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Abstract

An abdominal aortic aneurysm (AAA) carries one of the highest mortality rates among vascular

diseases when it ruptures. To predict the role of surface curvature in rupture risk assessment, a

discriminatory analysis of aneurysm geometry characterization was conducted. Data was obtained

from 205 patient-specific computed tomography image sets corresponding to three AAA

population subgroups: patients under surveillance, those that underwent elective repair of the

aneurysm, and those with an emergent repair. Each AAA was reconstructed and their surface

curvatures estimated using the biquintic Hermite finite element method (BQFE). Local surface

curvatures were processed into ten global curvature indices. Statistical analysis of the data

revealed that the L2-norm of the Gaussian and Mean surface curvatures can be utilized as

classifiers of the three AAA population subgroups. The application of statistical machine learning

on the curvature features yielded 85.5% accuracy in classifying electively and emergent repaired

AAAs, compared to a 68.9% accuracy obtained by using maximum aneurysm diameter alone.

Such combination of non-invasive geometric quantification and statistical machine learning

methods can be used in a clinical setting to assess the risk of rupture of aneurysms during regular

patient follow-ups.
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INTRODUCTION

An abdominal aortic aneurysm (AAA) is the abnormal, localized dilation of the aorta over 3

cm of its outer wall diameter below the renal arteries. The incidence of AAA in the adult

population is 2~4% in the U.S.1 and 4.9~9.9% in the U.K.2,3, and it is growing with the

increase in average life expectancy. The rupture of AAAs is the cause of death in more than

15,000 people in the U.S.1 and more than 8,000 in the U.K.2,3

The mortality rate of emergent AAA repair is about 40~50% when an aneurysm ruptures,

but about 50% patients die before reaching the hospital.3 To prevent AAA rupture, the most

common standard for elective intervention is a maximum transverse diameter of 5.5 cm and

an expansion rate over 1 cm/year.4,15 With these criteria, traditional repair is open surgery,

which has a mortality rate of 2–4%.6,16 The alternative, minimally invasive endovascular

aneurysm repair (EVAR), has a mortality rate of 1.7%.5 However, small aneurysms with

maximum diameters less than 5.5 cm do rupture and large aneurysms over 5.5 cm can be

stable in the patients’ life time. To this end, biomechanical approaches to assess the AAA

rupture risk have shown that peak wall stress (PWS) is more reliable in assessing the rupture

risk for small aneurysms, which the traditional approaches cannot assess efficiently.17,18

The location of maximum wall stress is highly correlated with the rupture site and PWS in

ruptured AAAs is 60% higher than in unruptured AAAs.18

Clinicians have carefully observed individual contrast-enhanced (CT) images over time for

evaluating the maximum AAA transverse diameter and assessing the appropriate medical

treatment for pre-surgical planning. Segmented and reconstructed AAAs can provide a

qualitative assessment by visual inspection, but radiologists cannot easily evaluate the

irregular shape of the AAA quantitatively for predicting its rupture risk. A quantitative

approach based on geometric characterization may be a better clinical aid than visual

inspection alone.

In recent studies related to geometric assessment, Pappu et al.8 reported that three ruptured

aneurysms showed more out of plane growth than axial growth. Similarly, Sacks and

colleagues9 suggested that the complex AAA geometry shows an equivalently complex wall

stress distribution, and the location of high curvature also exhibits the location of highest

stress. They also developed a reliable method for reconstructing and analyzing anatomical

cardiovascular structures with curvatures.19 Correspondingly, Giannoglou et al.12 proposed

that the curvatures of mean and maximum centerlines are highly correlated with PWS. In the

only study of its kind, Leung and others found that the region of maximum stress appears to

coincide with peaks in of Gaussian curvature.11 Overcoming the limitations of the

aforementioned studies, Shum et al.13 demonstrated the assessment of AAA rupture risk

with the use of shape based features, such as those used in the present work, and non-

invasive assessment of regional wall thickness. The basis for this assessment was the work

of Batchelor et al.14 who determined that normal and abnormal brain surface shapes can be

measures of the relation between the shape of the human brain surface and the function of

the underlying tissue. A similar approach was followed by Raghavan and others7,10 who

introduced the use of global indices of shape and size of cerebral aneurysms as indicators of

rupture potential.

The present work represents a contribution to the long-term goal of individual rupture

potential based on the quantitative characterization of AAA shape through non-invasive

assessment of the aortic wall surface curvature processed via the standard of care for AAA

patients: computed tomography angiography. The objectives of this work are, therefore: (i)

to evaluate the suitability of the biquintic Hermite finite element method (BQFE) to

discretize the AAA outer wall surface compared to the traditional method of biquadratic
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surface patching (BSP); and (ii) once validated, to apply BQFE to compute ten global

curvature indices and assess their potential utility as discriminators of AAA rupture status.

One hundred and ninety-three patient specific AAAs were divided into two subgroups

(unruptured vs. ruptured) while twelve patient specific AAAs constituted a third subgroup of

surveillance aneurysms (those that were not scheduled for surgical repair at the time of data

acquisition). The three subgroups were analyzed with classical statistical analysis to evaluate

the differences in the global curvature features. In addition, the first two subgroups were

subject to further examination by applying four machine learning algorithms for which their

accuracy was calculated to demonstrate the potential use of machine learning classification

as a tool that can be used by vascular surgeons to assess AAA rupture risk in the clinic.

METHODS

Evaluation of BSP and BQFE for surface curvature quantification

The BSP method is widely used for estimating local curvatures of anatomic structures such

as the right ventricular free wall, cerebral and abdominal aortic aneurysms.7,9,10,22 The

BQFE method is used for not only estimating local curvatures, but also for constructing

surfaces using a single interpolation scheme.21

BQFE has six terms defined at each of four nodes: the radial coordinate and its first, second,

and cross derivatives with respect to the element’s local coordinates ξ, η. The internal point

P in each element is computed by summation of the product of 24 terms:21

(1)

where  is the vector of nodal variables, subscript i denotes the node number, and

superscripts j, k denote the order of the derivatives with respect to the local coordinates ξ,
and η, respectively. The magnitudes of the local principal curvatures are calculated by the

metric and curvature tensors.

BSP has the following form:22

(2)

where a, b, and c are best fit constants determined for each surface node using the u-v-n

tangent plane coordinate system. The magnitudes k1 and k2 of the local principal curvatures

are computed using Eq. (3):23

(3)

From these, ten global curvature indices were defined and calculated for each AAA

model:24 summation of Gaussian and Mean curvatures (KG, KM), the area-averaged

Gaussian, Mean, first principal and second principal curvatures (GAA, MAA, K1AA,

K2AA), and the L2-norm of the aforementioned curvatures (GLN, MLN, K1LN, K2LN).

The mathematical formulation of these features is described in Appendix I and was

postulated by Martufi et al. for AAA geometric analysis.24
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The extent of the AAA is defined by the segmentation of the first contrast-enhanced CT

image available immediately below the left renal artery and the last CT image available

immediately above the aorto-iliac bifurcation. Hence, we use the binary masks resulting

from the segmentation with our in-house code (VESSEG 1.0.2, Carnegie Mellon University,

Pittsburgh, PA)19, which define the extent of the outer boundary of the abdominal aorta.

AAA surface curvature is then defined by the quantification of the principal curvatures (k1

and k2) at each of the surface mesh nodes (in the case of BSP) or the fitted surfaces (in the

case of BQFE) that make the outer wall surface topology. The ten metrics of curvature are

quantified from the local curvatures k1 and k2 as representative global curvatures of each

AAA model. The reconstructed AAA surfaces are converted into linear triangular elements

since the BSP method and its derived global curvature indices require surface elements for

their assessment. The reader is referred to Appendix II for a detailed mathematical

description of the curvature calculation using the BQFE method. Figure 1 illustrates the

sequence of the steps followed in the present work starting from the upload of DICOM

formatted CT images to the AAA curvature classification using machine learning

techniques. A mesh sensitivity analysis was conducted to determine the optimal surface

mesh density required for the BSP method to yield the geometric indices within a reasonably

small relative error.

To compare the performance of the BQFE and BSP methods qualitatively and

quantitatively, idealized geometries such as a cylinder and a symmetric AAA were utilized

to evaluate the local principal curvatures. The following function was used for generating

the geometry of the symmetric AAA model:9

(4)

where ai are constants that define the length and local diameter of the AAA. Figure 2 shows

the cylinder and symmetric AAA models. The curvatures of both methods were compared to

their analytical counterparts using Eq. (5):27

(5)

where kn and ka represent the numerical and analytical (first or second) principal curvatures.

In view of the computational cost, the execution time was accounted for in minutes by

running the computations of an HP laptop with an Intel Core i5 2.53 GHz processor and 8

GB DDR3 RAM.

Optimization of BQFE method for AAA surface curvature estimation

To estimate the appropriate number of elements needed to model an AAA in the

circumferential and axial directions, we considered the total number of degrees of freedom

(DOF) for the meshes against the root mean square error (RMS) between seed and fitted

points.25 Figure 3 illustrates least-square fitting of one AAA surface and its seed points.

Higher order polynomial fits tend to become unstable when the data is sparse. A penalty

function such as the Sobolev norm can be added to the error function:21
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(6)

where

(7)

Our data in each cross-section consist of 30 – 50 points and the number of cross-sections is

30 – 40 in a representative AAA. This amount of data is sufficient so that we do not need to

implement the Sobolev norm; the norm is still applied for adjusting errors in the principal,

Gaussian, and Mean curvatures.

Application of BQFE method to the diverse AAA subject population

Three population subgroups were considered for the application of the optimized BQFE

method. The ruptured population subgroup (rAAA) consisted of 93 AAAs that had an

emergent intervention and ruptured within a month after the last contrast-enhanced CT exam

was performed and prior to the repair. The data from these subjects were collected

retrospectively following multi-institutional IRB approval, at Allegheny General Hospital

(AGH) in Pittsburgh, PA, Northwestern Memorial Hospital (NMH) in Chicago, IL, and

Rochester Medical Center (RMC) in Rochester, NY. The unruptured population group

(uAAA) consisted of 100 AAAs that underwent elective repair for which the last CT scan

available prior to the repair was used as the image source for subsequent segmentation. The

third population subgroup consisted of 12 small surveillance AAAs (sAAA), for which the

image data was obtained from the first CT exam available in the follow-up history of

subjects who were considered at low risk of rupture at the time of diagnosis and placed in a

“watchful waiting program” by the treating physician at AGH. The following imagining

parameters characterized the majority of the Standard DICOM images: (i) 512 × 512 scan

matrix size; (ii) average pixel size = 0.7693 mm (0.6172 – 0.9688 mm); (iii) pixel intensity

= 0–2000; and (iv) average slice thickness = 3.0 mm. This study was subject to Internal

Review Board (IRB) approvals at CMU, AGH, NMH, and RMC, and no patient consent was

necessary as the data was acquired by a retrospective review of records.

The average maximum diameter of the sAAA subgroup was 44.72 ± 5.41 mm; the average

maximum diameter of the uAAA subgroup is 53.74 ± 11.41 mm, and the rAAA subgroup is

69.83 ± 19.93 mm. All CT scan images were segmented with VESSEG.19 Figure 4

illustrates VESSEG’s GUI and its various functions available for CT or MR image

segmentation. Each image dataset was then meshed using BQFE method based on the point

clouds and centerlines obtained as a product of the VESSEG segmentation protocol.

Statistical Analysis

Aneurysms with a maximum diameter in the range of 50 to 55 mm are recommended for

elective repair as the present clinical standard. To assess the efficacy of this practice, we

compared the classification accuracy of maximum diameter to that of ten global curvature

indices by means of four statistical analyses using a size-matched approach. The four

comparative statistical analyses are as follows: (i) two subgroups: 100 uAAA and 93 rAAA;

(ii) two subgroups: size-matched with maximum diameters in the range 50 – 60 mm

resulting in 42 uAAA and 15 rAAA; (iii) three subgroups: size-matched with maximum

diameters in the range 50 – 55 mm resulting in 12 sAAA and 28 uAAA, and size-matched

with maximum diameters in the range > 60 mm resulting in 65 rAAA; (iv) three subgroups:
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size-matched with maximum diameters in the range 35 – 51 mm resulting in 12 sAAA, 34

uAAA, and 10 rAAA. The two-subgroup analyses were conducted by a t-test or a Wilcoxon

test, and the three-subgroup analyses were conducted by an F-test (ANOVA) or a Kruskal-

Wallis test.

For the purpose of classification and prediction of AAA rupture status, the following data

mining techniques were utilized with the ten global curvature indices computed for the first

comparative analysis (two subgroups: 100 uAAA and 93 rAAA): Decision Tree, Naïve

Bayes, k-Nearest Neighbor (kNN), and Support Vector Machine (SVM). In addition, a

second classification study was conducted with the same data mining algorithms but using

maximum diameter (Dmax) as the only classification variable for the first comparative

analysis (two subgroups: 100 uAAA and 93 rAAA). The machine learning algorithms were

implemented using WEKA (WEKA v.3.6, University of Waikato, Hamilton, New

Zealand).20

RESULTS

From the mesh sensitivity analysis performed for the BSP method at mesh sizes ranging

from 14,400 to 799,236 elements, all global curvature indices were considered to converge

at a mesh size of 500,000 triangular surface elements, for which the percentage difference in

the indices was less than 0.2% when compared to the indices calculated with the 799,236-

element mesh. A comparison between BQFE and BSP methods was performed with the

cylinder phantom shown in Fig. 2, where the errors for both methods with respect to the

analytical solution were negligible (eL2 ≪ 10−6). Figure 5 illustrates the qualitative results of

local Gaussian and Mean curvature distributions for the symmetric AAA phantom, obtained

with parameters a0 = 5, a1 = 0.7, a2 = 8, and a3 = 4 in Eq. (4). The distribution appears to be

identical among the two numerical methods and the analytical curvature solution. However,

the discrepancies between the two methods can be observed in Figure 6, which shows the

Gaussian and Mean curvatures in the axial direction of the phantom for the analytical, BSP,

and BQFE solutions. The following relative errors were quantified for the L2-norm of the

Gaussian and Mean curvatures with respect to the analytical solution: eL2,Gaussian = 0.0314

and eL2,Mean = 0.0206 with BQFE, and eL2,Gaussian = 0.0867 and eL2,Mean = 0.0366 with

BSP. The lower errors obtained with BQFE, nevertheless, are not significantly different. In

view of the computational cost comparison, BQFE curvature calculations takes less than 1

minute of CPU time on the aforementioned computational platform, while BSP calculations

require 5 – 10 minutes of CPU time. From these analyses, the BQFE method provides

slightly more accurate and faster surface curvature estimations.

The BQFE mesh size analysis with the symmetric AAA phantom was conducted in the axial

direction as the geometry has the same curvature in the circumferential direction. RMS

errors in Gaussian curvatures calculated for 2, 3, 4, and 6 axial elements were as follows:

0.1387, 0.1177, 0.1237, and 0.2943, respectively. Similarly, RMS errors in Mean curvatures

were 0.0299, 0.0619, 0.0664, and 0.1682, respectively. From this analysis, 3 elements in the

axial direction were selected as optimal for all subsequent BQFE computations. Since BQFE

is a fitting method with high order (e.g., 10th order) Hermite equations, it becomes unstable

when the input data has low spatial resolution; however, errors can be reduced by increasing

the number of elements up to an upper bound. This is because the RMS error is defined as

the distance between seed points and projected points onto the surfaces. Each AAA model is

generated from approximately 40 cross-sections (at the location of the original CT images)

and 40 points in each cross-section, on average. In the circumferential direction, each

section would have about 40/6 = 6.67 points when using 6 elements, or 40/4 = 10 points

when using 4 elements. Based on our analysis of various combinations of circumferential

elements, we conclude that a section should have more than 7 points to avoid unstable fitting
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of the surfaces. Such analysis indicated that 4 circumferential elements were sufficient to

model AAA topologies using the BQFE method. An increased level of accuracy is achieved

when using the Sobolev norm, where one can adjust the L2-norm error by varying the

coefficients A and B in Eq. (7). This resulted in the following errors: eL2,Gaussian = 0.0309

and eL2,Mean = 0.0203 with A = B = 0.001; eL2,Gaussian = 0.0258 and eL2,Mean = 0.0165 with

A = 0.01 & B = 0.001; and eL2,Gaussian = 0.0330 and eL2,Mean = 0.0220 with A = 0.001 & B

= 0.01 for the symmetric AAA phantom.

Table 1 describes the mean and standard deviation of 10 global curvature indices and the

maximum transverse diameter for the three AAA population subgroups. Figure 6 illustrates

the Gaussian and Mean curvature distributions in representative small, unruptured, and

ruptured AAAs, showing the heterogeneity of the AAA topology when quantified using

complex curvature measures. The outcome of the classical statistical analysis is shown in

Tables 2–5 for which the null hypothesis tested was based on the absence of statistical

differences in any of the 11 geometric features among a pair or all the population subgroups.

Tables 6 and 7 present the outcome of the machine learning studies with the four algorithms

using the entire sample size of the ruptured and unruptured AAA population subgroups (i.e.,

the aforementioned first comparative analysis). kNN resulted in the highest average

percentage accuracy with 85.5% when using all 10 surface curvature indices as classifiers,

while SVM had 83.4% accuracy, Decision Tree 83.3%, and Naïve-Bayes 80.1% (Table 6).

Similarly, the Decision Tree algorithm resulted in the highest average percentage accuracy

with 68.9% when using only Dmax as a classifier, while SVM had 67.8% accuracy, kNN

66.8%, and Naïve-Bayes 68.8% (Table 7). Due to the underlying correlations between

geometric features, we did not consider using feature selection in the machine learning

analysis; the correlation of all 11 features is illustrated in Fig. 7.

DISCUSSION

Sacks and colleagues reported that the right ventricular free wall can be modeled as a thin-

walled shell structure by using a biquadratic surface patch (BSP) for curvature

estimations.22 Their work was extended to the geometric characterization of AAAs as they

identified that changes in surface topology in the aneurysmal aorta result not only from

localized dilation of the aortic wall, but also due to bending of the abdominal aorta

associated with local curvature analysis.9 Smith and Sacks applied the BQFE method for the

first time to compute all geometric variables associated with surface curvature, surface

deformation, and strain by using a single interpolation scheme.21 This approach was

implemented in the present work to compare it with the traditional BSP method, optimize it

for AAA topologies, and provide reliable curvature estimations in a population-based

comparative analysis.

In the present work, we have optimized the BQFE method for AAA topologies resulting in

four circumferential and three axial elements that discretize the aneurysmal outer wall

surface. Modeling with a single circumferential element causes an opened end at the outer

wall boundary at θ = 0 and 2π. Since there are at least 1600 points representing any given

AAA topology, the fitted surfaces are stable up to six elements in either (axial or

circumferential) direction, which yields more than 44 points per element. When the number

of elements in one direction is greater than six, additional points are required or the Sobolev

norm should be applied. However, increasing the number of elements does not guarantee

greater accuracy in curvature estimation and, thus, more than six elements in either direction

are not needed for patient specific AAA topologies. The RMS error quantification reveals

that RMS errors decrease with increasing DOFs. Doubling the number of DOFs reduces the

error by approximately 27 – 30%. The point clouds generated by our in-house image

segmentation code yields 40 – 60 axial cross-sections per AAA, each represented by 40 – 50
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points for the surface fitting, which makes it unnecessary to implement the Sobolev norm for

gaining additional mesh stability. Alternatively, the Sobolev norm can be applied to adjust

the L2-norm errors by optimizing the coefficients A and B in Eq. (7). Errors in the major

principal, Gaussian, and Mean curvatures decreased with a higher A coefficient; errors in the

minor principal curvatures decreased with a higher B coefficient.

To classify different AAAs between ruptured and unruptured groups, Somkantha et al9 used

a Naïve Bayes algorithm with three parameters: area, perimeter, and compactness from

normal and abnormal aortas. They obtained accuracy levels of 95%; however, this can be

explained in part due to the groups having large differences in the size-related features.

Shum et al13 trained a Decision Tree algorithm with twenty-eight geometric features: seven

1-D size, six 2-D size, four 3-D size, two 3-D shape, four curvature, and three wall thickness

indices. The overall accuracy of the algorithm was 86.6% when applied to a sample size of

76 AAAs. It was shown that a centerline length of the AAA sac less than 160.57 mm and an

outer wall surface area less than 81.76 cm2 correctly classified 45 of 66 unruptured AAAs

analyzed in the study. Similarly, 6 of 10 ruptured AAAs were classified correctly for an

AAA sac centerline length greater than 160.57 mm. The remaining 25 AAAs were classified

correctly using aneurysm tortuosity and the ratio of intraluminal thrombus volume to AAA

sac volume. While the limited sample size and skewed sizes of the groups are important

limitations of the Shum study,13 it demonstrated the importance of shape-related features in

accurately classifying AAA groups based on the nature of the eventual repair (elective or

emergent). The quantification of surface curvatures has also been reported for patient

specific cerebral aneurysms. Ma et al7 described the evaluation of four curvature indices,

including GAA, MAA, GLN, and MLN, reporting that curvature assessment did not yield a

statistical difference between normal and aneurysmal cerebral arteries. However, the sample

size used in their study was not sufficiently large to determine if curvatures can be used as

classifiers for cerebral aneurysm rupture risk.

Our classical statistical analysis consisted of two parts: (i) two-population subgroup analyses

based on ruptured and unruptured AAAs; and (ii) three-population subgroup analyses based

on small (surveillance), ruptured, and unruptured AAAs. The first analysis (reported in

Table 2) indicates that almost all geometric features except for GAA (p > 0.05) can be

adequate discriminators of rupture status. Aneurysms with a maximum diameter near 55

mm, the present clinical standard for recommending elective repair, present a challenge for

assessing their rupture potential. An analysis with size-matched AAAs for 50 mm ≤ Dmax ≤

60 mm (Table 3) shows that Dmax is no longer a discriminator and that the following 6

global curvature indices, ranked in order of significance (p < 0.05), are different between

ruptured and unruptured AAAs: K2LN, K1LN, GLN, K2AA, MLN, and MAA. When

analyzing the three population subgroups allocated according to their size (Table 4), Dmax is

understandably the only feature that discriminates them. When analyzing pairs of these

subgroups, no other geometric feature was found to be different between small and

unruptured AAAs. However, 5 global curvature indices, namely MAA, GLN, MLN, K1LN,

and K2LN, were found to be different between small and ruptured AAAs. When repeating

the analysis using a size-matched approach with 35 mm ≤ Dmax ≤ 51 mm (Table 5), the

same outcome was found when comparing the small and unruptured AAAs. In addition,

only GLN and MLN were found to be different between small and ruptured AAAs. The

statistically different features that are common among the four comparative analyses are the

global curvatures GLN and MLN, i.e. the L2-norm of the Gaussian and Mean curvatures,

respectively. Therefore, we conjecture that the non-invasive quantification of Gaussian and

Mean curvatures may be an important translational tool for evaluating AAA rupture

potential in the vascular clinic compared to the use of maximum transverse diameter alone.
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Due to the limited data available for small AAAs, the machine learning classification

algorithms were applied only for the 100 unruptured and the 93 ruptured AAAs (Tables 6

and 7). For the curvature-based classification analysis, all algorithms yielded overall

accuracies greater than 80% with the most accurate algorithm being kNN with three

neighbors (85.5%). For the maximum diameter-based classification analysis, all algorithms

yielded overall accuracies greater than 66% with the most accurate algorithm being Decision

Tree (68.9%). This remarkable outcome indicates that statistical differences in surface

curvatures have a higher degree of accuracy in correctly classifying patient specific AAAs

as either ruptured or unruptured (once their risk of rupture is perceived to be high according

to the vascular surgeon’s size-based assessment or the onset of symptoms) than maximum

diameter alone. Feature selection was not possible as a strategy for improving the

classification accuracy since almost all features except Dmax were highly correlated with

each other (see Fig. 7). This is explained by the fact that all global curvature indices are

obtained from the spatial distribution of the major and minor principal curvatures (k1 and

k2).

The present work was subject to some important limitations. For all the statistical analyses

there was a mismatch in the sample size of the groups compared. This limitation was

mitigated by the sample sizes being greater or equal than the number of features (n = 11)

compared. Another factor limiting the clinical impact of this work was the neglect of time

dependent surface curvatures for the small AAA subgroup, as the image data were obtained

from the first CT scan available for patients placed in a surveillance program. Moreover, this

work was limited to evaluating 10 curvature-based indices characterizing the AAA

topology; no other shape or size related features were taken into account. Future work will

be focused on evaluating the time rate of change of geometric features characterizing small

AAAs followed through CT imaging every six months.

CONCLUSION

In this work we assess the potential for AAA outer wall surface curvatures, quantified using

the BQFE method, to be used as classifiers of aneurysm population subgroups. A

retrospective review of 205 CT AAA image datasets was performed and the images were

segmented and reconstructed with the resulting 3D geometries used for curvature estimation

with a closed 4x3 BQFE interpolation scheme. The geometric indices were analyzed by

classical statistical analysis using the entire sample size of the subgroups and with size-

matched approaches. An additional classification study was performed using the ruptured

and unruptured population subgroups by means of testing the accuracy of four machine

learning algorithms.

The implementation of the biquintic Hermite finite element method is optimized for AAA

topologies by using 3 axial and 4 circumferential elements, which results in lower errors

(albeit not statistically significant) of the surface discretizations compared to the

conventional biquadratic surface patch method. However, the computational cost of BQFE

is a significant improvement with respect to BSP; BQFE is 7.5 times faster, on average. The

classification analysis of surface curvatures using the unruptured and ruptured AAA datasets

reveals that the geometric indices GLN and MLN (the L2 norm of the Gaussian and Mean

curvatures) yield the highest classification accuracy (85.5%) when using kNN (k-Nearest

Neighbor) with three neighbors as the classification algorithm. In contrast, using the

aneurysm maximum diameter (Dmax) as the sole metric of classification resulted in 68.9%

classification accuracy.

As patient specific AAAs have asymmetric, tortuous and complex surfaces, the geometric

characterization of their outer wall topology by means of a non-invasive curvature
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quantification algorithm, combined with a classification strategy, should be considered to

assess AAA rupture risk in the vascular clinic. Our work provides an indication that AAA

surface curvatures can be more accurate predictors of rupture potential than maximum

diameter alone. The translational potential of a tool that can perform a combination of

curvature quantification and classification in an automated manner is evident: it would

provide the physician with valuable information on the complex AAA shape that is currently

unattainable in the vascular suite by simple observation of 3D reconstructed medical images.
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Figure 1.

Schematic of computational modeling protocol: from CT images to calculation of global

curvature features.
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Figure 2.

Virtual models used for a comparative analysis of the BQFE and BSP methods: (a) Cylinder,

D = 16 mm; (b) Symmetric AAA, Dmax = 30 mm.

Lee et al. Page 13

Ann Biomed Eng. Author manuscript; available in PMC 2014 March 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 3.

Least-square fitting used in the BQFE method: seed points (blue) and fitted surfaces (other

colors).

Lee et al. Page 14

Ann Biomed Eng. Author manuscript; available in PMC 2014 March 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 4.

Graphical User Interface for VESSEG v.1.02, Carnegie Mellon University, used for

segmentation of all CT images processed in this work.
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Figure 5.

Gaussian and Mean curvature distributions for the symmetric AAA resulting from the

analytical solution, and the BQFE and BSP numerical models.
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Figure 6.

Comparison of the analytical curvature with the resulting BSP and BQFE numerical

solutions for the (a) Gaussian and (b) Mean curvatures along the longitudinal axis of the

AAA axisymmetric phantom illustrated in Figure 5.
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Figure 7.

Gaussian and Mean curvature distributions for a representative (a) small, (b) unruptured, and

(c) ruptured AAA.
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Figure 8.

Correlation among geometric features for the uAAA (n = 100) and rAAA (n = 93)

population subgroups. The highest degree of correlation is 1, while the lowest is −0.9132.
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Table 1

Mean and standard deviation of the 10 global curvature indices and maximum transverse diameter for all small

(sAAA), unruptured (uAAA) and ruptured aneurysms (rAAA).

Index sAAA uAAA rAAA

Global Curvature Indices

KG [mm−1] 4.16 ± 1.71 3.92 ± 1.96 5.38 ± 3.98

KM [mm−1] 60.56 ± 32.96 52.71 ± 26.44 103.88 ± 120.67

GAA [mm−1]×10−5 −2.10 ± 15.80 5.30 ± 14.40 3.40 ± 19.80

MAA [mm−1]×10−3 23.12 ± 3.56 23.47 ± 4.69 18.42 ± 5.22

K1AA [mm−1]×10−3 79.68 ± 23.65 70.09 ± 17.05 82.63 ± 32.57

K2AA [mm−1]×10−3 −33.45 ± 25.98 −23.15 ± 13.99 −45.80 ± 31.98

GLN [non-dim] 9.57 ± 6.29 8.52 ± 4.18 22.17 ± 19.13

MLN [non-dim] 0.99 ± 0.68 0.83 ± 0.45 2.15 ± 2.25

K1LN [non-dim] 239.84 ± 202.40 195.47 ± 112.66 753.58 ± 994.69

K2LN [non-dim] 202.61 ± 175.08 162.12 ± 105.74 578.50 ± 657.86

Maximum Transverse Diameter

Dmax [mm] 44.72 ± 5.41 53.74 ± 11.41 69.83 ± 19.93
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Table 2

Unruptured (U) vs. Ruptured (R) comparative analysis. Sample sizes: 100 uAAA (U) and 93 rAAA (R). Null

hypothesis: “there is no difference in the curvature index between unruptured and ruptured AAA subgroups”.

Parameter p-value (Normality Test) p-value (T-test or Wilcoxon) Null Hypothesis

KG R: < 0.0001
U: <0.0001

0.0034 (Wilcoxon) Rejected

KM R: < 0.0001
U: <0.0001

< 0.0001 (Wilcoxon) Rejected

GAA R: < 0.0001
U: 0.0667

0.0965 (Wilcoxon) Accepted

MAA R: 0.0002
U: <0.0001

< 0.0001 (Wilcoxon) Rejected

K1AA R: < 0.0001
U: <0.0001

0.0165 (Wilcoxon) Rejected

K2AA R: < 0.0001
U: <0.0001

< 0.0001 (Wilcoxon) Rejected

GLN R: < 0.0001
U: <0.0001

< 0.0001 (Wilcoxon) Rejected

MLN R: < 0.0001
U: <0.0001

< 0.0001 (Wilcoxon) Rejected

K1LN R: < 0.0001
U: <0.0001

< 0.0001 (Wilcoxon) Rejected

K2LN R: < 0.0001
U: <0.0001

< 0.0001 (Wilcoxon) Rejected

Dmax
R: 0.4068
U: 0.0580

< 0.0001 (T-test) Rejected
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Table 3

Size-matched Unruptured (U) vs. Ruptured (R) comparative analysis for 50 mm ≤ Dmax ≤ 60 mm. Sample

sizes: 42 uAAA (U) and 15 rAAA (R). Null hypothesis: “there is no difference in the curvature index between

unruptured and ruptured AAA subgroups”.

Parameter p-value (Normality Test) p-value (T-test or Wilcoxon) Null Hypothesis

KG R: 0.0115
U: 0.0027

0.5200 (Wilcoxon) Accepted

KM R: < 0.0001
U: 0.0002

0.1397 (Wilcoxon) Accepted

GAA R: 0.4335
U: 0.0953

0.5116 (T-test) Accepted

MAA R: 0.5030
U: 0.3590

0.0060 (T-test) Rejected

K1AA R: < 0.0001
U: <0.0001

0.0559 (Wilcoxon) Accepted

K2AA R: < 0.0001
U: <0.0001

0.0030 (Wilcoxon) Rejected

GLN R: <0.0003
U: 0.0026

0.0015 (Wilcoxon) Rejected

MLN R: < 0.0001
U: 0.0001

0.0054 (Wilcoxon) Rejected

K1LN R: < 0.0001
U: 0.0140

0.0008 (Wilcoxon) Rejected

K2LN R: < 0.0001
U: 0.0027

0.0007 (Wilcoxon) Rejected

Dmax
R: 0.3162
U: 0.0392

0.0607 (Wilcoxon) Accepted
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Table 4

Small (S) vs. Unruptured (U) vs. Ruptured (R) comparative analysis for 35 mm ≤ Dmax ≤ 51 mm (S), 50 mm ≤

Dmax ≤ 55 mm (U), and Dmax > 60 mm (R). Sample sizes: 12 sAAA (S), 28 uAAA (U), and 65 rAAA (R).

Null hypothesis: “there is no difference in the curvature index among the small, unruptured, and ruptured

AAA subgroups”.

Parameter p-value (Normality Test)
p-value (F-test or Kruskal-

Wallis)
Null Hypothesis Comparisons

KG
R: < 0.0001
S: 0.0112
U: 0.0221

0.0556 (Kruskal-Wallis) Accepted
S&U, Accepted S&R, Accepted R&U,
Accepted

KM
R: < 0.0001
S: 0.0019
U: 0.0002

< 0.0001 (Kruskal-Wallis) Rejected
S&U, Accepted S&R, Accepted R&U,
Rejected

GAA
R: < 0.0001
S: 0.9101
U: 0.2515

0.2084 (Kruskal-Wallis) Accepted
S&U, Accepted S&R, Accepted R&U,
Accepted

MAA
R: < 0.0001
S: 0.0004
U: 0.1008

< 0.0001 (Kruskal-Wallis) Rejected
S&U, Accepted S&R, Rejected R&U,
Rejected

K1AA
R: 0.0004
S: 0.0002
U: <0.0001

0.1240 (Kruskal-Wallis) Accepted
S&U, Accepted S&R, Accepted R&U,
Accepted

K2AA
R: < 0.0001
S: 0.0010
U: < 0.0001

< 0.0001 (Kruskal-Wallis) Rejected
S&U, Accepted S&R, Accepted R&U,
Rejected

GLN
R: < 0.0001
S: 0.0004
U: 0.1008

< 0.0001 (Kruskal-Wallis) Rejected
S&U, Accepted S&R, Rejected R&U,
Rejected

MLN
R: < 0.0001
S: 0.0007
U: 0.0001

< 0.0001 (Kruskal-Wallis) Rejected
S&U, Accepted S&R, Rejected R&U,
Rejected

K1LN
R: < 0.0001
S: 0.0004
U: 0.0029

< 0.0001 (Kruskal-Wallis) Rejected
S&U, Accepted S&R, Rejected R&U,
Rejected

K2LN
R: < 0.0001
S: 0.0005
U: 0.0018

< 0.0001 (Kruskal-Wallis) Rejected
S&U, Accepted S&R, Rejected R&U,
Rejected

Dmax

R: 0.0003
S: 0.0993
U: 0.1333

< 0.0001 (Kruskal-Wallis) Rejected
S&U, Rejected S&R, Rejected R&U,
Rejected
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Table 5

Size-matched Small (S) vs. Unruptured (U) vs. Ruptured (R) comparative analysis for 35 mm ≤ Dmax ≤ 51

mm. Sample sizes: 12 sAAA (S), 34 uAAA (U), 10 rAAA (R). Null hypothesis: “there is has no difference in

the curvature index among the small, unruptured, and ruptured AAA subgroups”.

Parameter p-value (Normality Test)
p-value (F-test or Kruskal-
Wallis)

Null Hypothesis Comparisons

KG
R: 0.3689
S: 0.0112
U: 0.1430

0.1441 (Kruskal-Wallis) Accepted
S&U, Accepted S&R, Accepted R&U,
Accepted

KM
R: 0.0934
S: 0.0019
U: 0.0008

0.0324 (Kruskal-Wallis) Rejected
S&U, Accepted S&R, Accepted R&U,
Rejected

GAA
R: 0.0070
S: 0.9101
U: 0.2421

0.5046 (Kruskal-Wallis) Accepted
S&U, Accepted S&R, Accepted R&U,
Accepted

MAA
R: 0.6070
S: 0.0004
U: 0.0804

0.1724 (F-test) Accepted
S&U, Accepted S&R, Accepted R&U,
Accepted

K1AA
R: 0.2615
S: 0.0002
U: 0.0156

0.1651 (Kruskal-Wallis) Accepted
S&U, Accepted S&R, Accepted R&U,
Accepted

K2AA
R: 0.2420
S: 0.0010
U: 0.0003

0.0094 (Kruskal-Wallis) Rejected
S&U, Accepted S&R, Accepted R&U,
Rejected

GLN
R: 0.1193
S: 0.0004
U: 0.0106

0.0004 (Kruskal-Wallis) Rejected
S&U, Accepted S&R, Rejected R&U,
Rejected

MLN
R: 0.0028
S: 0.0007
U: 0.0002

0.0003 (Kruskal-Wallis) Rejected
S&U, Accepted S&R, Rejected R&U,
Rejected

K1LN
R: 0.0025
S: 0.0004
U: 0.0023

0.0004 (Kruskal-Wallis) Rejected
S&U, Accepted S&R, Accepted R&U,
Rejected

K2LN
R: 0.6856
S: 0.0005
U: 0.0007

0.0002 (Kruskal-Wallis) Rejected
S&U, Accepted S&R, Accepted R&U,
Rejected

Dmax

R: 0.0939
S: 0.0993
U: 0.0028

0.7244 (Kruskal-Wallis) Accepted
S&U, Accepted S&R, Accepted R&U,
Accepted
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Table 6

Percentage accuracy (%) of the machine learning algorithms with 10-fold validation applied for classification

assessment with 10 surface curvature indices.

# of Folds Decision Tree Naïve-Bayes kNN SVM

1 90.0 90.0 95.0 90.0

2 95.0 85.0 85.0 90.0

3 80.0 80.0 75.0 80.0

4 57.9 63.2 63.2 68.4

5 84.2 78.9 89.5 89.5

6 94.7 89.5 94.7 94.7

7 89.5 78.9 100.0 89.5

8 73.7 82.8 78.9 78.9

9 100.0 89.5 89.5 84.2

10 68.4 63.2 84.2 68.4

Average 83.3 80.1 85.5 83.4
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Table 7

Percentage accuracy (%) of the machine learning algorithms with 10-fold validation applied for classification

assessment with maximum diameter (Dmax) alone.

# of Folds Decision Tree Naïve-Bayes kNN SVM

1 70.0 70.0 55.0 65.0

2 75.0 80.0 80.0 80.0

3 65.0 70.0 70.0 70.0

4 52.6 52.6 47.4 42.1

5 73.7 73.7 57.9 73.7

6 78.9 73.7 78.9 73.7

7 78.9 73.7 68.4 84.2

8 78.9 73.7 68.4 68.4

9 47.4 52.6 68.4 52.6

10 68.4 68.4 73.7 68.4

Average 68.9 68.8 66.8 67.8
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