3 x2 − x1

´

. (11)

Substituting these in (5) and (3), we have

E(φ) =
X

i

1

4Ai

`

φi
1φ

i
2

´

M

„

φi
1

φi
2

«

(12)

=
X

i

‖ 1

2
√

Ai

0

B

B

@

√
λDi

x

√
λDi

y√
µDi

y

√
µDi

x√
2µDi

x 0
0

√
2µDi

y

1

C

C

A

φ
i‖2

, (13)

where M is given by

M =

„

(λ + 2µ)Dit
x Di

x + µDit
y Dy λDit

x Dy + µDit
y Di

x

λDit
y Di

x + µDit
x Di

y (λ + 2µ)Dit
y Di

y + µDit
x Di

x

«

.

(14)

This method is used to discretize both E(φM ) and E(φN). The
resulting cost function (3) is then minimized using a conjugate
gradient method as described in the next section. We note from (13)
and (3) that the cost function is quadratic. We minimize (3) with
respect to both φM and φN , with the corpus callosum fixed at the
boundary of the unit square, to compute the sulcally coregistered flat
maps for both brains simultaneously.

C. Implementation

We assume as input two T1-weighted MR volumes. Cortical
surfaces were extracted from volume images using the BrainSuite
software [39]. BrainSuite includes a six stage cortical modeling
sequence. First the brain is extracted from the surrounding skull and
scalp tissues using a combination of edge detection and mathematical
morphology. Next the intensities of the MRI are corrected for shading
artifacts. Each voxel in the corrected image is labeled according
to tissue type using a statistical classifier. A standard atlas with
associated structure labels is aligned to the subject volume, pro-
viding a label for cerebellum, cerebrum, brainstem, and subcortical
regions. These labels are combined with the tissue classification to
automatically identify the cerebral white matter, to fill the ventricular
spaces, and to remove the brainstem and cerebellum. This produces
a volume whose boundary surface represents the outer white-matter
surface of the cerebral cortex. It is likely that the tessellation of
this volume will produce surfaces with topological handles. Prior
to tessellation, these handles are identified and removed from the
binary volume automatically using a graph based approach [40].
A tessellated isosurface of the resulting mask is then extracted to
produce a genus zero surface based on the registered atlas labels that
is subsequently split into two cortical hemispheres.

We then use BrainSuite to interactively label 23 major sulci on
each cortical hemisphere according to a sulcal labeling protocol
with established intra- and inter-rater reliability [41]. This protocol
specifies that sulci do not intersect and that individual sulci are
continuous curves that are not interrupted. If interruptions are present,
the human raters specify the path across any interrupting gyri. In
cases where a full set of sulci cannot be defined, a subset can be
used without requiring any changes in the algorithm described here.

We note that the procedure implemented in BrainSuite to find
the cortical surface uses the inner grey/white boundary of cortex
as the surface. Consequently the images shown here do not include
cortical grey matter but are restricted to white matter, ventricles
and subcortical grey matter. However, the method can be used
with any of the approaches for cortical segmentation that produce
a genus-zero representation of the cortical surface, e.g., [42], [13].
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Automated extraction of a topologically spherical surface from MRI
using BrainSuite takes 4-5 min. and interactive sulcal labeling takes
approximately 1-2 hours per brain.

As described above, E(φM) and E(φN) are discretized using
(14) and (13). The resulting quadratic cost function (3) is mini-
mized using a preconditioned conjugate gradient method with Jacobi
preconditioner. In practice the minimization algorithm converges
in approximately 500 iterations, requiring 2-3 mins on a desktop
computer for tessellations with on the order of 105 vertices.

We show an example of this flattening and alignment procedure in
Fig. 2. Shown in (a) and (b) are the sulci traced on the white matter
surface for two brains. In (c) and (d) we show the flat maps of one
hemisphere in each brain computed with the penalty parameter ρ = 0
in (3), which corresponds to the case where the two hemispheres are
flattened independently. Similarly, (e) and (f) show the flat maps for
the case ρ = 3, which forces approximate alignment of the sulci in
the flat maps. Note that we only enforce the matching approximately
via the penalty term in (3). Maps with and without sulcal alignment
appear quite similar, so we show in (g) the two sets of curves in the
flat space when they are not constrained to align (ρ = 0), and in
(h) when they are constrained (ρ = 3). These figures illustrate the
procedure and demonstrate alignment of the curves in the flat space.
In Fig. 3 we show the results of applying the mapping procedure
separately from five subjects to a single template brain. Each pair
of flattenings produces a different parameterization of each subject
and of the template. In each case, there is a one-to-one map between
the surfaces so that the sulcal curves of each subject can be mapped
back onto the template surface. Shown in the figure are the set of
sulcal curves mapped onto the template for cases where the alignment
constraint is (ρ = 0) and is not (ρ = 3) applied.

IV. HARMONIC MAPPING

The surface registration procedure described in Section III sets up
a point to point correspondence between the two cortical surfaces,
which represent the boundary of the two cerebral volumes. Extrap-
olating this correspondence from the boundary surface to the entire
cerebral volume in a one-to-one manner is challenging due to the
convoluted nature of the cortex. In fact, most of the linear models
such as linear elastic or thin-plate splines become non-bijective under
relatively mild landmark matching constraints [32]. 3D harmonic
maps are attractive for this purpose due to their tendency to be
bijective if the boundary (cortical surface) is mapped bijectively,
which is the case here. In this section we describe a framework for
computing a harmonic mapping between two 3D volumes as well
as the computational approach used for implementation. Details of
harmonic maps and their properties can be found in [43].

Let u : M → N be a C∞ map from a 3 dimensional Riemannian
manifold (M, g) to a 3 dimensional Riemannian manifold (N, h)
where g and h are Riemannian metrics for M and N respectively.
A Riemannian metric defines an inner product at every point in
the manifold and thus helps in defining the notion of distance on
the manifold [43]. Let {gij ; i, j ∈ {1, 2, 3}} denote components of
the Riemannian metric tensor g and {hαβ ; α, β ∈ {1, 2, 3}} denote
the components of the Riemannian metric tensor h. The inverse of
the metric g = {gij} is denoted by {gij}. Let (x1, x2, x3) and
(u1, u2, u3) be local coordinates for x and u(x) respectively. Let
Du denote the derivative (generalized Jacobian) of the map. The
energy density function e(u) of map u is defined to be the norm of
Du [44] and is given by

e(u)(x) =
1

2
|Du|2 (15)

=
1

2

3
X

i,j=1

3
X

α,β=1

g
ij(x)hαβ(u(x))

∂uα(x)

∂xi

∂uβ(x)

∂xj
, (16)

which can be thought of as the rate of expansion of the map u in
orthogonal directions, at point x ∈ M [44],. The mapping energy is

defined as

E(u) =

Z

M

e(u)(x)dµg. (17)

The mapping energy in coordinate form [44], is given by

E(u) =
1

2

Z

M

3
X

i,j=1

3
X

α,β=1

g
ij(x)hαβ(u(x))

∂uα(x)

∂xi

∂uβ(x)

∂xj
dµg,

(18)
where the integration is over the manifold M with respect to the
intrinsic measure dµg induced by its Riemannian metric g.

A harmonic map from (M, g) to (N, h) is defined to be a critical
point of the mapping energy E(u). In this sense harmonic maps are
the least expanding maps in C∞(M, N), the space of all smooth
maps from M to N . Therefore, among all possible smooth maps
between two manifolds, the harmonic maps have the tendency to
avoid overlaps and folds in the map, resulting in a bijective map.

A number of existence, uniqueness, and regularity results have
been proven for harmonic maps [45]. Eells and Sampson [46] proved
the existence of a harmonic map from any compact Riemannian
manifold to a compact Riemannian manifold of non-positive sectional
curvature. Hamilton [47] generalized this result to manifolds with
boundaries. In medical imaging, harmonic mappings and p-harmonic
mappings, their generalized counterparts [48], have been used for
various applications such as surface parameterization and registration
[34], [49], [35] and image smoothing [36]. Wang et al. [50] describe
a method for volumetric mapping of the brain to the unit ball B(0, 1).
Here we use harmonic maps to align two brain volumes so that both
the brain volumes and cortical surfaces are aligned.

When computing the harmonic maps we could fix the correspon-
dence between the two surfaces using the method from Section III
and map only the interior of the two volumes. This would result
in a suboptimal mapping with respect to the 3D mapping energy.
To overcome this limitation, we instead allow the surface M to
flow within the surface of N when computing the map. The only
constraints placed on the surfaces are that the maps are aligned at
the set of user defined sulcal landmarks and that the boundary ∂M
maps onto ∂N . This less restrictive surface mapping constraint cannot
be formulated directly in the ambient Euclidean 3D space since there
is no analytical expression for the surfaces. It could be accomplished
without parameterizing the surface using a level set approach [36],
[51]. Here we use an intermediate representation for the manifolds
which allows us to enforce the boundary matching constraint while
allowing one boundary to flow within the other. We achieve this by
first mapping to the unit ball as described below. This mapping to the
unit ball results in a non-Euclidean representation of N thus requiring
the use of the Riemannian metric in computing the harmonic map.

A. Mathematical Formulation

We find the map v of the 3D brain manifold N to the 3D unit
ball B(0, 1) [50] using the method described in Sec. IV-C. Let v =
(v1, v2, v3) denote the three coordinates of the map v. This map
is bijective and therefore we can treat the unit ball B(0, 1) as an
alternative representation (N, h) of the manifold N , with associated
metric h, that has the advantage over the Euclidean space (N, I)
that the cortical surface lies on the surface of the sphere (here I
represents the identity metric for the Euclidean space); h is the metric
induced by the map v. With this alternative representation of N , the
components of its metric hαβ at point x = (x1, x2, x3) are given by

hαβ =

3
X

i=1

∂xi

∂vα

∂xi

∂vβ
. (19)

Now instead of needing to directly compute the harmonic map u :
(M, I) → (N, I), we instead find the harmonic map ũ : (M, I) →
(N, h) ≈ B(0, 1) subject to the constraint that the cortical surface
∂M maps to the spherical boundary of the unit ball, as illustrated in
Fig. 4.
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Fig. 4. Illustration of our general framework for surface-constrained volume
registration. We first compute the map v from brain manifold (N, I) to the
unit ball to form manifold (N, h). We then compute a map ũ from brain
(M, I) to (N, h). The final harmonic map from (M, I) to (N, I) is then
given by u = v−1

◦ ũ.

Since M remains in the Euclidean space, its metric is I , so gij(x)
is the identity operator and the harmonic mapping problem (18)
becomes:

ũ = arg min
γ

Z

M

3
X

i=1

3
X

α,β=1

hαβ(γ(x))

„

∂γα(x)

∂xi

«„

∂γβ(x)

∂xi

«

dµg,

(20)
subject to ‖ũ(x)‖2 = 1 for x ∈ ∂M , the surface of M . Note that
this constraint allows the surface map to flow within the spherical
boundary. We also want to constrain the maps so that predefined
sulcal landmarks are aligned. To achieve this we impose the additional
constraints that ũ(c) = uc for c ∈ Mc where Mc are the set of sulcal
landmark points in M and uc are the locations of the homologous
landmarks in (N, h). Having obtained ũ by minimizing the integral
in (20), the final harmonic mapping from u : (M, I) → (N, I) can
then be computed as u = v−1 ◦ ũ as illustrated in Fig. 4.

B. Initialization Procedure

Because the minimization problem (20) is nonquadratic, it is
important to have a good initial estimate of the map ũ in order to
achieve convergence in reasonable time. We therefore generate an
initial estimate ũ0 of ũ by computing a map of the second manifold
(M, I) to the unit ball, just as we do for the first manifold (N, I) (Fig.
4). Thus our initialization generates a bijective initial map, which is
not necessarily harmonic. The procedure is illustrated in Fig. 5.

The initialization consists of the following steps. We first compute
flat maps to the unit square for each hemisphere of the two brains with
aligned sulci as described in Section III. A stereographic projection
then maps the two hemispheres of each brain to the unit sphere so
that the corpus callosum that forms the boundary of the unit squares
maps to the equator. Using these surface maps as constraints, we
then map N and M to the unit ball to provide, respectively, the unit
ball manifold (N, h) and an initial estimate ũ0 of the desired map
ũ from (M, I) to (N, h). The initial map obtained in this manner is
smooth and bijective. With this initialization, the 3D harmonic map is
computed by minimizing (20) to obtain the final harmonic mapping
from M to N .

C. Mapping to the Unit Ball B(0, 1)

In the special case when (M, g) and (N, h) are 3D Euclidean

manifolds, then hαβ = δβ
α, gij = gij = δ

j
i , the Kronecker delta,

Fig. 6. Illustration of the deformation induced with respect to the Euclidean
coordinates by mapping to the unit ball. Shown are iso-surfaces corresponding
to the Euclidean coordinates for different radii in the unit ball. Distortions
become increasingly pronounced towards the outer edge of the sphere where
the entire convoluted cortical surface is mapped to the surface of the ball.

or identity tensor, for α, β, i, j ∈ 1, 2, 3, and the mapping energy
simplifies to

E(u) =

Z

M

|∇u|2dV, (21)

where ∇ is the usual gradient operator in 3D Euclidean space and
dV is the volume integral [50]. In order to map the given cortical
brain volume M to the unit ball, this energy is minimized subject
to the constraint that the surface of M maps to the surface of the
unit ball using the point-to-point correspondence defined by the flat
mapping obtained as described in Section III. This is computed by
numerical integration over the voxel lattice using finite differences to
approximate the gradients in (21). The resulting function is minimized
using a preconditioned conjugate gradient method. The process of
mapping to the unit ball is illustrated in Fig. 6 where we show
iso-surfaces in brain coordinates corresponding to different radii, r,
within the unit ball. At r = 1 we are at the outer surface of the brain
and see the full cortical surface. As r is reduced we see successively
less distortion since the harmonic map is driven entirely by the surface
constraint.

D. Harmonic Mapping Between the Two Brains

The mapping to the unit ball is applied to both brain volumes
M and N . The mapping of the Euclidean coordinates in M to
the unit ball provides the initial estimate ũ0 of the harmonic map
ũ. We then refine this map by minimizing the harmonic energy
in (20) from (M, I) to (N, h), the unit ball representation of
N . Again, the problem is solved using numerical integration and
finite difference operators, in this case accounting for the metric h
according to (20) when computing these derivatives. In this mapping,
the locations of the sulci in M are constrained using their initial
mappings ũ0 computed when flattening and matching the cortical
surfaces. Other points on the surface are allowed to move freely
to minimize the harmonic energy, subject to the constraint that all
points on the surface map to ‖ũ‖2 = 1, which is achieved by adding
a penalty function ̺(‖ũ‖2 = 1)2 to the discretized form of (20).
The penalty parameter ̺ is set to 1000 for the purpose of numerical
implementation.

E. Implementation

We first describe a numerical method for computation of the metric
hij(x) and then outline the harmonic mapping method.

1) Computation of Metric: The metric hij(x), x ∈ N is asso-
ciated with the unit ball coordinates B(0, 1) given to N by the map

v = (v1, v2, v3) (Fig. 4). It is given by hαβ(p) =
P3

i=1

∂xi

∂vα
∂xi

∂vβ

with α, β ∈ {1, 2, 3} at x = (x1, x2, x3). Note that although x ∈ N
is in the regular grid, v(x) ∈ B(0, 1) is not necessarily so, and
hence computation of partial derivatives with respect to v directly
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Fig. 5. Initialization for harmonic mapping from M to N . First we generate flat square maps of the two brains, one for each hemisphere, with pre-aligned
sulci. The squares corresponding to each hemispheres are mapped to a disk and the disks are projected onto the unit sphere. We then generate a volumetric
maps from each of the brains to the unit ball. Since all these maps are bijective, the resulting map results in a bijective point correspondence between the
two brains. However, this correspondence is not optimal with respect to the harmonic energy of maps from the first brain to the second, but is used as an
initialization for minimization of (20).

is difficult. In order to compute ∂vα

∂xi , first compute ∂vγ

∂xj using finite
differences and then use the chain rule identity

3
X

γ=1

∂xi

∂vγ

∂vγ

∂xj
=

∂xi

∂xj
= δ

i
j (22)

to solve for ∂vγ

∂xj . The metric hij is computed by substituting these
partial derivatives in the above equation.

2) Harmonic Mapping: The harmonic mapping procedure can
now be summarized as follows:

1) Align the surfaces of both the brains M and N using the
procedure described in Sec. III.

2) Map the unit squares to unit disks by the transformation
(x, y) → ( x√

x2+y2
, y√

x2+y2
) and then project them onto two

hemispheres using (x, y) → (x, y,±
p

x2 + y2).
3) Using this mapping of the cortical surface to the unit sphere as

the boundary condition, generate volumetric harmonic maps of
M and N to the unit ball B(0, 1) as described in Sec. IV-C.

4) Compute the metric h associated with the unit ball B(0, 1)
coordinates of N as described above.

5) Minimize (20) holding the matched sulci fixed, and letting the
cortical surface ∂M slide along boundary of the unit ball. This
is done by minimizing (20) with the constraint that ‖ũ(x)‖2 =
1 for x ∈ ∂M and ũ(c) = ũ0(c) for c ∈ Mc where Mc ⊂ M
denotes the set of sulcal points on M . The partial derivatives in
(20) are discretized by finite differences and the minimization
is done by gradient descent.

6) Compute the displacement vector field u(x) − x where u =
v−1 ◦ ũ and apply this to map brain volume M to N . Trilinear
interpolation is used for this deformation.

V. VOLUMETRIC INTENSITY REGISTRATION

The surface constrained harmonic mapping procedure described
above produces a bijective mapping between the two brain volumes.

However, it uses only surface shape and sulcal labels and does not
use the MRI intensity values to compute the map. The result is a large
scale deformation that aligns surface features but will benefit from
an intensity-based refinement aimed at aligning subcortical features.
In order to do this refinement and also make the final map inverse
consistent, we use linear elastic inverse consistent registration based
on Christensen’s approach [31] with the modifications described
below to ensure that the entire mapping process, rather than just
this last step, is inverse consistent. Alternatively, inverse consistency
can be achieved by symmetric intensity based registration method
suggested by Tagare et al. [52]

A. Formulation

The surface constrained volumetric harmonic mapping procedure
described above can be used to generate two maps uM : M → N
and uN : N → M , each harmonic, but not necessarily inverses of
each other. The corresponding displacement fields for these maps can
be expressed as dM

u (x) = uM (x)−x, x ∈ M and dN
u (x) = uN (x)−

x, x ∈ N . Note that both of these displacement fields accurately align
the two surfaces and corresponding sulci, and are one-to-one. These
deformations are used to initialize the volumetric inverse consistent
intensity registration procedure that we now describe.

Let fM (x), x ∈ M denote intensity at point x ∈ M and
fN (x), x ∈ N denote intensity at point x ∈ N . The situation can be
summarized as follows and is illustrated in Fig. 7: We have harmonic
maps uM : M → N uN : N → M that change the shapes of do-
mains M and N to match their respective targets N and M . In order
to align the intensities, we seek refinement maps wM : M → M and
wN : N → N such that the mapped intensity value fM ◦ wM ◦ uN

matches fN (or equivalently fM ◦ wM matches fN ◦ (uN )−1), and
fN ◦ wN ◦ uM matches fM (or fN ◦ wN matches fM ◦ (uM )−1).
For inverse consistency, we need wN ≈ (uM ◦ wM ◦ uN )−1 and
wM ≈ (uN◦wN◦uM )−1. Let dM

w , dN
w denote the displacement fields

corresponding to wM , wN and let d̃M
w , d̃N

w denote the displacement
fields for (uN ◦ wN ◦ uM )−1, (uM ◦ wM ◦ uN )−1.
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Fig. 7. Schematic of the intensity alignment procedure. Once harmonic maps
uM and uN are computed, we refine these with intensity driven warps wM

and wN while imposing constraints so that the final deformations are inverse
consistent.

The inverse consistency similarity cost function C(dM
w , dN

w ), can
now be defined as the sum of three terms:

C(dM
w , d

N
w ) = CREG(dM

w , d
N
w ) + αCSIM (dM

w , d
N
w )

+ βCICC(dM
w , d

N
w ) subject to d

N
w (uM (x)) = 0, x ∈ ∂M and

d
M
w (uN (x)) = 0, x ∈ ∂N, (23)

where the boundary constraints ensure that the cortices remain
aligned after registration and the three constituent terms are defined
as follows:

CREG(dM
w , d

N
w ) = ‖LMd

M
w ‖2 + ‖LNd

N
w ‖2

CSIM (dM
w , d

N
w ) = ‖fM (x + d

M
w (x)) − fN (uN−1

(x))‖2+

‖fN (x + d
N
w (x)) − fM (uM−1

(x))‖2

≈ ‖fM (x) + ∇MfM (x) · dM
w (x) − fN (uN−1

(x))‖2+

‖fN (x) + ∇NfN (x) · dN
w (x) − fM (uM−1

(x))‖2+

CICC(dM
w , d

N
w ) = ‖dM

w (x) − d̃
M
w (x)‖2 + ‖dN

w (x) − d̃
N
w (x)‖2

(24)

The first term is the regularizer where LM = α∇2
M +β∇M (∇M ·)+

γ and LN = α∇2
N + β∇N (∇N ·) + γ denote the Cauchy Navier

elasticity operators in M and N respectively. The parameter values
of α = 10, β = 2 and γ = 0.1 are used for the purpose of
numerical implementation. The second term measures the intensity
match between the transformations in both directions and the third
term is a measure of deviation from the inverse consistent condition.
The similarity cost CSIM is linearized by using Tayor series so
that the approximation is quadratic. Note that the inverse consistency
cost CICC and regularizing cost CREG are quadratic. The resulting

Fig. 8. Illustration of the effects of the two stages of volumetric matching is
shown by applying the deformations to a regular mesh representing one slice.
Since the deformation is in 3D, the third in-paper value is represented by color.
(a) Regular mesh representing one slice in the subject; (b) the regular mesh
warped by the harmonic mapping which matches the subject cortical surface
to the template cortical surface. Note that deformation is largest near the
surface since the harmonic map is constrained only by the cortical surface; (c)
Regular mesh representing one slice in the harmonically warped subject; (d)
the intensity-based refinement now refines the deformation of the template to
improve the match between subcortical structures. In this case the deformation
is constrained to zero at the boundary and are confined to the interior of the
volume.

quadratic cost function C can be efficiently minimized by the con-
jugate gradient method. We use a preconditioned conjugate gradient
method with Jacobi preconditioner for this purpose.

B. Implementation

1. First, the harmonic maps uM : M → N and uN : N → M are
computed using the procedure described in Section IV-D.

2. The inverses of the map u−1

M : N → M is computed. This is
done by interpolating the correspondence u−1

M : uM (x) 7→ x from
points to the regular voxel grid of N using Matlab’s griddata3 func-
tion with linear interpolation. This function implements the method
based on Delauney triangulation as described in [53] although it can
also be computed using the method described in [31]. u−1

N : M → N
is computed similarly.

3. Set dM
w = 0 and dN

w = 0.
4. Compute the maps wN(y) = y + dN

w (y), y ∈ N , w̃M = (uN ◦
wN ◦ uM )−1 and d̃M

w (x) = w̃M (x) − x.

5. Compute the difference term fN (x) − fM (uN−1
(x)).

6. Compute an updated estimate of the displacement field ˆdM
w from

(23) using a preconditioned conjugate gradient method.
7. Repeat steps 4-6 with M and N interchanged.
8. Test inverse consistency error CICC for convergence, otherwise

go to Step 4.
This final refinement completes the surface-constrained registration

procedure. While there are several steps required to complete the
registration, each step can be reduced to either a surface or a volume
mapping cast as an energy minimization problem, with constraints,
and can be effectively computed using a preconditioned conjugate
gradient method. The different effects of the harmonic mapping,
producing large scale deformations, and the linear elastic intensity-
driven refinement, producing small scale deformations, are illustrated
in Fig. 8

VI. RESULTS AND VALIDATION

In order to illustrate the application of our surface constrained
registration procedure to T1-weighted MR brain images and validate
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its performance, we obtained labeled brain data from the Internet
Brain Segmentation Repository (IBSR) dataset at the Center for
Morphometric Analysis at Massachusetts General Hospital. This
consists of T1-weighted MR images with 1.5mm slice thickness
as well as expert segmentations of 43 individual structures. The
cortical masks were obtained and their topology corrected using
the BrainSuite software as described in Sec. III-C. The cortical
surfaces were then interactively labelled with 23 sulcal curves on each
hemisphere using a standard labeling protocol [41]. Our registration
algorithm was applied by performing surface matching, harmonic
mapping and volumetric intensity registration as described above.
Shown in Fig. 9 are three orthogonal views of a subject before and
after alignment to the template image. Note that before alignment the
surfaces of the subject and template are clearly different, while after
the harmonic mapping the deformed subject surface almost exactly
matches the morphology of that of the template. However, since at
this point we do not take the image intensities into account, the
interior structures do not align well. Following the final intensity-
based alignment procedure the subcortical structures of the warped
subject show improved agreement with those in the the template.
Also shown in Fig. 9b are the labels provided by the IBSR data set
before and after mapping.

Our method for evaluating the quality of our registration results is
based on the following two desirable features:

1) Alignment of the cortical surface and sulcal landmarks. We
expect the sulcal landmarks to be accurately aligned after
registration and for the two surfaces to coincide.

2) Alignment of subcortical structures. We also expect the bound-
aries of subcortical structures (e.g., thalamus, lateral ventricles,
corpus callosum) to be well aligned after registration.

To evaluate performance with respect to 1, we used a set of 6
MR volumes on which we labeled 23 sulci in each hemisphere.
For comparison we use a 5th order polynomial intensity-driven
warp computed using the AIR software [5], [11]. We also compare
performance with the HAMMER [28], [54] algorithm. HAMMER
is an automated method for volume registration which is able to
achieve improved alignment of geometric features by basing the
alignment on an attribute vector that includes a set of geometric
moment invariants rather than simply the voxel intensities. We note
that since our approach uses explicitly labelled sulci we can expect
better performance than either AIR or HAMMER in terms of the
alignment of these features. However, AIR and HAMMER provide
a basis for comparison since they are among the most widely used
and best performing algorithms for volumetric registration.

We measured the mean squared distance between pairs of homol-
ogous landmarks corresponding to uniform samples along each of
the 23 labeled sulci. We repeated this procedure for each of the 30
possible pairwise registrations of two from six brains and computed
the average mean squared distance over all registrations. We found
that the mean squared misalignment between sulcal landmarks was
11.5mm for HAMMER, 11mm for AIR and 2.4mm for our corti-
cally constrained method. Results for individual sulci are included in
Fig. 10. The significantly lower error for our approach is unsurprising
since matching of sulci is imposed as a constraint. The reason that
the error is not zero is that the constraint is imposed using a penalty
function rather than strictly using Lagrange multipliers.

To evaluate performance in terms of subcortical structures we
used the manually labeled regions in the IBSR data set. To evaluate
accuracy, we computed the Dice coefficients between the template
and warped subject for each subcortical structure, where the structure
names and boundaries were taken from the IBSR database. The
Dice coefficient measures overlap between two sets representing

regions S1 and S2, and is defined as
2|S1∩S2|
|S1|+|S2|

where | · | denotes

size of the set [55]. Values range from zero for disjoint sets to
unity for identical sets. A comparison of the Dice coefficients for
some major subcortical organs is shown in Table I, where we show
Dice coefficients for our method before and after application of
the intensity-based alignment step. This comparison shows similar
results for all three methods, with each producing superior results

Fig. 9. Examples of surface constrained volumetric registration. (a) Original
subject volume, original template, registration of subject to template using
surface constrained harmonic mapping, intensity-based refinement of the
harmonic map of subject to template is shown. Note that the surface of the
warped subject matches to the surface of the template. (b) Anatomical labels
of the subject and the template followed by labels of the subject warped by
surface constrained harmonic mapping and intensity-based refinement of the
harmonic map are shown.

Fig. 10. RMS errors in alignment of different sulci using AIR (5th order),
HAMMER and our surface constrained mapping.
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TABLE I
COMPARISON OF DICE COEFFICIENTS

Subcortical AIR Harmonic HAMMER Harmonic
Structure with intensity

Left Thalamus 0.6588 0.5294 0.7303 0.5856
Left Caudate 0.4426 0.4336 0.5688 0.5716
Left Putamen 0.4079 0.3497 0.4905 0.5092
Left Hippocampus 0.4676 0.3069 0.3916 0.3930
Right Thalamus 0.6326 0.5018 0.7495 0.6230
Right Caudate 0.3671 0.3572 0.5098 0.5116
Right Putamen 0.3096 0.2358 0.4111 0.4679
Right Hippocampus 0.5391 0.3455 0.1989 0.4342

Avg. Dice coeff.
for all structures 0.3021 0.3821 0.3621 0.4019

Std. Dev. of
Dice coeff. 0.1937 0.2547 0.2390 0.2671

in some subcortical structures. For example, HAMMER produced
superior results in thalamus, while our proposed method produced
superior results in hippocampus. Thus the geometric invariants in
HAMMER seem to improve performance relative to our intensity
based alignment of deeper subcortical structures, while our use of
a cortical constraint leads to superior performance with respect to
sulcal alignment and structures that are more superficial with respect
to the cerebral cortex, such as the hippocampus. This is a preliminary
validation and larger scale validation is needed on a larger population
with a larger range of brain structures.

VII. CONCLUSION

We have presented a framework for coregistration of brain volume
data using harmonic maps. Through the use of an intermediate
spherical map, we are able to constrain the surfaces of the two brain
volumes to align while enforcing point matching only at a set of hand
labeled sulcal curves. Using harmonic maps we are able to compute
large scale deformations between brain volumes.

We have also described, as an initialization procedure, a new
method for cortical surface parameterization and sulcal alignment
in which the two problems are solved in a single step using a
finite element method. This method has the properties that it is
inverse consistent between the two brains and can be computed
directly from a tessellated representation of the surface, rather than
requiring resampling using a regular grid with respect to the induced
parameterization.

The examples shown here demonstrate the cortical matching
properties and the ability to also align subcortical structures. One of
the limitations of this evaluation was that cortical grey matter was not
included in the registration since the cortical surfaces were generated
by BrainSuite [56], which selects the inner grey/white boundary as
the cortical surface. However, this is a limitation of the preprocessing
step rather than the method itself, and the process can be applied to
the full cerebral volume provided that a genus-zero brain volume and
sulcal labels are supplied. A second limitation is that the cerebellum
and brainstem are not included in the analysis since the volume of
interest that is mapped is restricted to the cerebrum, bounded by
the outer cortical sheet. We can address this issue in practice by
modifying the final intensity-based matching step by first adding the
brainstem and cerebellum back to the cerebrum. This would also
require extrapolation of the displacement field from the harmonic map
outwards to these structures as an initialization of the intensity based
warp. Alternatively, the cerebellum could also be explicitly modelled
using a surface based approach (see, e.g., Hurdal et al. [12]), and its
surface and enclosed volume could be treated in a similar fashion to
the cerebrum.
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