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Abstract

Automatic detection of surface defects in electronic panels is receiving increasing attention

in the quality control of products. The surface defect detection of electronic panels is differ-

ent from other target detection scenarios and is a meaningful and challenging problem. Its

main manifestation is that surface defects of electronic panels usually exhibit extreme irreg-

ularity and small target characteristics, which bring great difficulties to the task of surface

defect target detection including feature extraction and so on. The traditional methods can

only detect a very small number of defect classes under specific detection conditions. And

due to the weak robustness of these methods, they cannot be applied in real production sce-

narios on a large scale. Based on this, this paper applies the target detection technique

under deep learning to the surface defect detection scenario of electronic panels for the first

time. At the same time, in order to make the designed target detection network applicable to

the electronic panel surface defect detection scenario and to enhance the interpretability of

the designed target detection network in terms of computer mechanism. We design a

deformable convolution module with a convolutional self-attentive module to learn the offset

and a dual detection head incorporating the SE (Squeeze-and-Excitation) mechanism for

the irregular characteristics of electronic panel surface defects and the small target charac-

teristics, respectively. Finally, we carried out a series of experiments on our own electronic

panel defect data set, including comparison with the most advanced target detection algo-

rithms and a series of ablation experiments against our proposed method. The final experi-

mental results prove that our method not only has better interpretability, but also has better

metric performance, in which the map_0.5 metric reaches 78.257%, which is an increase of

13.506 percentage points over YOLOV5 and 33.457 percentage points higher than Retina-

net. The results prove the proposed method is effective.

1. Introduction

In the production process of electronic panels, defects such as scratches, cracks, unevenness,

heterogeneity, bright spots, and dark spots will inevitably appear in the production process
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because of the accuracy of the production equipment or the improper operation of the opera-

tor. If these defects cannot be detected in time, the quality of subsequent manufactured elec-

tronic products will be reduced, which will affect the customer experience and the market to a

certain extent. Therefore, how to accurately detect the defects on the surface of electronic pan-

els is a problem well worth studying. The common surface defects of electronic panels are

shown in Fig 1. In all electronic panel pictures, the picture size occupies 1392�1040 pixels,

while the pixel size occupied by various types of surface defects is randomly distributed

between 0�0 and 1392�1040. The traditional manual testing methods depend greatly on

inspectors’ quality, and some surface nondestructive tests have high requirements for inspec-

tion equipment and are susceptible to the influence of the accuracy of the testing equipment

and the interference of the testing environment. However, these methods have the disadvan-

tages of high costs, low accuracy and low efficiency. After developing to the machine vision

detection stage, the problems of detection accuracy, detection efficiency, and detection cost

have been solved to a certain extent. However, traditional machine vision methods rely too

much on the experience of algorithm designers in the feature extraction process, making the

network model designed to detect surface defects in electronic panels insufficient generaliza-

tion capability, and often shows poor detection results when applied to surface defects of dif-

ferent backgrounds, and still needs to be improved in terms of detection performance.

In 2006, Hinton et al. [1] proposed the deep learning method, which promoted the develop-

ment of various fields including image processing. The two-stage series of detection methods

proposed by [2–5] and the one-stage series of detection methods proposed by [6–9] have also

appeared in the field of target detection. These two-stage and one-stage target detection net-

works are supervised networks, in addition to the unsupervised and self-supervised target

detection networks proposed by [10–13] et al. These detection methods have achieved excel-

lent results in map, recall, frame rate and other indicators respectively. But these methods are

Fig 1. Common electronic panel surface defects.

https://doi.org/10.1371/journal.pone.0280363.g001
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specially designed for natural scenes data sets, such as MS COCO data sets [14] and PASCAL

VOC data sets [15]. These scenes have rich data sets and high quality of images. The network

can be fully trained easily and it is easy to extract features from the detection targets in the

data. However, when these methods are applied to the surface defect detection of electronic

panels, they usually have poor detection results. Through our analysis, we found that there are

three main reasons for this difference. First, the sample of electronic panels with surface

defects is small, it is difficult to collect a large-scale dataset of electronic panel surface defects.

And small sample datasets are difficult to achieve better results even when placed on a very

superior network. Second, some of the electronic panel surface defects are small, resulting in

small differences between the defects and the background, the available features are limited,

and their semantic information appears in a shallower feature map, and as the network deep-

ens, their detailed information may disappear completely, which can be detrimental to the task

of detecting defective targets on the surface of electronic panels, especially in the localization

task with extremely poor results. Third, almost all classes of electronic panel surface defects

exhibit extreme irregularities, and the shapes of defects of the same class are randomly distrib-

uted on the surface of electronic panels, and it is difficult for the traditional networks com-

posed of standard convolution to effectively extract the features of these defects.

Recent improvements considered to solve the above three problems, [16,17] proposed an

anomaly detection approach that requires only normal samples in the training process, reduc-

ing the dependence on the number of defective samples, but does not give further solutions to

the defect irregularity and small target problems. The segmentation-based method proposed

by [18,19] solves the problem of defect irregularity to a certain extent, but its model is too com-

plex and the effect is still not satisfactory in scenarios with more small targets and defect types.

To address these issues, we conducted the development of a surface defect dataset for elec-

tronic panels and designed a supervised deep learning network applied to surface defect detec-

tion of electronic panels, which features a better explanation of how deep learning networks

work in surface defect detection of electronic panels while ensuring detection results. This

supervised network consists of three parts: Backbone, neck, and Double T-head. In particular,

the backbone stage consists of a conventional standard convolution module and and our spe-

cially designed T-deformable convolution module, which solves the problem of difficult fea-

ture extraction in electronic panel surface defect detection due to defect irregularities.

Meanwhile, at the end of the network, a Double T-head incorporating the SE [20] mechanism

(Squeeze-and-Excitation) is designed to solve the problem of difficult detection of small

targets.

In summary, our contributions mainly include the following aspects:

1. In order to solve the problem of small sample size in electronic panel surface defect detec-

tion, we developed an electronic panel surface defect dataset. The images in our dataset

come from the real environment of the factory, with a total of 6155 images and 64 defect

categories, which are labeled using labelImg annotation software.

2. In order to solve the problem of irregular defects in electronic panel surface defect detec-

tion, we design the T-deformable convolution module in the backbone stage of the network

to effectively extract the features of irregular surface defects, so as to improve the detection

of electronic panel surface defects.

3. In order to solve the problem of difficult detection of small targets in electronic panel sur-

face defect detection, we designed Double T-head at the end of the network to make up for

the shortage of single detection head in detecting small targets and improve the detection

effect under small target defects.
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The structure of this paper can be divided into the following four parts:The first part

explains the problems of existing target detection networks that cannot be applied in the detec-

tion of surface defects in electronic panels, the advantages and disadvantages of existing sur-

face defect detection and our contributions. In the second part, we outline the related work,

which mainly includes supervised defect detection methods, unsupervised defect detection

methods, semi-supervised defect detection methods and segmentation-based methods. In Sec-

tion 3, the structure of the supervised network we have designed is described in detail. It

should be noted that Sections 3.2 and 3.3 introduce the structure of the T-deformable convolu-

tion module and the Double T-head module, respectively, and the rest of Section 3 presents

other technical details included in the network. In Section 4, we demonstrate the advantages of

the proposed approach through comparative and ablation experiments as well as theoretical

analysis.

2. Related work

In this section, related methods of surface defect detection will be introduced, including super-

vised and unsupervised surface defect detection methods, and semi-supervised surface defect

detection methods will also be introduced.

2.1 Supervised defect detection method

Most of the supervised defect detection methods are mainly improved on common target

detection models developed for common data sets [21–24]. Among them, it is worth mention-

ing that the end-to-end method for steel plate defect detection proposed by He et al. [21]

adopts feature fusion strategy to improve the richness of the extracted features by fusing multi-

level feature information of the defect target, but fails to solve problems such as small samples

and small targets in the field of surface defect detection; Wang et al. [22] proposed a joint

detection CNN architecture consisting of a global frame and a sub-frame frame for fabric

defect detection, whose detection performance has been greatly improved compared with the

traditional algorithm, but it is still not optimal; Hu et al [25] applied the Faster-RCNN, a target

detection network in a generic scenario, to PCB surface defect detection, only replacing the

backbone network and modifying the prediction anchor, but there were no other innovative

improvements, so the detection results were not satisfactory; Qiu et al. [23] adopted the full

convolution (FCN) method to predict the defect area at the pixel-level, and used depth-wise,

Pointwise convolutional layer, strided depth-wise convolutional layer and up-sampled depth-

wise convolutional layer instead of standard convolutional layer, pooling layer, and deconvolu-

tional layer. This method has greatly improved the detection accuracy and detection perfor-

mance, but because the proposed algorithm is based on local information, its detection ability

on structural defects is weaker than that on texture defects which needs to be improved.

2.2 Unsupervised defect detection methods

In recent years, in order to solve the problem of insufficient defect samples in surface defect

detection and the difficulty of defect feature extraction, some unsupervised methods have been

gradually proposed [26–30]. For example, Mei et al. [26] proposed a method of detecting and

locating defects only after training with non-defective samples to detect fabric defects, which is

mainly reconstructed by a network with a convolutional noise reduction autoencoder. This

method effectively solved the problem of small samples, but the robustness of its model is

poor. When the same type of defects shows different shapes, sometimes the defect category

cannot be accurately detected; Zhao et al. [31] proposed an unsupervised method for fabric

defect detection. This method constructs a reconstruction model through an autoencoder and
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GAN network, and then the defect image was input into the model to obtain a defect-free

image. Then compare the restored non-defective image with the original image pixel by pixel

to obtain the defect location. It only needs normal samples for training, and has a good appli-

cation prospect in the project landing. However, due to the inevitable introduction of noise in

the network reconstruction, detection accuracy and detection speed still need to be improved;

Kim et al [32] proposed an unsupervised PCB surface defect detection network based on a

jump-connected convolutional autoencoder. Their deep autoencoder model was trained to

decode raw non-defective images from defective images, and then compare the decoded

images with the input images to determine the defect locations. Its localization of defects is

good, but it does not perform the classification work of defects.

2.3 Semi-supervised defect detection method

Although the unsupervised defect detection method solves the problem of insufficient defect

samples, it also sacrifices the detection accuracy and detection rate to a certain extent, and the

generalization ability of the model is insufficient, so the semi-supervised defect detection

method is proposed [28,33–35]. For example, Di et al. [28] proposed a semi-supervised learn-

ing method combining convolutional autoencoder (CAE) and semi-supervised generative

adversaria adjunctive network to classify defective samples. Compared with traditional meth-

ods, the CAE-SGAN method can make full use of sample images of the steel surface (labeled

and unlabeled images), which improves the defect classification accuracy under limited train-

ing samples. However, the performance of this method is not optimal, and there are many

deficiencies in defect location. Gao et al. [33] proposed an improved semi-supervised learning

method with pseudo-labels using convolutional neural networks (CNN) to identify steel sur-

face defects, which achieved 86.72% map in the dataset of a steel company, but its robustness

was poor and the performance on different datasets varies greatly. Although semi-supervised

learning has solved some problems in object detection and has some application research,

there is still a lot of room for improvement in surface defect detection of electronic panels.

2.4 Segmentation-based defect detection method

Unlike the detection-based approach, the segmentation-based surface defect detection method

converts the surface defect detection task into a semantic segmentation or even an instance

segmentation problem between defective and normal regions, which can not only finely seg-

ment the defective regions, but also obtain the location, category, and corresponding geomet-

ric properties (including length, width, area, profile, center, etc.) of the defects, but this also

puts higher demands on the network structure. This also imposes higher requirements on the

network structure. The more classical segmentation-based methods are the semantic segmen-

tation method based on FCN [36] and the instance segmentation method based on Mask

R-CNN [37]. In recent studies, segmentation-based methods have been applied to various sur-

face defect detection scenarios [18,19,38–41], for example, Gao et al [39] used an attention-

based and multi-branch encoder-decoder structure and finally achieved pixel-level surface

defect by fusing adjacent feature maps of each layer and integrating the highest layer segmenta-

tion, but its encoding and decoding process caused partial information loss, and only 73.7%,

85%, and 60.1% accuracy on the three datasets of MT, RSDD, and CFD.Su et al [40] used nor-

malized flow in the segmentation process to determine whether defects exist on the product

surface, and used multi-scale feature fusion alignment to initially locate the defects, then com-

bined with gradient and maximum Li et al [41] proposed an effective backbone structure

(Res2Net-Mish-BN-101) and designed an enhanced BiFPN, and applied a GAN-based defog-

ging model to image pre-processing. The final application is for defect detection of sewer
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pipes, which achieves a 7.3% improvement in MAP compared to the original network, but the

model is too complex and needs a lot of improvement work to achieve practical application.

Ling et al [18] improved the effectiveness of some small target defects in PCB surface defects

by using a segmentation model consisting of two encoders and decoders sharing weighted val-

ues, which better recovered the spatial information on multiple output layers, but did not give

a better solution for the detection of irregular defects. In general, these methods provide us

with good research ideas by combining some of the latest target detection research results, but

there is still room for improvement in the number of defect detection categories, especially for

small target areas such as electronic panel surface defects.

3. Proposed method

In this section, a better understandable target detection network structure for scenarios such

as extreme and small target variations of electronic panel surface defects will be presented, spe-

cifically the T-deformable convolution module and Double T-head we designed, as well as the

loss function and some training techniques in the network will be described in detail.

3.1 Network structure

As shown in Fig 2, considering the high requirements for detection speed in practical applica-

tion scenarios of electronic panel surface defect detection, our network structure uses many

components of the one-stage framework. And on this basis, the applicability of the network in

irregular target and small target scenarios is considered and better understandability is sought.

Therefore, the T-deformable convolution module for feature extraction and Double T-head

were redesigned, which is mainly designed for the problem of extremely irregular and small

target surface defects of electronic panels, and the real time of practical deployment in subse-

quent projects. In general, the network structure consists of Backbone, Neck and Head. Back-

bone adopts Focus and CSP, in which the T-deformable convolution module designed for the

characteristics of extreme irregularity of electronic panel surface defects is embedded, so that

the network has strong robustness in extracting the characteristics of extreme irregularity of

electronic panel surface defects. Neck adopts FPN and PAN to better utilize the feature infor-

mation extracted by Backbone. Head adopts our specially designed dual detection head struc-

ture, which has improved the effect of detection in all types of example targets. A more

detailed network structure is shown in Fig 3. It is worth mentioning that we use this network

structure in the subsequent training and testing process.

3.2 T-deformable convolution module

In order to make our target detection network suitable for the detection scenario of irregular

electronic panel surface defects and to give the network better interpretation performance, we

have rethought the feature extraction mechanism of the defect detection network and designed

Fig 2. A kind of supervised target detector applied to the detection of surface defects in electronic panels. It includes Backbone, Neck, and Double T-head

with features extracted by T-deformable convolution module, which will be described in detail in Chapter 3.

https://doi.org/10.1371/journal.pone.0280363.g002
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the T-deformable convolution module as shown in Fig 4, which enables the network to accu-

rately extract the features of irregular defect targets. As shown in Fig 3, we have used three T-

deformable Convolution modules in the network, inserted behind the first CSP1_3 module,

the first and the second CSP2_1 modules, respectively. In the T-Deformable Convolution

module, the convolutional self-attention module learns the offset of the sampling point of the

convolution kernel in the input feature map, and then sends the learned offset to the branch of

feature extraction to accurately extract the deformed features. The traditional standard convo-

lution process can be viewed as using convolution module sampling to model the feature

information of the target in the image, and its mathematical principle can be expressed as:

yðp0Þ ¼
X

pn2R

wðpnÞ � xðp0 þ pnÞ ð1Þ

For each position p0 on the output feature map, the feature information it represents is enu-

merated by the perceptual field size and its dilation factor R to enumerate the sampled infor-

mation of the picture within its convolution size. This results in its sampled information being

fixed and cannot effectively model irregular defects, whose sampling process is shown in (1) in

Fig 5. The solution proposed by Dai et al [42] is to add an offset Δpn to the sampling process so

that the sampling process becomes:

yðp0Þ ¼
X

pn2R

wðpnÞ � xðp0 þ pn þ DpnÞ ð2Þ

Its better solves the feature extraction problem of irregular targets, but its feature extraction

branch and the offset learning branch of sampling points are composed of standard convolu-

tion, but the standard convolution in learning the offset Δpn, due to its limited spatial modeling

ability of irregular defects, leads to its insufficient deformation ability or deformation ability

far beyond the region of interest, which will cause the learning of the offset is not accurate

enough. thus making the feature extraction information missing or affected by irrelevant

image contents, whose sampling process is shown in (2) in Fig 5. For this reason, we propose

the T-deformable convolution module, and use the CBAM module to perform the learning of

Fig 3. A more detailed network structure.

https://doi.org/10.1371/journal.pone.0280363.g003
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the offset Δpn. In our T-deformable module, the CBAM attention module is composed of

channel attention module and spatial attention module. The channel attention module gener-

ates a channel attention map by exploiting the inter-channel relationship of features, and due

to the each channel of feature map is considered as a feature detector, the channel attention

focuses on the content of the given input image and is used to determine whether the location

is defect or background. This spatial attention module focuses on the part information of posi-

tion, which is supplementing the channel attention, which encodes the emphasized or sup-

pressed position. The two attention modules of channel and spatial calculate complementary

attention, pay attention to the content information and the position information of the target

respectively, and accurately judge whether the current position and the surrounding position

of the current position are defects or backgrounds. Thus, the offset of the sampling points of

the input feature map is accurately determined, and the features of irregular defects are accu-

rately sampled according to the different shapes they exhibit to avoid the influence of irrele-

vant contents. And to solve the phenomenon of false detection and missed detection that often

Fig 4. The deformable convolution module of the fusion convolution self-attention module. The left side is the

feature extraction branch, and the right side is the offset learning branch. The offset is learned by the CBAM module.

https://doi.org/10.1371/journal.pone.0280363.g004
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occurs when the target detection network detects irregular defects on the surface of electronic

panels. The structure of the T-deformable Convolution module is shown in Fig 4, and its fea-

ture extraction process is shown in (3) in Fig 5.

3.3 Double T-head

In order to make our target detection network suitable for small target detection scenarios in

electronic panel surface defects, the Double T-head shown in Fig 6 is designed. In the Double

T-head module, considering that some defect targets are relatively small among the surface

defects of electronic panels, Head2 is additionally designed to address the deficiencies of the

network in detecting small target defects, in addition to the conventional detection head1. Spe-

cifically, Head1 consists of a Concat operation, CSP2_1 module, SE block, and convolution

block in order. Head2 has two inputs, one input is the output of the head1 branch through the

CSP2_1 module and then through the CBL module, and the other input is the output of the

third deformable convolution module through the CBL module and the upsampling module

in turn. Both inputs go through the Concat operation in turn and then through the CSP2_1

Fig 5. The difference between Standard convolution, deformable convolution, and T-deformable convolution.

The left, middle, and right sides represent standard convolution, deformable convolution, and T-deformable

convolution respectively. The upper, middle, and lower sides represent the activation unit on the feature map, 3 ×3

filter, sampling position.

https://doi.org/10.1371/journal.pone.0280363.g005

Fig 6. Double T-head structure, in addition to head1, head2 is also designed to enhance the detection of small

target defects.

https://doi.org/10.1371/journal.pone.0280363.g006
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module, the most important SE block, the convolution block, and finally to the second detec-

tion head. In particular, it is important to mention that the SE mechanism module in front of

these two detection heads is the most important part of the entire dual detection head. The SE

mechanism is divided into two steps: squeeze and excitation. The first step is squeeze, i.e., the

global compressed feature amount of the current feature map is obtained by performing a

global average pooling operation on the convolved feature map. The second step is excitation,

where the weights of each channel in the mapped features are obtained through a two-layer

fully connected bottleneck layer structure, and finally the superimposed weighted feature map

is used as the input to the next layer. Because the same feature channel does not have the same

importance for discriminating whether a feature belongs to the defective target or the back-

ground, we enable the detection head to focus more accurately on whether the input feature

information is a defective target or a background by inserting an SE module that gives the

learnable weights corresponding to all feature channels of the mapped features to distinguish

the importance of the defective target and other background targets. With the weights of

importance of feature channel, the actual true feature map to be obtained is equivalent to the

weights of importance of feature channel multiplied by the original values of the features on

each channel.

The network structure of the SE module is shown in Fig 7. The input feature maps are con-

volved by the convolution module and then subjected to a global average pooling operation to

obtain a sequence of real numbers of length M. So that the feature maps on each channel have

a global sensory field. The shallow feature maps with smaller global sensory fields can use the

global information to improve the feature extraction capability of the network and obtain

richer semantic information of the images. Then a real sequence of length M is input to the

fully connected layer, which reduces the dimension of the sequence to 1

r. Then the number of

channels is increased by using the ReLU activation function, and the weight coefficients of the

channels are calculated by using the Sigmoid activation function. Finally, the weight coeffi-

cients are multiplied by the corresponding feature channels to update the feature map. This

operation can enhance the receptive field at the detection side, increase the weights of the fea-

ture channels related to the target to be detected, effectively suppress the feature channels that

are not related to the target to be detected, improve the semantic information of the feature

map, and then improve the detection accuracy of the defective target.

In general, head1 can adapt to most of the defect detection tasks, head2 is designed with

more consideration to head1’s susceptibility to false detection and missed detection when

detecting small-scale defect targets. Therefore, the following detection head splices more layers

of information, and the information obtained is richer. The SE mechanism can increase the

receptive field of the feature map, which also helps head2 to obtain more feature information

and improve the accuracy of electronic panel surface defect detection. At the same time, the

channel attention module in the SE mechanism can feed the feature information of small tar-

gets into the second detection head precisely. And in order to distinguish the two detection

heads, the stride of the first detection head and the second detection head are set to 76×76 and

38×38, respectively. With the setting of these modules, relying on dual detection heads can

greatly improve the detection of target defects in electronic panel surface defects accuracy.

3.4 Loss function

It is well known that the target detection task contains a classification subtask and to a regres-

sion subtask, which aim to distinguish the category and to calibrate the location of the target,

respectively, and the training process is usually optimized with classification loss and regres-

sion loss at the detection end. In the supervised electronic panel surface defect detection
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Fig 7. SE module structure.

https://doi.org/10.1371/journal.pone.0280363.g007
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network we designed, three loss functions need to be used, and we refer to the target detection

loss functions proposed in the literature [9], which will be described in detail in this section,

and they are classification loss, localization loss, confidence loss.

3.4.1 Classification loss. In the target detection task, the classification loss function is

used to guide the learning of the classification task, and since we have a large variety of data

and it is difficult to quantify the relationship between different categories, we only focus on the

probability of whether a single category is correctly predicted, and the classification loss func-

tion used can be expressed as:

L1 ¼ �
1

n

X
ðyn � lnxn þ ð1 � ynÞ � lnð1 � xnÞÞ ð3Þ

Where n represents the total number of categories, xn is the predicted value of the current

category, and yn is the label 0 or 1. Because the dataset selected in this experiment contains 64

types of defect samples, n takes 64. And the operation of sigmoid is required before the incom-

ing value xn, the sigmoid formula is as follows:

S xð Þ ¼
1

1þ e� x
ð4Þ

3.4.2 Localization loss. In the object detection tasks, localization loss is mainly used to

guide the learning of regression sub-task. At present, the most popular loss functions for

regression of the bounding box in the object detection task are IOU [43], GIOU [44], and

DIOU [45]. Their mathematical expressions are as follows Formulas (5), (6), (7) are shown.

IOU ¼
jB \ Bgtj

jB [ Bgtj
ð5Þ

Among them, B and Bgt represent the prediction frame and the real frame, respectively.

GIOU ¼ IOU �
jCðB [ BgtÞj

jCj
ð6Þ

Where C represents the smallest rectangular box containing all B and Bgt.

DIOU ¼ IOU �
r2ðB;BgtÞ

d2
ð7Þ

Where ρ2(B, Bgt) represents the Euclidean distance between the center point of the pre-

dicted frame and the real frame, and d2 represents the distance between the upper left corner

and the lower right corner or the lower left corner and the upper right corner between the pre-

dicted frame and the real frame.

According to the regression triad of target detection, overlap area, centroid distance, and

aspect ratio, the above loss functions either only consider the overlap area or the distance

between the predicted frame and the centroid of the real frame, and considering only one of

these factors is often not enough, which will lead to less accurate detection of the trained

model on the test set, therefore, we use a more stringent constraint, and reference [46]
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additionally adds an aspect ratio constraint. The localization loss is replaced with:

L2 ¼ 1 � IOU þ
r2ðB;BgtÞ

d2
þ a � n

� �

ð8Þ

Where n ¼
4

p2
tanh

wgt

hgt
� tanh

w
h

� �2

ð9Þ

a ¼
v

ð1 � IOUÞ þ v
ð10Þ

wgt and hgt represents the length and width of the real box, respectively, w and h represent the

length and width of the predicted box, respectively.

3.4.3 Confidence loss. In order to measure the confidence of predicting a certain category

in the classification results, confidence loss is also added, which is expressed as L3, and L3 is

consistent with L1. But L3 internally encapsulates the Sigmoid operation inside, and no sepa-

rate Sigmoid operation is required.

3.4.4 Joint loss. Among the three above three loss functions, the contribution of the learn-

ing ability of different loss functions to the network may be inconsistent. In order to solve this

problem, we use joint loss to train the entire network. The joint loss is expressed as follows:

L ¼ bL1 þ gL2 þ dL3 ð11Þ

Among them, β, γ, and δ are hyperparameters representing the importance of the three loss

functions of L1, L2, and L3 to the entire loss, which can be adjusted during training.

3.5 Other metrics

3.5.1 Image pre-processing. The characteristics of electronic component images are very

different from those of public datasets for target detection. The images in the public dataset

PASCAL VOC [15] and COCO [14] are collected in natural conditions with sufficient lighting,

and the image quality is good. However, due to the limitation of the acquisition environment

and other reasons, defective images of electronic components will be under-exposed or over-

exposed during acquisition, which will introduce a considerable amount of noise components,

resulting in low image quality. Low-quality images will affect the ability of target detection net-

work to learn features to a certain extent, thereby affecting the effects of target detection.

Therefore, after image preprocessing on training data set to improve the quality of image, it’s

beneficial to enrich information of extracted features, thus improving defect detection in a cer-

tain part.

In this paper, in order to further improve the effect of electronic component surface defect

detection, image pre-processing operation is required for the input image. If ordinary image

noise reduction and restoration methods are used, it is very easy to mistake small target defects

and detailed texture information as noise and remove them, and lose part of the feature infor-

mation. Therefore, Real-ESRGAN [47] super-resolution processing is added to this network,

which is a modeling process that utilizes higher-order degradations to simulate complex real-

world degradations, while also takes into account ringing and overshoot that are common dur-

ing synthesis artifacts and incorporate a U-Net discriminator with spectral normalization to

improve the discriminator performance and stabilize training dynamic super-resolution meth-

ods. Based on this method, we have enlarged images in the original training set from

1392 × 1040 pixels to 5568 × 4160 pixels, which greatly improves the clarity of the images, and
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has richer texture information, feature information of significant regional, and boundary fea-

ture information.

3.5.2 Data enhancement. The characteristics of the image of electronic components are

also very different from those of public data sets. Whether it is the 20 categories of PASCAL

VOC [14] or the 84 categories of the COCO [15] dataset, they are common items in daily life,

and it is very convenient to collect, so the dataset is rich, the sample size is large, and the distri-

bution of each category is uniform. The defects of electronic components are caused by the

irregular operation of workers or equipment in actual industrial scenarios, and it is difficult to

obtain defective samples, resulting in the characteristics of many positive samples and few neg-

ative samples, which has a significant impact on the detection task, particularly the classifica-

tion task. And resulting in the overfitting of the training samples and the poor performance of

the trained network weights in the testing phase. Therefore, the application of data enhance-

ment in panel defect detection is particularly important. The effectiveness of data enhance-

ment lies in expanding the data set, making the model more robust to images obtained in

different environments. In order to handle geometric distortion, random scales, cropping,

translation, shearing and rotation were added. Mixup and mosaic operations were combined

for data enhancement at the same time. The Mosaic operation is an improved version of Cut-

mix, which greatly enriches the background of the detected object by stitching four images.

Additionally, batch normalization computes activation statistics for four different images on

each layer.

4. Experiments

In this section, we compare our proposed method with the current state-of-the-art target

detection algorithms, including two-stage and one-stage target detection algorithms, using the

labeled electronic panel defect dataset, in addition to effective ablation experiments, the details

of which are described in detail in this section.

4.1 Data set

Our dataset was collected at an industrial site, and a total of 6155 electronic panel images were

photographed and collected by vertical angle, and labeled according to the PASCAL VOC

dataset format using labelImg target inspection dataset labeling software. In total, the 6155

images contain 370 defect-free images and 5785 defective images, with a total of 64 defect cate-

gories, where the training set, validation set, and test set are divided according to the ratio of

8:1:1, and the training set, validation set, and test set all contain defect images of each of the 64

defect categories.

4.2 Comparative experiment

In order to prove the effectiveness of our proposed network, we conducted experiments on

our network with state-of-the-art object detection algorithms on the same dataset, including

Faster-RCNN, Retinanet, SSD, YOLOV3, YOLOV5, and YOLOX. The network is trained on a

PC with Nvidia GeForce RTX 2060 GPU. Our algorithmic network framework was selected

from pytorch version 1.9.1, and we trained each group of experiments the same number of

times, all with 200 epochs and a batch-size of 4. The size of the input images was uniformly

cropped to 640�640, and the same image preprocessing and data enhancement operations

were used. The training results of our designed network are shown in Fig 8, and the compari-

son with the training results of each network is shown in Table 1. In addition, we also ran-

domly selected several representative small target defects and irregular defects from the test set
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of uninvolved network training to test each trained network, and the test results are shown in

Fig 9.

From the above experimental results, it can be seen that the algorithm proposed in this

paper outperforms the current state-of-the-art target detection algorithms in both the map

index and the recall index, specifically, it improves 47.307 percentage points over SSD in the

map_0.5 index, and 13.506 and 14.387 percentage points over the best YOLOV5 and YOLOX,

which indicates the good applicability of the method for surface defect detection of electronic

panels. In the test results, for the small target defects TNDSR1 and TNNPE0, Faster-RCNN

(mobilenet) showed a missed detection on both TNDSR1 and TNNPE0, while Retinanet

showed a missed detection on TNDSR1. For irregular defect TNDDR0, Faster-RCNN (mobile-

net) and Retinanet showed false detection and duplicate detection on TNDDR0 category,

while SSD and YOLOV3 did not detect TNDDR0 category defects. On irregular defects

TNPLR0, Faster-RCNN (resnet) and Retinanet showed false detection on TNPLR0 category

defects, SSD and YOLOV3 showed missed detection, and YOLOV5 showed repeated detection

and inaccurate localization. In the above four categories, each network showed different

degrees of false detection, missed detection or mislocation and repeated detection, while the

network we designed accurately predicted the category and location of defects in all four defect

categories with 86%, 88%, 53% and 90% confidence levels, respectively. In particular, the aver-

age test speed on the same test images is shown in Table 1, where our method achieves an aver-

age frame rate of 28 fps, which is only 2 fps and 4 fps lower than YOLOV5 and YOLOX,

Fig 8. Training results of our designed network.

https://doi.org/10.1371/journal.pone.0280363.g008

Table 1. Comparison of the proposed method with Faster- RCNN, Retinanet, SSD, YOLOV3, YOLOV5, and YOLOX on the same dataset for each metric.

method map_0.5 map_0.5:0.95 recall

Faster-RCNN (resnet50) 0.3828 0.2167 0.3752

Faster- RCNN (mobile-net) 0.3745 0.2116 0.3383

Retinanet 0.448 0.263 0.539

SSD 0.3095 0.1843 0.3143

YOLOV3 0.3684 0.22881 0.35226

YOLOV5 0.64751 0.39064 0.68898

YOLOX 0.6387 0.391107 0.67236

Ours 0.78257 0.49202 0.77509

https://doi.org/10.1371/journal.pone.0280363.t001
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respectively. This shows that our method can still maintain a high speed while achieving a

higher speed than other methods. The reason for this is that we have adopted a method that

better fits the electronic panel surface defect detection scenario and has better interpretation,

of which two points need to be emphasized. First of all, the surface defects of electronic panels

show the characteristic of irregular, and the feature extraction modules of the networks in the

comparison experiments are made by standard convolution stacking, which leads to the inabil-

ity of accurate feature extraction for irregular defects, resulting in more false detection and

missed detection. The T-deformable convolution can better adapt to the feature extraction of

irregular defects by adaptive learning of the offset, which greatly reduces the probability of

missed and false detection of electronic panel surface defects, thus improving the accuracy of

detection at the overall level.

Second, most of the surface defects of electronic panels also have the characteristics of small

targets. In the comparison experiments, although Faster-RCNN, Retinanet, and SSD use vari-

ous feature pyramid structures to enrich feature information in the feature extraction stage,

their single detection head structures are still not effective for better detection of small target

defects. For YOLOV3, YOLOV5, and YOLOX, although these networks use a multi-detection

head structure, the features captured at the detection end can no longer form an accurate

Fig 9. Test results of each trained network on the four categories of TNDSR1, TNDDR0, TNPLR0, TNNPE0.

https://doi.org/10.1371/journal.pone.0280363.g009
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mapping relationship with specific defect targets or background features due to the deepening

of the network structure. Our designed double T-head structure, however, not only improves

the detection effect on small target defects to a certain extent, but also improves the detection

accuracy of generic defect targets by assigning different detection heads to targets of different

scales, while combining the SE mechanism to form an accurate mapping of the corresponding

defect targets or background features.

In addition, to demonstrate the generalization performance of the model, we selected the

PCB defect dataset MSD [48] provided by the Intelligent Robot Development Laboratory of

Peking University to conduct experiments on the generalization performance of the model. It

mainly contains missing_hole, mouse_bite, open_circuit, short, spur, and spurious_copper 6

types of common PCB surface defects. The original dataset contained a total of 693 PCB

defects, which we enhanced offline using rotation and scaling, and the dataset was expanded to

6136 images. Experiments were conducted to compare our network with each network. The

training results of our network are shown in Fig 10. The comparison of the metrics of each net-

work is shown in Table 2.

From the data in Table 2, it is clear that our proposed method has good generalization per-

formance. In the experiments on the MSD dataset, the map_0.5 metric reaches 0.97855, the

map_0.5:0.95 reaches 0.72801, and the recall metric reaches 0.9762, and the results are better

than the other seven methods on these three metrics. There are two main reasons for this.

Fig 10. Training results of our network on the MSD dataset.

https://doi.org/10.1371/journal.pone.0280363.g010

Table 2. Comparison experiments between the proposed method and each comparison method on the MSD data

set.

method map_0.5 map_0.5:0.95 recall

Faster-rcnn (resnet50) 0.7256 0.4115 0.6355

Faster-rcnn (mobile-net) 0.6114 0.3098 0.8895

retinanet 0.818 0.367 0.496

SSD 0.776 0.386 0.7713

YOLOv3 0.782 0.4074 0.7319

YOLOV5 0.9592 0.54642 0.9334

YOLOX 0.9503 0.6796 0.9684

Ours 0.97855 0.72801 0.9762

https://doi.org/10.1371/journal.pone.0280363.t002
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First, the MSD dataset has only 6 categories, which makes the detection of various networks

much less difficult compared to the original 64 categories of defects. But more importantly, the

modules such as T-deformable convolution and double T-head designed by our network fully

consider the feature extraction problem of various irregular targets and the detection problem

of small targets. It can be seen that the map_0.5 index of the proposed method is 0.16055

higher than that of the retinanet, while the map_0.5:0.95 index is 0.36101 higher than that of

the retinanet. this change has the same trend on the comparison of the other six methods with

the proposed method, proving that the proposed method not only has good detection effect

but also has good generalization performance. Next, we will conduct a series of ablation exper-

iments to demonstrate the effectiveness of the designed T-deformable convolution and double

T-head structure.

4.3 Ablation experiment

In order to verify the effectiveness of the proposed method, a series of ablation experiments

are conducted on the basis of the proposed method, keeping both the hardware equipment

and the algorithmic framework unchanged, and performing the same image preprocessing

and image enhancement operations on all networks. The purpose of the ablation experiments

is to verify the effectiveness of our designed T-deformable convolution and Double T-head,

including replacing the T-deformable convolution with DCN, standard convolution, and

using only Head1 detection head at the detection side. Table 3 shows the effects of each

method on map metrics and recall metrics when performing ablation experiments.

The results in Table 3 show that when replacing our designed T-deformable convolution

with DCN, its map_0.5 metric decreases by 0.5 percentage points, its map_0.5:0.95 metric

decreases by 0.8 percentage points, and its recall metric decreases by 2.886 percentage points.

This is mainly because DCN, compared to the T-deformable convolution we designed, has

insufficient learning of offsets in the process of feature extraction, which tends to confuse the

defective target features or background feature information, resulting in the inability to fully

extract the feature information of irregular defects, thus causing a large number of false detec-

tions and missed detections on such targets, which in turn affects the overall detection accu-

racy. After replacing our designed T-deformable convolution with the standard convolution,

its map_0.5 metric decreases by 3.1 percentage points, its map_0.5:0.95 metric decreases by 2.2

percentage points, and its recall metric decreases by 5.4505 percentage points. This is because

the standard convolution is further weakened in its ability to extract features from irregular

defects and more frequent false and missed detections occur compared to DCN and the T-

deformable convolution we have designed. After removing head2 and keeping only head1, its

map_0.5 metric decreased by 0.35 percentage points, its map_0.5:0.95 metric decreased by

0.873 percentage points, and its recall metric decreased by 1.362 percentage points. This is

mainly because the additional design of Head2, after upsampling operation, increases the per-

ceptual field and is able to map small-scale defects that cannot be mapped by head1, which in

Table 3. Map metrics and recall metrics for each network in the ablation experiment.

method map_0.5 map_0.5:0.95 recall

Ours 0.78257 0.49202 0.77509

Replace T-deformable convolution with DCN #0.5 #0.8 #2.886

Replace T-deformable with Standard convolution #3.1 #2.2 #5.4505

Without Double T-head #0.35 #0.873 #1.362

Replace SE block with convolution block #0.14 #0.362 #0.4

https://doi.org/10.1371/journal.pone.0280363.t003
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turn sends more feature information of small target defects to head2, enabling it to detect

small target defects that cannot be detected by head1, improving the detection accuracy of

small target defects. After replacing the SE block in Double T-head with the solution block,

map_0.5, map_0.5: 0.95, and recall decreased by 0.14, 0.362, and 0.4, respectively. Because the

addition of the SE mechanism can more effectively suppress the feature channels that are irrel-

evant to the target to be detected, enhance the weights of the target-related feature channels,

improve the semantic information of the feature map, and thus improve the detection accu-

racy of the defective target. The results of the above ablation experiments prove that the pro-

posed methods are all effective and can be better applied to scenarios where the defects of

electronic panels are irregular and small targets.

5. Conclusion

In this paper, for the first time, we propose some targeted solutions to a series of problems that

need to be solved in the detection of surface defects in electronic panels, including irregularity

of defects and small targets, and these methods are highly innovative. Specifically, it includes

the T-deformable convolution module designed for solving irregular defect problems and the

Double T-head designed for solving small target problems. Through extensive comparison

experiments and ablation experiments, it is shown that the proposed method is effective in sce-

narios with small targets and irregular defects in electronic panels, and it shows better detec-

tion accuracy than even the current state-of-the-art target detection methods while

maintaining a faster detection speed, and also has a lower incidence of false and missed detec-

tions during the test. Also, we have confirmed the good generalization performance of the pro-

posed method in the comparison experiments. We hope that this paper can bring some

inspiration to the research work of defect detection in industry or academia. Next, we will con-

duct further research on unsupervised defect detection and computerized system of target

detection algorithm, expecting to further improve the efficiency of defect detection and make

some contribution to the industry.
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