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Surface deformation caused by shallow magmatic activity at Okmok volcano,

Alaska, detected by GPS campaigns 2000–2002
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Annual GPS campaigns were carried out at Okmok volcano in the Aleutian Islands, Alaska, between 2000 and
2002. Surface deformation detected by these measurements reveals that Okmok volcano has been inflating over
these 3 years at a variable inflation rate. The horizontal displacements show a radial outward pattern, and there
has been significant uplift of the caldera center. The uplift of the caldera center relative to the caldera rim was
∼2.1 cm during 2000–2001, and ∼6.7 cm during 2001–2002. The latter rate is quite consistent with that deduced
from InSAR measurements spanning 1997–2000, but the deformation rate during 2000–2001 was much slower
than during the preceding and succeeding periods. Shallow pressure source was inferred at a depth of ∼3.1 km
beneath the approximate center of the caldera. The location of the source, ∼5 km laterally from the active vent, is
consistent with that inferred from InSAR data during 1997–1998. The total increase in volume during 2000–2002
of the inferred source is ∼0.44 × 107m3, which is 3–8% of the amount of volume erupted in 1997. The GPS and
InSAR data show that magma accumulation beneath Okmok was steady in rate and location during 1997–2002,
except for a pause at some time between 2000 and 2001.
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1. Introduction
Okmok volcano is located on Umnak Island in the eastern

Aleutian arc, where the Pacific Plate subducts beneath the

North American Plate (Fig. 1) with a relative velocity of

about 7 cm/year. Okmok is a large shield type volcano with

a 10 km-wide caldera and several post-caldera cones within

the caldera. Okmok volcano has only one historically active

vent, named Cone A, located in the southwest part of the

caldera floor. It has erupted more than 10 times since the

1890s, including 4 major eruptions (Miller et al., 1998). The

latest eruption occurred in February 1997 and produced a

∼5 km long lava flow extending from Cone A (Miller et al.,

1998; Dean et al., 1998).

Prior to our study, SAR Interferometry (InSAR) measure-

ments detected significant surface deformation at Okmok as-

sociated with the 1997 eruption, including pre-eruptive up-

lift, co-eruptive subsidence and post-eruptive uplift of the

caldera center (Lu et al., 2000; Mann et al., 2002). However,

the area of coherent data in the interferograms is limited to

the northeastern part of the caldera. Usable SAR data after

2000 are limited, although Lu and Masterlark (2003) recently

presented a number of new interferograms. Finally, due to

steep topography, phase unwrapping has never been possible
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between the inside and outside of the caldera, which prevents

the InSAR data from being referenced to the non-deforming

far-field.

Repeated Global Positioning System (GPS) measure-

ments provide a practical means to measure 3D crustal move-

ments. Our GPS network (Fig. 1) includes sites both inside

and outside the caldera, including locations where no inter-

ferograms are coherent. In this paper, we present the results

from our GPS campaigns, which demonstrate that the defor-

mation source at Okmok has changed with time.

2. GPS Observation and Data Analysis
We carried out GPS campaigns on Umnak Island, within

and around Okmok caldera, in the summers of 2000, 2001

and 2002, and measured a total of 34 stations including

a station DCH1 located in Dutch Harbor, ∼120 km east

of Okmok (Fig. 1). Dual frequency receivers (Trimble

4000SSE, 4000SSI, and 5700 receivers) were used in these

campaigns. We used the station FTGL as a local reference

station for this network. The data at the local reference sta-

tion were recorded throughout each campaign, and the other

stations were occupied for at least one day each year, with

30-second sampling rate and 10 degrees elevation cut off an-

gle.

We analyzed the GPS data using Bernese GPS software

Version 4.2 with the IGS precise orbits to estimate coordi-

nates of all sites. In each year, we determined the coordinates
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Table 1. Comparison of the pressure source at Okmok volcano discussed by our study and Mann et al. (2002). Volume change is derived from source

strength assuming the inflation results from addition of incompressible magma (Delaney and McTigue, 1994).

Period Latitude (◦N) Longitude (◦W) Depth (km) Strength (× 106m3) Volume change (× 106m3)

1997–1998 (InSAR) 53.432 168.131 3.5–4.1 1.0–1.9 4.2–7.9

2001–2002 (GPS) 53.426 168.133 3.1 0.9 3.8

2000–2001 (GPS) 53.422 168.146 1.9 0.1 0.6

Fig. 1. Location map of the Aleutian Islands (inset) and GPS network on

Umnak Island. A jagged line and arrows in the inset figure represent the

plate boundary and relative velocity, respectively. Red circles represent

the GPS stations established in 2000, and blue circles represent those

established in 2001. The station TIMS (black circle) was established in

2002. An open triangle represents the active vent, called Cone A. A

rectangle indicates the horizontal range for the grid search.

of the local reference station FTGL relative to the closest IGS

station FAIR located in Fairbanks, Alaska, in the ITRF97

reference frame, and determined the coordinates of the other

stations relative to FTGL. All data from each campaign were

adjusted together to determine a single set of coordinates for

each campaign. Uncertainties were also determined for each

campaign, and the 2002 campaign had the smallest uncer-

tainties and the 2001 campaign the worst.

All station displacements were estimated relative to FTGL

for the periods 2000–2001 and 2001–2002, respectively.

(Figs. 2 and 3). Both the horizontal and vertical components

indicate inflation of Okmok caldera, but at different rate in

each period. Because the uncertainties of each campaign’s

coordinates were different, the uncertainties of the displace-

ments during 2000–2001 are higher than those during 2001–

2002.

The sites FTGL and DCH1 (Dutch Harbor, 120 km east)

moved less than 1 cm in each component during 2000–2002

relative to each other. This relative motion may include a

component due to the deformation of Okmok, and a com-

ponent due to along-strike variation in the strain from the

locked subduction interface. Because of the possible impact

of the tectonic component, we did not use DCH1 in the re-

maining analysis. In this paper we present and model dis-

placements relative to FTGL to minimize the impact of tec-

tonic motions.

3. Results and Discussion
Deformation during 2000–2001 was relatively slow, both

horizontal and vertical displacements were less than 2 cm

(Fig. 2). The displacements for the period 2001–2002 were

much larger in magnitude than the displacements during

2000–2001 (Fig. 3). This difference is significantly larger

than the uncertainty in the data. The 2001–2002 horizon-

tal displacements show a clear radial outward pattern from

the caldera center with ∼4 cm of maximum displacement

(Fig. 3(a)). The vertical displacements show significant

uplift, 8 cm at the station closest to the caldera center

(Fig. 3(c)). The displacements at the sites inside the caldera

are significantly larger in magnitude than those outside the

caldera, which indicates that the source is located at shallow

depth below the caldera center.

Figure 4 shows a history of uplift at the caldera center rel-

ative to the caldera rim, including results from InSAR mea-

surements (Lu et al., 2000; Mann et al., 2002; Mann, 2002).

This reveals that the inflation rate during 2001–2002 derived

from GPS data corresponds to the rate during 1997–2000 de-

rived from InSAR data, which may represent a typical uplift

rate. The 2000–2001 uplift rate is much slower than both the

preceding and succeeding period.

We model the inflation for both periods using a spherical

pressure source (Mogi, 1958) expressed by following equa-

tions;

�h (r) = Cd/
(

r2
+ d2

)3/2

�r (r) = Cr/
(

r2
+ d2

)3/2

where �h and �r are the vertical and radial displacements,

d is the source depth, r is the radial distance from the source,

and r is the source strength, which is expressed by C =

3a3�P/4μ, with source radius a, pressure change �P , and

modulus of rigidity μ. A grid search was used to estimate

the best fitting parameters: horizontal position, depth and

strength of the source. Grid ranges are 168.070–168.190◦W

in longitude and 53.390–53.460◦N in latitude for horizon-

tal position, 1.0–6.0 km for depth and 0–0.0020 km3 for

strength, and increments are 0.001◦, 0.1 km and 0.0001 km3,

respectively. We calculated the misfit of each trial model by

comparing the model displacements relative to FTGL to the

corresponding observations, weighted by the observation un-

certainties. For 2001–2002, we find the best fitting inflation

source lies ∼3.1 km below the approximate geometric center

of the caldera (Table 1). The model explains well both the

horizontal and vertical components, especially the large dis-

placements inside the caldera (Figs. 3(a), 3(c)), and results
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Fig. 2. (a) Horizontal and (b) vertical velocities observed by GPS measurements between 2000 and 2001. Error ellipses indicate 95% confidence regions.

All vectors are determined relative to the station FTGL.

Fig. 3. (a) Horizontal and (c) vertical velocities observed by GPS measurements between 2001 and 2002, and calculated from a best fit Mogi source, which

is located 3.1 km beneath the approximate caldera center. Error ellipses indicate 95% confidence regions. A star represents the horizontal position of

the inferred source. (b), (d) Residuals between observed and calculated values for each component.

in small residuals for each component (Figs. 3(b), 3(d)). The

best-fitting model parameters show slightly shallower depth

and smaller strength than those estimated from the InSAR

data during 1997–1998 (Table 1) (Mann et al., 2002). The

inferred inflation source for 2000–2001 lies similar horizon-

tal position as the inferred source for both 2001–2002 and

1997–1998 (Mann et al., 2002), but the 2000–2001 source

depth and strength are quite shallow and small (Table 1).

Assuming the inflation results from the addition of volume

of incompressible fluid (Delaney and McTigue, 1994), the

source strength can be related to a volume change in the sub-

surface magma body (Table 1). In this case, a volume change

in the subsurface magma body equals to 4πC/3, assuming

the Poisson’s ratio is 0.25. The total reduced χ2 misfits,

which means χ2 divided by a number of observed sites, of

the 2000–2001 displacements to the best-fit spherical pres-

sure source are larger than those for the period 2001–2002

(Table 2).

We estimate ∼0.44 × 107m3 of volume increase in the

source during 2000–2002, assuming that the source strength

results from volume change at constant pressure. The 1997-

eruptive volume was estimated as 5.2–9.2 × 107m3, from a
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Table 2. The reduced χ2 misfits between the observed data and the calcu-

lated data from best-fit pressure sources.

Period N-S E-W U-D

2000–2001 1.30 1.95 2.54

2001–2002 1.40 1.29 1.51

Fig. 4. Time series of vertical deformation at the caldera center relative

to the caldera rim. Blue lines represent the uplift and subsidence rates

detected by InSAR measurements (Lu et al., 2000; Mann et al., 2002).

Red lines represent the uplift rates during 2000–2002, detected by GPS

measurements at OK24 relative to OK31, see Fig. 1 for those locations.

The thin vertical line represents the latest eruption in February 1997.

model fit to the syn-eruptive deformation observed by InSAR

(Mann et al., 2002). Lu et al. (2003) also estimated the

eruptive volume of 7–14 × 107m3, using the bulk volume

of the lava flow estimated by a TOPSAR digital elevation

model (DEM) and pre-eruptive DEM based on USGS maps.

The estimated volume change from 2000–2002 GPS data is

3–8% of the erupted volume in the 1997 eruption.

Assuming a magma volume flux at the average 1997–

2002 rate, it would take 20–35 years to restore the volume

erupted in the 1997 eruption. This estimated recurrence time

is consistent with the ∼25 year average time interval between

major eruptions.

During the 5 years following the 1997 eruption, magma

has accumulated at nearly the same location and depth be-

neath the Okmok caldera, and at nearly the same rate except

for a lower rate between 2000 and 2001. Except for the lower

rate during that one period, variations in the source are too

small to resolve with the existing data. This implies a gener-

ally steady, although not constant, supply of magma to shal-

low depth; the existence of a pause in an otherwise regular

pattern of inflation could result from the arrival of magma in

discrete pulses a few to several months apart.

The one of features of Okmok volcano is that the active

vent shown in Fig. 1 is located at ∼5 km southwest of the in-

ferred magma body. Although Mann et al. (2002) mentioned

a possibility of a lateral magma transport from the source to

the vent, there has been no obvious data from our GPS cam-

paigns to support the possibility.

4. Conclusion
We have established a well-distributed GPS network at

Okmok volcano on Umnak Island. Total displacements over

two years are as large as 5 cm of radial displacement and

∼9 cm of uplift. Rapid inflation of Okmok volcano during

2000–2002 is caused by inflation of a shallow magma body

beneath the geometric center of the caldera. However the

inflation rates show episodic change with the inflation rate

during 2001–2002 being larger in magnitude than the rate

during 2000–2001. Considering the previous results from

InSAR measurements, this suggests steady inflation after the

1997 eruption at the same location and depth, except for a

reduction in magma flux between 2000 and 2001.

We modeled the observed data for both periods using a

spherical pressure source ∼3.1 km below the caldera center.

The source volume increase during 2000–2002 is estimated

to be ∼0.44×107m3. The source location is not distinguish-

able from a model fit to InSAR data from 1997–1998. We

also estimated an eruption recurrence time of 20–35 years

for 1997-sized eruptions from the volume change rate of the

source, which is consistent with ∼25 years average time in-

terval between major eruptions.

Alaska Volcano Observatory installed three continuous

GPS stations at Okmok volcano in summer 2002. Future

work will evaluate changes of the inflation rate by the data

from the continuous GPS network.
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