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Abstract—Three-dimensional detection and shape recovery of a nonrigid surface

from video sequences require deformation models to effectively take advantage of

potentially noisy image data. Here, we introduce an approach to creating such

models for deformable 3D surfaces. We exploit the fact that the shape of an

inextensible triangulated mesh can be parameterized in terms of a small subset of

the angles between its facets. We use this set of angles to create a representative

set of potential shapes, which we feed to a simple dimensionality reduction

technique to produce low-dimensional 3D deformation models. We show that these

models can be used to accurately model a wide range of deforming 3D surfaces

from video sequences acquired under realistic conditions.

Index Terms—3D shape recovery, deformation model, nonrigid surfaces.
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1 INTRODUCTION

WITHOUT a strong model, 3D detection and shape recovery of a
nonrigid surface from video sequences is a severely undercon-
strained problem. Such models have been built for specific object
classes such as faces [4], but not for generic surfaces. These are
typically represented as triangulated meshes with potentially many
vertices to achieve the desired level of accuracy,which impliesmany
degrees of freedom and a potentially hard to solve optimization
problem when trying to fit the model to noisy image data.

Physics-based models have been extensively investigated as a
potential answer to this problem. They have been shown to be
excellent at fitting noisy image data andhandling highly deformable
3D objects [16], [18], [5], [7], [15]. They incorporate regularization
terms that implicitly or explicitly reduce the number of degrees of
freedom.However, to the best of our knowledge, the effectiveness of
suchmodels hasnot yet beendemonstratedonmonocular sequences
of deformable 3D surfaces such as those of Figs. 1, 2, and 3.

Here, we describe an approach to creating sufficiently low-
dimensional models of deformable 3D surfaces that can be
represented as 3D meshes without holes. Given the possibly non-
planar rest shape of the mesh, constraining its edges to retain their
original lengths implies that all possible deformations are entirely
specified by a small subset of the angles between its facets. This
implies that the manifold of all possible deformations can be
effectively sampled by randomly setting a limited number of angles.
This, in turn, lets us generate a database of deformed shapes with
identical topologies and use a standard dimensionality reduction
technique to produce the low-dimensional 3D deformation models
that we need for tracking and detection purposes.

The inextensible triangulations we use can be thought of as
polyhedra made of metal plates and whose edges have been
replaced by hinges. Such polyhedra have been extensively used in
the classroom to teach elementary geometry but not in our field.
Nevertheless, they can assume a surprisingly large range of shapes
and, therefore, produce representative shape databases. Thus, as

shown in Figs. 1, 2, and 3, our approach can be used to recover the
deforming 3D shape of such diverse objects as a T-shirt, a sheet of
paper, a sail, or an elastic surface. Even though these have very
different physical properties, our model has the right degrees of
freedom to capture their deformations, even when they are not
isometric [10] and to take full advantage of available image
information. In fact, if a textured 3D model of the object in a
reference position is available, our system becomes completely
automatic: Neither deformationmodel generation nor detection and
tracking require any manual intervention.

We therefore view the contribution of this paper as twofold: On
the theoretical side, we propose an approach to creating low-
dimensional surface deformation models. On the practical side, we
show that these models can be effectively used to pool noisy image
information, thus letting us accurately model a wide range of
3D surfaces.

2 RELATED WORK

Detecting and tracking 3D surface deformations in monocular
video sequences requires deformable models to constrain the
search space and make the problem tractable.

Such models have been created for feature point-based
structure from motion [28], [27], [13], [29], [1] by tracking feature
points and using them to learn both shape and motion. While
effective, these algorithms are not designed to exploit other sources
of image information than feature points or to use known surface
properties to recover the shape far away from those feature points.
This typically requires explicit surface modeling using as few
degrees of freedom as possible.

One way to achieve this is to only consider the motion of a few
control points. Free-form deformations [22], [8], [17] are a good
example of this kind of approach, but there is currently no
automated way to create appropriate sets of deformation modes or
control points. Physics-based models are potentially more generic.
The original ones [11] were 2D and have been shown to be effective
for 2D deformable surface registration [2]. They were soon adapted
for 3D surface modeling purposes by using deformable super-
quadrics [26], [16], triangulated surfaces [5], or thin-plate splines
[15]. In this framework, modeling generic 3D surfaces often requires
many degrees of freedom that are coupled by regularization terms.
In practice, this coupling implicitly reduces the number of degrees of
freedom,whichmakes thesemodels robust to noise and is one of the
reasons for their immense popularity. This reduction can also be
explicitly achieved via modal analysis [18], [5], [7]. In our own
cartographic work [9], we represented 3D surfaces as hexagonal
meshes that deformed tominimize an energy that was the sum of an
image-data term and a quadratic regularization term. This proved
very effective for cartographicmodeling,which is essentially 2.5D as
opposed to fully 3D. But, it has turned out to be insufficient for
robust monocular video-based tracking of deformable surfaces.

Since accurately capturing the physics of deformable surfaces in
a dynamical model is difficult, example-based approaches are an
attractive alternative. They involve creating a database of repre-
sentative shapes and using them in conjunction with a dimension-
ality reduction technique to learn a low-dimensional model. Active
appearance models [6] pioneered this approach in the 2D case and
have since been extended to 3D [14]. Morphable models [4] rely on
the same philosophy to build 3D face models: The database is made
of 3D meshes that were fitted to laser scans and then registered to
each other. Similar approaches were successfully used to learn
models of articulated motion [3], [24]. However, in all these cases,
gathering and registering enough examples to build a meaningful
database represented a very significant amount of work. The
difficulties involved in creating the databases have limited the
spread of these example-based approaches.

3 SURFACE DEFORMATION MODELS

One of the simplest ways to model a deformable surface is to
represent it as a triangulated surface parameterized in terms of its
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Fig. 1. Tracking a spinnaker with either one or two cameras. (a) and (b) Two synchronized images from independently moving cameras with recovered spinnaker
reprojection. (c) Tracking using only one camera. Note that once reprojected on the images, the results are almost indistinguishable. (d) Three-dimensional results with
two cameras. Both camera positions are also retrieved. (e) Superposed 3D shapes retrieved using either one (red) or two (blue) cameras. Note that both shapes are very
similar, which indicates that the deformation model provides a good approximation when data are missing. See video submitted as supplementary material, which can be
found at http://computer.org/tpami/archives.htm.

Fig. 2. Tracking a deforming sheet of paper and T-shirt. In both cases, we show the deformed 3D mesh overlaid on the original images in the top row and then seen from

a different viewpoint in the bottom row.

Fig. 3. Tracking an extensible surface undergoing anisotropic deformations. In the top row, we show the original images and, in the bottom row, we overlay the recovered
3D grid that stretches appropriately.



vertex coordinates. This parameterization, however, does not
account for the fact that, in a real surface, the vertices cannot move
independently from one another. By contrast, if we constrain the
triangulation edges to retain their original length, the number of
degrees of freedom (dofs) decreases very significantly, which lets us

1. represent the shape using few parameters,
2. create a representative sample of possible shapes, and
3. perform dimensionality reduction.

This results in a low-dimensional model whose dimension is
independent of that of the meshes used to create it, but still
captures the main deformation modes. Using PCA as our
dimensionality reduction technique naturally yields not only
bending modes but also rigid motion and extension modes, which
we can then choose to penalize or not. In some sense, this is similar
to modal analysis where the object’s behavior is described by
superposing its natural strain and vibration modes [18], [5], [7].
However, unlike modal analysis, we do not require the kind of
physical knowledge that building the appropriate stiffness matrix
requires and we are not limited to small deformations around the
position for which it has been computed.

3.1 Dofs of Inextensible Triangulations

We seek to characterize the number of dofs of a triangulation T
—containing V 3D vertices, F facets, andE edges—that has a planar
topology, which means it can be unfolded to a plane and has an
actual boundary that can form an arbitrary polygon. In general, T
has three dofs per vertex. However, forcing the edges to retain their
length when the triangulation deforms, imposes one quadratic
constraint per edge and the total number of degrees of freedom
drops to Dof ¼ 3V � E. Let Eb be its number of boundary edges
andEi ¼ E � Eb the number of interior ones. Since theEb boundary
edges each belong to only one facet whereas the Ei internal ones
belong to two, we have 3F ¼ 2Ei þ Eb. Furthermore, according to
Euler’s well-known formula, if T has no holes, V þ F � E ¼ 1.
Substituting these expressions into Dof ¼ 3V � E yields

Dof ¼ 3þ Eb: ð1Þ

In other words, the number of degrees of freedom of an
inextensible triangulation grows as the number of its boundary
edges. In this work, we exploit this behavior in the case of regular
hexagonal triangulations such as those of Figs. 4a and 4b, which
can easily be stitched together to model more complex surfaces
such as the T-shirt of Fig. 4c.

More specifically, the regular grid of Fig. 4a hasM �N vertices,
Eb ¼ 2ðN � 1Þ þ 2ðM � 1Þ boundary edges and, therefore, 2M þ
2N � 1 degrees of freedom, which is much smaller than the 3MN it
would have without the inextensibility constraints. Furthermore,
this number of dofs include the six that correspond to a rigidmotion
and can be ignored for our purposes. The triangulation of Fig. 4b has
N vertices per side andwas built by recursively subdividing a single
triangle. It has NðN þ 1Þ=2 vertices and Eb ¼ 3ðN � 1Þ boundary
edges, which results in 3N dofs instead of 3NðN þ 1Þ=2.

The T-shirt of Fig. 4c is modeled by combining a rectangular
patch for the body part and two triangular ones for the sleeves. In
this case, the number of dofs of the triangular patches is reduced
because they have common edges with the rectangular patch. As a
result, the total number of dofs resulting from assembling the
triangular and rectangular patches is less than the sum of dofs of
each patch taken separately.

3.2 Angle-Based Parameterization

Here, we show that the shape of a wide class of inextensible
meshes can be parameterized in terms of a small number Na of
determining angles between its facets. We present procedures for
choosing the Na angles so that the number of degrees of freedom of
(1) can be written as

Dof ¼ Na þ 6; ð2Þ

where the six degrees of freedom added to Na represent the rigid
motion.

3.2.1 Simple Triangulations

Let us first consider the M �N mesh of Fig. 4a. As shown in
Fig. 5a, if we constrain the horizontal, vertical and diagonal edges
to retain their original lengths, only the facets of the bottom row
and the first and last facets of each upper row need be set to
completely determine the shape of the grid. Each one of the
remaining vertices can then be computed as the intersection of
three spheres centered on previously computed vertices. It can be
easily checked that this requires specifying Na ¼ 2M þ 2N � 7

determining angles and the six degrees of freedom that fix the
position and orientation of the first facet. This corresponds to the
predicted total of Dof ¼ 2M þ 2N � 1 dofs derived in Section 3.1.
In other words, the chosen subset of angles gives us a model with
the right number of degrees of freedom.

In the case of the subdivided triangle withN vertices per side of
Fig. 4b, we use the very similar construction depicted by Fig. 5b. The
total number of determining angles is Na ¼ 2ðN � 2Þ þ ðN � 2Þ ¼
3N � 6. To this number, wemust add the six dofs required to fix the
position and orientation of the first facet in space to get the expected
total of Dof ¼ 3N dofs discussed in Section 3.1.

3.2.2 Complex Triangulations

As discussed in Section 3.1, we modeled the T-shirt of Fig. 4c by
combining a rectangular patch for the body part and two
triangular ones for the sleeves. We parametrize the rectangular
patch as before. As shown in Fig. 5c, because the base of each
triangular patch is attached to the body, only one single angle is
required to fully specify their first row. The remaining rows of the
triangles can then be specified as before, which results in the
expected number of determining angles.

Note that this approach is very general and could be extended to
any surface without holes that can be unfolded to a planar polygon
of arbitrary shape: Any polygon can be triangulatedwithout adding
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Fig. 4. Hexagonal triangulations. (a) Rectangular mesh used to model the piece of

paper. (b) Triangular mesh used to model the spinnaker. (c) Stitching a

rectangular patch for the body part and two triangular ones for the sleeves lets

us model the T-shirt.

Fig. 5. Specifying the 3D shape of the rectangular mesh and subdvided triangle.
(a) We fix the shape of the bottom row from left to right by rotating each facet with
respect to its left neighbor. For each following row, we only need to set the angle
between the left-most facet and the one below and the angle between the right-
most facet and its left neighbor. (b) The angles between the facets of the bottom
row are first set from left to right. For each upper row, only the angle of the first
facet need be set. (c) Attaching two hexagonal patches together. Because the
base of each triangular patch is attached to the body, only one single angle is
required to fully specify their first row.



any interior vertex [20]. The dual graph of such a triangulation, that
is, the graph connecting the centers of neighboring facets, cannot
contain any cycle because such a cycle would have to enclose at least
a vertex, which would then be an interior vertex. This implies that
we can build the triangulation by sequentially inserting triangles in
such a way that each new one, except the first, has a single common
edge with one already present. Given this order, we can represent
the individual triangles as hexagonal triangulations attached to each
other and parameterize them as discussed above.

3.3 Dimensionality Reduction

The angle-based parameterization we introduced above reduces
the number of parameters required to specify the shape of an
inextensible mesh. However, it is not particularly well adapted to
fitting surfaces to image data for several reasons. First, it imposes
an arbitrary graph structure among the vertices and specifies the
coordinates of child vertices as a function of those of parent vertices,
which tends to degrade the performance of optimization algo-
rithms. Second, computing the actual shape involves solving
quadratic equations representing the intersection of three spheres,
which is computationally expensive. Finally, its number of dofs
still depends on the mesh resolution.

We therefore only use the angle-based parameterization as an
intermediate representation that lets us sample the set of possible
shapes by randomly drawing the angles from a uniformdistribution
between two bounds. For the rectangular mesh, the angles were
drawn in the range ½��=6; �=6� and, for the other cases, in the range
½��=9; �=9�. Since all the resulting deformed meshes have the same
topology, we form a 3V vector for each one by concatenating the
coordinates of its V vertices. By running PCA on these vectors and
retaining only the first Nc � Dof << 3V principal components, we
can approximate the vector of coordinates of any mesh as

S ¼ �S þ
X

Nc

k¼1

wkSk; ð3Þ

where �S is the vector corresponding to an undeformed mesh, the Sk

are the principal components or modes, and the wk are weights that
specify the surface shape. In other words, the shape of a mesh can
now be expressed as a function of the vector �S ¼ fw1; . . . ; wNc

g.
Fig. 6 depicts the influence of two of the most significant modes

in the case of the meshes of Fig. 4. Giving weight to the first
produces bending and, to the second, extension. The presence of
extensionmodesmay seem surprising since all the samples we used
to learn the model are instances of the same inextensible mesh.
However, given that the deformations are not linear when
expressed in terms of 3D coordinates, there is no reason for the
manifold of all resulting shapes to lie on a hyperplane. Intuitively,
by using PCA, we consider the Nc-dimensional ellipsoid that

includes thismanifoldwithout being limited to it. This produces not
only extension modes but also rigid ones that we discard.

In practice, the presence of these extension modes makes the
method more general: On one hand, if the surface whose deforma-
tions we seek to recover is truly inextensible, we can incorporate a
term that prevents extension or shrinking into our optimization
scheme. On the other hand, the presence of the extension terms lets
us effectively model stretchable materials using a low-dimensional
deformation model. In theory, it should be possible to remove those
extension modes by replacing PCA by a nonlinear dimensionality
reduction technique. However, we do not believe it will help much
without using a database that ismuch closer to the true physics. This
is because a nonlinear technique is very likely to force the model to
stick much closer to the training data. In some sense, that would
negate one of the strengths of our approach that does not require
either accurate training data or precise knowledge of the physics,
both of which are often hard to obtain.

4 SHAPE RECOVERY FRAMEWORK

We outline here our approach to using our models to take full
advantage of the available image information, acquired using one
or more cameras, while ignoring erroneous data.

Recall from Section 3.3 that the shape of the mesh is controlled
by the �S vector of weights assigned to the PCA modes. To handle
the potentially moving camera, or cameras, we introduce a vector
of extrinsic parameters � for each one and define the state vector

� ¼ ð�1; . . . ; �C ;�SÞ
T ; ð4Þ

where C is the number of cameras being used. Note that this
formulation can handle both one single camera and multiple
cameras that may move with respect to each other.

We use the image data to write no observation equations of the
form

Otðxi;�Þ ¼ �i; 1 � i � no; ð5Þ

where Ot is a differentiable objective function associated to image
data of type t, xi a data point, and �i an error term.Here, we consider
the functions Om, Oc, and Oe derived from model to image point
correspondences, image to image point correspondences, and
contour information, respectively.

4.1 Model to Image Correspondences

As shown in Figs. 7a and 7b, when a textured 3D model of the
object in its rest position is available, we use a fast wide-baseline
feature matching technique [12] to compute correspondences
between surface 3D locations c and 2D image features. We define
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Fig. 6. Deformation modes of the meshes of Fig. 4. In all figures, �S, the average mesh, is shown in red. The other two are obtained by taking a single wk to be nonzero. A

positive value of that wk yields the green mesh and a negative one the mesh shown in blue. (a) Bending and extension modes of (a) the flat rectangular mesh, (b) the

triangular spinnaker, and (c) the T-shirt.



Omðc;�Þ as the euclidean distance in the image plane between the
projection of c and the corresponding image feature.

4.2 Image to Image Correspondences

Given a couple ui ¼ ðp1i ; p
2

i Þ of corresponding points in two
different images of the surface found using the same technique as
before [12], we define Ocðui;�Þ as follows: We back-project p1i to
the 3D surface and reproject it to the second image. We then take
Ocðui;�Þ to be the euclidean distance in the image plane between
this reprojection and p2i .

4.3 Boundary and Occluding Contours

As shown in Fig. 7c, given the last known shape of the target
object, we predict the location of the projection boundaries and
occluding contours. We then sample these 2D contours and look
for the closest edge or texture boundary in the normal direction
[23]. We take Oe to be the euclidean distance between the
projection and the image edges.

As we saw in Section 3.3, a linear combination of principal
components can result in a mesh that expands or shrinks. To
model surfaces that do not stretch, we force edge lengths to remain
constant by introducing a penalty term

ED ¼
X

V

i¼1

X

vj2NðviÞ

vi � vj
�

�

�

�� Li;j

� �2
; ð6Þ

where vi is a vertex of the mesh, NðviÞ represents the set of all its
neighbors, and Li;j is the initial edge length. Finally, we take the
global objective function E we minimize to be

E ¼
1

2

X

no

i¼0

wt� Oti ðxi;�Þ
�

�

�

�

2
; r

� �

þ wDED; ð7Þ

where the wt are weights associated to particular observation types
and designed so that the derivatives of all observations are of
commensurate magnitude, wD is a user defined weight, and � a
robust estimator whose radius of confidence r progressively
decreases during the optimization. As discussed in [19], this
schedule allows convergence from arbitrary starting positions. A
small, or zero, wD lets the mesh stretch or shrink. Note that besides
the term that constrains the length, we introduce no other shape
regularization term.

To demonstrate that our optimization process is well-posed and
insensitive to initial conditions, we ran our system on synthetic data.
We created randomly deformed versions of the rectangular mesh
such as the ones shown in the first column of Fig. 8 and used them to
produce large numbers of the synthetic model-to-image correspon-
dences introduced above. For each test-run, we started from a
different random initialization such as the ones of the second
column of Fig. 8 and minimized the objective function of (7) using
random subset of the correspondences. In the third column of the
figure, we plot the median of the mean distances between the

vertices of the recovered mesh to the correct one as a function of the
number of correspondences that were used. More precisely, given a
number n between 5 and 600, we picked four different subsets of
n correspondences and ran the algorithm with 100 different initial
shapes for each. As soon as enough correspondences are used, the
algorithm consistently converges toward the correct solution.

5 RESULTS

Here, we demonstrate the capabilities of our method using the four
very different kinds of objects depicted by Figs. 1, 2, and 3. They
cover a wide range of physical properties and the images have
been acquired using ordinary camcorders. In all four cases, we first
created a 3D textured model offline using one or more static
images acquired independently of the videos.

We then optimized the criterion of (7) using model-to-image
correspondences, correspondences with the previous image, and
optionally silhouette information. This runs at between 0.3 and
2.5 frames/second when using 40 modes and 1; 024� 768 images,
the faster rate being obtained when not using silhouettes. Recall
from Section 4 that we use an optimization schedule that lets us start
from arbitrary positions, whichmeans that this does not require any
manual intervention at runtime. As shown in the figures of this
section, the resulting shapes are accurate enough for correct
reprojection. However, enforcing temporal consistency only over
image pairs might leave a residual 3D jitteringmotion across frames
when creating videos. Therefore, to create those we supply as
supplementary material, we eliminated this jitter by reoptimizing
our criterion using the same observations as before, but over larger
sets of eight overlapping frames, and enforcing temporal coherence
by penalizing the second derivatives of all parameters.

We represent both the sheet of paper and the elastic surface,
which was cut out of an inflatable balloon, of Figs. 2 and 3 as a
30� 20 rectangular grid.Wemodel the spinnaker using a 153-vertex
triangle. The T-shirt mesh is made of two sleeves that are 45-vertex
equilateral triangle attached to a 9� 25 rectangular grid. We used
45 PCA modes to track the sheet of paper, 10 for the balloon, 40 for
the spinnaker, and 50 for the T-Shirt.

The rest shape of the spinnaker is not planar andNorthSails gave
us theCADmodel thatwas used to design it, thus allowing us to fit a
triangular mesh to it. This gave us the initial shape from which we
computed the deformation modes. To create the textured model
needed for automated runtime operation, we developed a software
tool that allows us to manually supply a few image-to-model
correspondences in images such as those of Fig. 9, which do not
belong to the test video. By feeding these correspondences along
with automatically detected silhouettes into the optimization frame-
work of Section 4, we recover the spinnaker’s shape into the images
and, thus, a texturedmodel. In the specific case depictedbyFig. 9,we
only supplied 10 correspondences per image, which did not take
long to do. In short, our deformation modes not only lead to robust
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Fig. 7. Image data. (a) An image from an input sequence. (b) One of 15 images used to build a textured 3D model of the spinnaker. For our experiments, we added black

scotch tape on the otherwise white parts of the sail to help our wide-baseline algorithm to find correspondences between model and input images such as those depicted

by the black lines. (c) Contours detected as texture boundaries. Even though the boundary is not correct everywhere, thanks to the model and robust estimation we still

recover the correct shape.



and automated runtime operation but can also be used to limit the
required amount of manual intervention during model building.

These experiments display several strengths of our method.
First, as shown in the videos corresponding to the deforming sheet
of paper of Fig. 2 and spinnaker of Fig. 1, our system is robust
enough to process sequences of more than 1,500 frames acquired
both indoors and outdoorswithout getting lost or drifting.When the
image data is tooweak, 3D shape recovery becomes temporarily less
accurate but the system soon recovers.

The T-shirt example of Fig. 2 shows that even though the
resulting PCA modes represent global deformations, we can still
track very local ones, such as only one moving sleeve, by
superposing these modes. Finally, in the case of the stretching
surface of Fig. 3, we can see that not only global extension can be
modeled, but also anisotropic stretching. This, again, is due to the
fact that local deformations can be accurately described by
appropriately superposing global modes.

All these results were generated using a single video sequence
per object except in the spinnaker case where we used either one or
two cameras. In this case, the two cameras were hand-held by two
people on a chase-boat so that they move with respect to each other
in an unpredictable fashion and do not form a stereo-rig in the usual
sense of the term. Our framework is powerful enough to handle this
case and to take full advantage of all the available information, even
under such nonstandard conditions. As shown in Fig. 1, once
reprojected on the images, the results are almost indistinguishable.
Of course, because a single camera cannot see both sides of a curvy
object, the quality of the 3D results is bound to be better when using
two cameras looking from very different angles so as to see different
parts of the object. However, the superposition of both 3D results in
Fig. 1e shows that, in this case, the model approximates the hidden
part well. This behavior is consistent over thewhole video sequence.

Finally, to estimate the accuracy of our reconstructions, we
acquired three videos of another sheet of paper using three
calibrated and synchronized cameras. We used one to monocularly
reconstruct the deforming shape using our method. We used the
other two to triangulate the X,Y, and Z coordinates of 10 selected
points bymanually establishing correspondences every 10 frames of
the 70 frame-long sequences. These points—the four corners of the
sheet plus six additional ones spread over its surface—are depicted
by Fig. 10d and were chosen to be representative of the whole
surface. As shown in Fig. 10e, the largest average errors occur in the
Z direction, which was to be expected since it is close to the viewing
direction. In euclidean terms, this corresponds to the median errors
of Fig. 10f, which are in the order of 1cm. This is quite small
considering that this was achieved using a single camera that was
approximately 1.5 meter away from the 29:7 cm� 21:0 cm rectan-
gular sheet of paper.

6 CONCLUSION

In this paper, we have developed an automated method for
generating deformation models. We have shown that they are
effective to recover the 3D shape of a variety of nonrigid surfaces
undergoing large deformations. A key ingredient is an angle-based
parameterization of inextensible meshes that has allowed us to
create samples of possible shapes, on which we perform PCA to
produce the low-dimensional models we use.

One limitation of our current approach is that those samples are
not fair in the sense that all shapes are deemed equally probable and
therefore similarly influence the model we derive from them. In
future work, we will explore ways of making our models more
accurate by weighting the samples according to how well they
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Fig. 8. Convergence using synthetic data. (a) Projections of the synthetic surfaces used as input for the optimization process. (b) Examples of initializations. (c) Median of

the mean distances between the vertices of the recovered mesh and the synthetic surface as a function of the number of correspondences that were used. The measures

are given as a percentage of the longest side of the initial rectangle. We did not draw error bars because, as soon as we used more than 50 matches, the first and third

quartile of the mean distances are indistinguishable from the median.

Fig. 9. Three-dimensional model of the spinnaker overlaid on the three images used to compute its reference shape and texture. In each image, we specified

10 correspondences with a CAD model of the spinnaker and used them, along with automatically detected silhouettes, to deform it. We assume that the spinnaker did not

deform in these images because they were taken in quick succession by a chase boat.



conform to the true physics. This should yield improved shape
databases. Given these, we will also investigate the use of nonlinear
dimensionality reduction techniques such as Locally Linear
Embedding (LLE) [21] or Isomap [25] to guarantee that the resulting
deformations are truer to the physics than those PCA produces.
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Digital Library at www.computer.org/publications/dlib.
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Fig. 10. Evaluating the accuracy of our approach. (a), (b), and (c) Images from videos acquired using three synchronized and calibrated cameras. Image (b) belongs to the
video we used to monocularly reconstruct the 3D shape using our method and, then, reprojecting it into the image. (d) We triangulated the 3D coordinates of the
10 keypoints shown as crosses by manually establishing correspondences in images (a) and (c). (e) We repeated this operation every 10 frames and plot the average
differences between the X, Y, and Z coordinates of those manually computed and those derived from our automated and monocular reconstruction. (f) We also computed
the euclidean distances between the monocular reconstructions and the manually computed points, and plot their medians together with values at 25 percent and
75 percent.


