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Abstract

We present an interactive algorithm to compute sur-

face distance maps for triangulated models. The distance

map represents the distance-to-closest-primitive mapping

at each point on the boundary of the mesh. We precom-

pute a surface parameterization and use the parameteri-

zation to define an affine transformation for each primi-

tive of the mesh. Our algorithm efficiently computes the

distance field by applying the affine transformation of the

primitive to the distance functions of the sites. We evalu-

ate the distance functions using texture mapping hardware.

In practice, our algorithm can compute high resolution sur-

face distance maps at interactive rates and provides tight

error bounds on their accuracy. We use surface distance

maps to perform interactive collision and distance queries

between complex deformable models. As compared to prior

approaches, our distance map computation and collision

detection algorithms can provide up to one order of mag-

nitude performance improvement.

1 Introduction

Distance fields are scalar fields that represent the clos-

est distances. Given a set of primitives O in R
3, the dis-

tance field at a point equals the distance to the closest

point on O. Distance fields are widely studied in com-

puter graphics, computational geometry, computer vision

and robotics. They are used for several applications in-

cluding shape representation and sculpting [FPRJ00], skele-

tonization [BKS01], collision and penetration depth compu-

tation [HZLM01], remeshing [KBSS01], motion planning

[HCK∗99], implicit surface representation [Gib98], non-

photorealistic rendering [KSFC92], etc.

In this paper, we consider the problem of computing the

distance map on a two-manifold triangulated mesh in R
3.

The surface distance map computes the distance-to-closest-

primitive mapping at each point on the boundary of the

mesh. The distance function varies continuously along the

surface and the gradient of the distance map yields the di-

rection vector to the closest object. If the primitives O are

closed and orientable, we can also associate a sign with the

distance map.

Most of the prior techniques compute the distance field

along a volumetric grid or a voxelized representation of

space. At a broad level, these algorithms can be classified

into object space methods that perform direct scan conver-

sion into 3D voxels or image space methods that compute

the closest primitive at each grid point. The latter meth-

ods can be accelerated by rasterizing the distance functions

using the graphics hardware [HCK∗99, SGGM06, SPG03,

FG05]. These algorithms compute the distance field along

each slice of a 3D grid and the computation can be accel-

erated by using spatial bounds on the Voronoi regions of

the primitives [SOM04, PS05]. However, these volumetric

techniques have many limitations. Their storage overhead

and computation time is O(n3), where n is the resolution

along the grid. As a result, current 3D distance field com-

putation algorithms are not fast enough for interactive ap-

plications. Moreover, their accuracy can be low as most of

the grid vertices do not exactly lie on the mesh boundary.

Main Results: We present a new algorithm to compute sur-

face distance maps of triangulated models. Our algorithm

uses a simple texture representation to store a piecewise

planar parametrization of the mesh. The parameterization

defines an affine transformation for each primitive of the

mesh. The 2D texture map is used as a discrete sampling of

the mesh for distance map computation.

We apply the affine transformation of the geometric

primitive to compute the distance functions of 3D primi-

tives using the texture mapping hardware. We use the sten-

cil test to clip the distance functions to regions correspond-
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Figure 1: Surface distance map of the Hugo model enclosed in a box: We show the surface distance map of the Hugo model

(17.2K polys - in wireframe) within a box (12 polys). (a) The surface distance fields of Hugo on the box and of the box on

the Hugo model. The distances increases from red to green. (b) The Voronoi diagrams of the Hugo and box that are used

to compute the distance maps. Each colored region represents a Voronoi region of a site. (c) The normalized gradient of

the distance field. The color of a point on the box encodes a vector representing the direction to its closest point on Hugo

(and vice versa). Our algorithm can compute surface distance map of the Hugo and the box in 600ms on a grid of resolution

256 × 256.

ing to the geometric primitive in the 2D texture. Our al-

gorithm employs spatial hierarchies to localize the distance

field computations and improve the overall performance.

We have implemented our algorithm on a Pentium IV

PC with an NVIDIA GeForce 7800 GTX GPU. We high-

light its performance on complex benchmarks composed of

thousands of triangles. In practice, our algorithm is able

to compute high resolution distance fields in a few hundred

milli-seconds. The distance values are computed on a float-

ing point buffer using 32-bit floating point precision. We

use our algorithm to perform interactive collision and sep-

aration distance queries between 3D deforming objects. As

compared to prior techniques, our algorithm offers the fol-

lowing advantages:

• Generality: Our algorithm is applicable to all man-

ifold triangulated models. The only requirement is

computation of the piecewise parameterization of the

mesh.

• Accuracy: We can compute very high resolution dis-

tance maps, e.g. 1K × 1K at 32-bit floating point pre-

cision. On the other hand, previous techniques based

on volumetric approaches could barely compute dis-

tance fields 1283 or 2563 resolution at interactive rates.

• Performance: Our algorithm can handle deformable

models with thousands of polygons at interactive rates.

We observe 5 − 10 times speedup over prior distance

field computation and collision detection algorithms.

Organization: The rest of the paper is organized as follows.

We briefly survey prior work on distance field computation

and surface mapping in Section 2. Section 3 describes our

algorithm to compute distance maps for two-manifolds and

we present a number of techniques to improve its perfor-

mance in Section 4. We analyze our algorithm in Section

5 and highlight its performance on different benchmarks in

Section 6.

2 Related Work

In this section, we give a brief overview of related work

on distance fields and surface mappings.

2.1 Distance Fields

Algorithms to compute distance fields are widely stud-

ied. At a broad level, these algorithms can be broadly classi-

fied based on the model representations such as images, vol-

umes or polygonal representations. Good surveys of these

algorithms are given in [Cui99, Aur91, PS05].

The algorithms for image-based data sets perform ex-

act or approximate computations in a local neighborhood

of the voxels. [Dan80, Set99, BGKW95, MQR03, GF03].

Exact algorithms for handling 2-D and k-D images have

been propose to compute the distance transforms in voxel

data in O(N) time, where N is the number of voxels

[BGKW95, MQR03].

There is extensive work in computing the exact Voronoi

diagram of a set of points [Aur91]. However, exact compu-

tation of Voronoi regions of higher order primitives such as

lines or triangles is a hard problem due to its algebraic and
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combinatorial complexity. As a result, most practical algo-

rithms compute an approximation to the Voronoi diagram

by computing distance fields on a uniform grid or an adap-

tive grid. A key issue is the underlying sampling criterion

used for adaptive subdivision [VO98, TT97, ER02, PF01].

The computation of a discrete Voronoi diagram on a uni-

form grid can be performed efficiently using graphics raster-

ization hardware. This idea was original proposed for point

primitives in [WND97]. Hoff et al. [HCK∗99] render a

polygonal approximation of the distance function on depth-

buffered graphics hardware and computed the generalized

Voronoi Diagrams in two and three dimensions. The 3D al-

gorithm computes each slice separately. An efficient exten-

sion of the 2-D algorithm for point primitives is proposed in

[Den03]. Sud et al. [SOM04, SGGM06] present algorithms

efficiently compute distance fields of polygonal primitives

by using a combination of culling and clamping algorithms

and map the computations to the texture mapping hardware.

In practice, these algorithms can improve the performance

of 3D distance field computation considerably, but are not

fast enough for interactive applications. Fischer and Gots-

man [FG05] describe techniques to approximate higher or-

der Voronoi diagrams and distance fields using GPUs.

A class of exact distance computation and collision de-

tection algorithms based on external Voronoi diagrams are

described in [Lin93]. A scan-conversion method to com-

pute the 3-D Euclidean distance field in a narrow band

around manifold triangle meshes (CSC algorithm) is pre-

sented by Mauch [Mau03]. The CSC algorithm uses the

connectivity of the mesh to compute polyhedral bounding

volumes for the Voronoi cells. The distance function for

each site is evaluated only for the voxels lying inside this

polyhedral bounding volume. Sigg et al. [SPG03] describe

an efficient GPU based implementation of the CSC algo-

rithm. Peikert and Sigg [PS05] present algorithms to com-

pute optimized bounding polyhedra of the Voronoi cell for

GPU-based distance computation algorithms. Lefohn et al.

describe an algorithm for interactive deformation and vi-

sualization of level set surfaces using graphics hardware

[LKHW03].

2.2 Surface Mapping and Parameterization

Surface distance maps can be regarded as a mapping

computed on the surface. In some ways, this problem

is related to other surface mapping problems such as tex-

ture mapping [Cat74], which is used to define the color on

the surface; displacement mapping [Coo84], which consists

of perturbations of the surface positions; bump mapping

[Bli78], which give perturbations to the surface normals;

and normal maps [Fou92], which contains the actual nor-

mals instead of the perturbations. All these mapping are

supported by current graphics hardware.

Figure 2: Affine map and distance computation: We com-

pute the distance map at a point Q on triangle T (of O1).

The green vector shows the closest site of O2 to Q. The

affine map M maps T to a triangle in the 2D domain.

The problem of computing a parameterization is well

studied in the literature. A recent survey of these techniques

is given in [FH05]. Given a closed model, these algorithms

cut the model into charts such that each chart is homeomor-

phic to a disk. Each chart is parameterized separately and

the final parameterization is an atlas of these chart parame-

terizations.

3 Surface Distance Maps

In this section, we present surface distance maps and our

algorithm to compute them efficiently using texture map-

ping hardware. We first introduce the notation used in the

paper.

3.1 Notation

We use upper case letters to represent objects or triangles

in 3D and lower case letter to represent their mapping on a

2D plane. We denote piecewise linear 2-manifold objects

or meshes in 3D as Oi. Furthermore, Oi is decomposed

into vertices, edges and faces, also known as sites. We as-

sume that the model is triangulated and each edge and face

represents an open set. A site is denoted as Pi. We use

d(Q, Pk) to denote the distance function of a site Pk at a

point Q ∈ R
3. The distance function of a site Pi on a tri-

angle T in the 3D mesh represents the closest distance from

each point Q on T to Pi. The closest vector from Q to Pi

is known as the distance vector. The color at Q is defined

as color(Q) and we use this function to denote the closest

distance.

Given two 2-manifold objects O1 and O2, the surface

distance field D(O1) of an object O1 at a point Q ∈ O1

is the minimum value of the distance functions of all sites
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Pk ∈ O2 at Q. The surface distance map of O1 computes

the surface distance field at a discrete set of sampled points

on O1. We define an affine mapping Mk : Tk → T1 to

transform the sampled points on the triangles Tk ∈ Oi into

a 2D plane Ti ⊂ R
2.

3.2 Distance Fields: Background

Distance fields can be computed efficiently on discrete

volumetric grids by rasterizing the distance function of each

site to the points in the grid. Many algorithms compute the

distance functions from each site to the points on the planes

swept along the Z-axis of the grid [SOM04, SGGM06,

SPG03, PS05]. These algorithms perform the distance field

computation using one of these approaches:

1. Evaluate the distance function d(Q, Pk) at each point

Q in the plane directly by rasterizing the distance func-

tions and use the depth-buffer hardware.

2. Compute the distance vector from Q to the site and

use the magnitude of the distance vector to compute

d(Q, Pk). This computation can be efficiently per-

formed using the bilinear interpolation capabilities of

the texture mapping hardware.

In order to accelerate the computations, prior algorithms

construct a convex bounding polytope B to represent the

region of influence of a site on each plane along the Z-axis.

As a result, the distance function is only evaluated at the

points inside B. We use similar techniques to accelerate the

computation of surface distance maps.

3.3 Planar Parameterization

Given a 3D mesh with triangles Tk, k = 1, . . . , n, our

algorithm transforms Tk into a 2D plane tk by applying an

affine mapping Mk (see Fig. 2). Mk is represented as a

matrix and ensures the following properties:

• There is a one-to-one mapping from a point Q ∈ Tk

to the point MkQ ∈ tk. This mapping is computed by

performing matrix-vector multiplication MkQ.

• No two transformed triangles tk = MkTk and tl =
MlTl share a common interior point in the 2D plane.

These constraints are satisfied using piece-wise pla-

nar parameterizations of the surface in 3D space and the

mapped triangles can be represented in a 2D texture atlas.

The affine transform for a triangle Tk to a triangle tk in

2D plane is computed by first rotating the triangle Tk into

the plane of tk and aligning an edge of tk with the corre-

sponding edge of Tk. Finally, a shear transformation is ap-

plied to align the three vertices of tk with the transformed

vertices of Tk. Mathematically, Mk = AtAsAr where At

is a translation matrix, As represents a scale and shear ma-

trix in the XY plane and is of the form

As =





sx sh ∗ sy 0
0 sy 0
0 0 1



 ,

and Ar is a rotation matrix.

3.4 Surface Distance Computation

Surface distance maps compute the distance-to-closest-

primitive in the the scene to the sampled points on the sur-

face of the mesh. We first compute the affine mappings,

Mk, for each triangle Tk in the 3D mesh. These affine

map defines the sampling on each triangle Tk in 3D space

by sampling the projected triangle tk in the 2D plane of

the surface distance map. The surface distance map sam-

ples the 2D plane uniformly using a 2D texture. Instead of

computing distances using a volumetric grid, our algorithm

computes the distance map on each triangle Tk using affine

transforms of distance functions to a 2D plane containing

tk.

We present an algorithm to compute distance functions

on a set of sampled points on the triangles of the 3D mesh.

For each site Pi, we compute a convex bounding polytope

B, which acts as a spatial bound on the Voronoi region of

Pi. In other words, any point outside B can not lie in the

Voronoi region of Pi. We intersect B with the plane of a

triangle Tk in 3D mesh. We then use the following lemma

to compute the distance vectors on Tk.

Lemma 1: Given an affine transformation Mk that maps

a triangle Tk to a triangle tk in the 2D texture. Let B be

the convex bounding polytope of a site Pi and let Vj , j =
1, . . . , l denote the vertices of B ∩ Tk. Let the color at Mk

vj∈ tk be color(Mkvj) = d(vj , Pi) and Q be an interior

point on B ∩ Tk. Then d(Q, Pi) is equal to color(MkQ).

Proof: Let Q =
∑k

j=0
λjvj , λj ≥ 0, 1 ≤ j ≤ k. Based

on the properties of distance vectors, we can show that

d(Q, Pi) =
∑k

j=0
λjd(vj , Pi). Furthermore MkQ ∈ t

and MkQ =
∑k

j=0
λjMkvj . Since color is linearly

interpolated, color(MkQ) =
∑k

j=0
λjcolor(Mkvj) =

∑k
j=0

λjd(vj , Pi). Therefore, color(MkQ) = d(Q, Pi).
Q.E.D.

Lemma 1 shows that the distance vector computation on

B ∩ Tk can be performed by assigning the color at each

vertex v to d(v, Pi) and transform the computation of B ∩
Tk to the 2D plane. Then, the distance vector for each point

Q ∈ B ∩ Tk can be computed using the texture mapping at

the location MkQ in the 2D texture.
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3.5 Mapping to GPUs

Surface distance maps can be computed by the rasteri-

zation hardware by using the transformation, clipping and

interpolation capabilities of the GPUs. We use Lemma 1 to

design an efficient pipeline for surface distance map com-

putation using GPUs:

• Vertex Engines: We first compute the bounding poly-

tope on the CPU, and transform the vertices of the

bounding polytope onto the 2D plane of surface dis-

tance map. The transformation operation is defined

using a projective matrix and is implemented using the

vertex processors on a GPU.

• Stencil Test: B ∩ T corresponds to the region of B

projecting inside the triangle t (which is a mapping of

T in the 2D domain) in the texture atlas. We use the

stencil functionality of GPUs to clip the projection of

B to the region inside t.

• Texture Mapping: The linear interpolation of color is

equivalent to the interpolation of texture co-ordinates

assigned to the vertices of the triangle. This function-

ality computes the distance vectors in the texture atlas.

• Fragment processing: The distance value at the frag-

ment is the norm of the distance vector and computed

using the fragment processor.

• Depth Test: The distance value is stored in the depth

and compared with the current minimum distance

value using the depth test functionality of GPUs. The

minimum distance value is stored in the depth buffer.

4 Interactive Distance Map Computation

In the previous section, we presented our algorithm to

compute the distance map using the GPUs. The algo-

rithm requires computing of intersections between bound-

ing polytopes of sites and the triangles in the 3D mesh. In

this section, we present culling and clipping techniques to

accelerate the performance of the algorithm.

4.1 Clipping

Surface distance maps require an efficient clipping algo-

rithm for each triangle-site pair (see Lemma 1). Given a site

Pi and a triangle Tk, we restrict the computation on the 2D

plane to the interior of tk using stencil. As a result, each

triangle-site pair requires a valid stencil portion in tk and

the stencil has to be set in the region corresponding to tk.

We first describe an algorithm to perform clipping using a

Input: Two objects O1, O2. Parameterization t(O1)
from O1 to T1.

Output: The SDF D(O1) of object O1.

Initialize D(O1) to∞ for all points Q in T11

Update AABB hierarchy of O12

foreach face fi
w in O1 do UpdateAffine (fi

w,t(O1))3

foreach site Pj in O2 do4

Gj ← ComputeOBB(Pj)5

Intersect Gj against AABB hierarchy of O16

foreach face fi
w in O1 intersecting Gj do7

gj ← ClipPolytope(Gj , fi
w)8

foreach vertex xk
w in gj do9

Compute distance vector ~d(xk
w, Pj)10

Transform xk
w to xk

s
11

Assign texture coordinates of xk
s,12

(r, s, t)← ~d(xk
w, Pj)

end13

Draw textured polygon gj on domain T114

end15

end16

Read-back T117

foreach face fi
s in T1 do18

Map distance values from fi
s to fi

w
19

end20

Algorithm 1: Pseudo-code to compute the surface dis-

tance map of O1 using sites in O2. We initialize the dis-

tance values in the surface distance map D(O1) to ∞
(line 1). We then update the hierarchy and the affine

transforms of triangles in O1 using a linear-time algo-

rithm (lines 2–3). Next, we update the surface distance

map of O1 using the sites in O2 (lines 4 – 13). For

each site, we compute its bounding polytope and intersect

the OBB of bounding polytope with the AABB hierarchy

(lines 5–6). For each intersecting polytope, we compute

the surface distance map using stencil tests (lines 7–13).

single valid stencil value, and present a more efficient sten-

cil caching algorithm that uses multiple valid stencil values

to perform clipping.

The algorithm proceeds as follows. For each site Pi and

a triangle Tk in a plane Pk in 3D space, we first compute its

bounding polytope B and compute B ∩ Pk. Next, we clip

the transformed primitive Mk(B∩Pk) to tk in the 2D plane.

We use the stencil test functionality to perform the clipping

operation. We first set the stencil value of the triangle to

1 by rendering tk. We then render Mk(B ∩ Pk) onto the

portions of the surface distance map with the stencil value

set to 1. We then render tk by setting the stencil value to 0
on the triangle.

For every two consecutive triangle-site pairs (Tk, Pi),
(Tl, Pj), k 6= l, our algorithm resets stencil on regions cor-

responding to tk and sets the stencil on regions correspond-

ing to tl. The reset and set stencil operations can become

fill-bound. We improve the performance of our clipping al-
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Figure 3: Collision and separation distance computation on deforming alphabets ”EG”: Deforming dynamic simulation on

two alphabets, (3.7K triangles total). (a)-(b) Two frames from the simulation. (c) The gradient of surface distance maps of

each alphabet shows the direction of the closest point on the other alphabet. Our algorithm can compute the global distance

maps for both bunnies in 100ms at a grid of resolution 512× 512. The proximity queries involve readback and scanning and

takes about 10ms on top of distance map computation.

gorithm using a cache that maintains multiple stencil val-

ues. Initially, all the stencil values are unassigned. As the

distance computations are performed on the triangles, the

cache sets the unassigned stencil values to the triangles and

to the newly assigned stencil value used for clipping opera-

tion on a triangle. We use a simple replacement policy if no

value is available.

In order to compute the valid stencil value for Tk, we

first test if the stencil is set on regions corresponding to tk.

If the stencil is set, we simply use that value for the clipping

operations. On the other hand, if the stencil value is not set,

we need to assign a valid stencil value to Tk. In order to

assign a valid stencil value, we check if any of the stencil

values in the cache are unassigned. If an unassigned value

is available, we assign that value to Tk. If no valid sten-

cil value is available, the cache uses the least recently used

(LRU) replacement policy to determine the stencil value to

be allocated to Tk. In this case, we first reset the stencil

on the triangle whose stencil is least recently used and then

allocate that stencil value to Tk.

4.2 Hierarchical Culling

We use a hierarchical distance culling algorithm to re-

duce the number of triangle-site pairs in the surface dis-

tance map computation. Lemma 1 indicates that the dis-

tance functions are computed on a triangle Tk in 3D mesh

only when B∩Tk is not empty. We use an AABB-hierarchy

of each object to quickly cull away sites whose bounding

polytopes B do not overlap with the triangles in the 3D

mesh Tk.

Our algorithm initially constructs an AABB hierarchy

for each object. Each leaf of the hierarchy stores a triangle

of the object. At run-time, we update the AABB-hierarchy

and use it for culling bounding polytopes that do not inter-

sect with the AABB-hierarchy. We use the initially con-

structed AABB hierarchy and update the bounding boxes

of the hierarchy nodes in a bottom-up manner. The update

cost of a hierarchy is linear to the number of leaves in the

AABB-hierarchy and is usually fast. For each site Pi, we

construct a bounding polytope B and compute a tight-fitting

oriented bounding box OBB(B) that encloses B. We per-

form overlap tests between OBB(B) and the AABBs that

correspond to the nodes of the AABB hierarchy. For each

leaf with triangle Tk that overlaps with OBB(B), we per-

form distance computations on B ∩ Tk as described in Sec-

tion 3. The OBBs are constructed only once for each site,

and therefore, the time taken to update the OBBs is linear

to the number of sites in the scene.

We further improve the performance of our surface dis-

tance map algorithm by reducing the number of distance

function rasterization operations using distance bounds

computed using the AABB hierarchy. For each node in the

AABB hierarchy, we maintain a lower bound on the maxi-

mum distance from the AABB of a triangle Tk to the AABB

of the sites. Initially, the maximum distance bound of each

node in the hierarchy is set to ∞. We do not perform dis-

tance evaluation of a site Pi for triangle Tk if the distance

bound stored for a node in the hierarchy is less than than

the minimum distance from the AABB of the node to the

AABB of Pi. This culling test based on distance bounds

is used to reject sites whose distance functions do not con-

tribute to the distance map on Tk, as there exists some other

sites that are closer to Tk.

If a site is not culled away, we intersect the bounding

polytope B of the site with Tk and compute the distance

vectors at the vertices of B ∩ Tk. We then perform distance

function computation on B ∩ Tk.
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Figure 4: Distance map computation for a deforming

triangle: The triangle undergoes a non-rigid deforma-

tion (S) in terms of shear and scale. We compute a

new affine mapping for the triangle (M2) and use it to

compute the distance map on the triangle. The sample

locations are shown as dots in the 2D domain and the

triangles.

Figure 5: This figure highlights the distance between

adjacent samples in the 2D plane when a rectangular

planar primitive undergoes a scale (Fig. 5(a) and Fig.

5(c))or a shear transformation( Figs. 5(b),(c) and Figs.

5 (c), (d)).

5 Analysis

In this section, we analyze the accuracy of our algorithm.

We show that our algorithm can be used to compute a dis-

tance map up to a desired precision. We also consider the

case when the triangles undergo non-rigid deformations and

highlight the accuracy of distance maps based on the affine

transformations.

5.1 Error Analysis

The algorithm presented in section 4 computes an accu-

rate surface distance map at the sample points on the bound-

ary of the objects. Its accuracy is governed by the preci-

sion of the texture mapping hardware that performs bilin-

ear interpolation. Current GPUs offer 32-bit floating arith-

metic to perform these computations. We also present an

error bound on the computed distance for any point on the

surface, as the object undergoes non-linear deformations.

Given a sampling on the texture domain, we derive a func-

tion to compute the sampling density on the surface in 3D

using the inverse of the affine map. Given the sampling den-

sity in 3D, we compute bounds on the distance. One can

also use the inverse of the function to compute the sampling

required in the texture domain to achieve a desired precision

in the distance field.

Given two points pw and qw on an object O1 and the

surface distance map of O1 w.r.t. object O2, the change in

the value of surface distance map from p to q is bounded

by the distance between pw and qw [SOM04]:

‖ d(pw, O2) − d(qw, O2) ‖≤‖ pw − qw ‖ .

In order to bound the error in computed distances, we bound

the distance between a given point and the closest sample

from the surface distance map. This is bounded by the max-

imum distance between four adjacent samples in the surface

distance map.

Let pw and qw be adjacent points on the surface of O1.

The corresponding points ps and qs on the texture domain

T1 are given by t. The affine transform is defined using a

combination of scaling, translation and rotations. The func-

tion t is invertible since the scaling used to compute the

affine transforms are non-zero. The distances are preserved

under translation and rotation, as the corresponding matri-

ces used to define the affine transformation do not change

the distance between adjacent samples. Only the scale and

shear change the distance between four adjacent samples

and we derive error bounds under shear and scaling.

We assume the mapping t(O1) from initial position of

O1 to the texture atlas T1 has unit scale and shear, and the

spacing between two adjacent samples along each axis in T1

is δ. We provide a function f(δ) which bounds the distance

between two adjacent samples in O1.

In the initial position of O1, since sx = 1, sy = 1, sh =
0, the spacing between two samples is bounded by f(δ) ≤√

2δ.

Let the maximum motion of a vertex in 3D, modulo any

rigid body transformations, space be bounded by dm. This

gives a bound on the maximum deformation of a face on O1.
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Figure 6: Relative error in distance map computation for

a deformable model: The relative error measures the ra-

tio of maximum distance between adjacent samples on the

distance map for all the triangles in a frame to the max-

imum distance between adjacent samples measured at the

beginning of the simulation. The graph highlights the rela-

tive error on a deformable simulation using a resolution of

512 × 512.

An upper bound on the scaling is given by (s2

x+s2

y) ≤ 2dm.

Maintaining the sample spacing in T1 turns out to be δs, the

maximum distance between two adjacent samples in O1 is

bounded by f(δ) ≤
√

(sxδ)2 + (syδ)2 ≤ 2dmδ.

We now show that the distance between two adjacent

samples changes when the shearing exceeds a threshold,

and derive the bounds. Consider a rectangular face in 2D

with width b along X , and height h. Let the shear along Y

be sh. Assuming that the motion only produces shear (see

Fig. 4),

sh =
2dm

h
(1)

Distance between two adjacent samples increases by more

than
√

2δ only if the first sample in row y + δ moves past

the last sample in row y, shδ > b + δ. Replacing from

equation (1) we get

dm >
bh

2δ
+ 1.

Thus, if dm ≤ bh
2δ

+1, then there is no additional error due to

shear. If dm > bh
2δ

+1, then the effective increase in spacing

along X axis between two rows of adjacent samples is dx =
max(sh − ( b

δ
+ 1), 0). In presence of scaling, the spacing

along each axis is replaced by sxδ and syδ respectively. We

make the simplifying assumption that sx = sy . Then the

increase in spacing along X is given by (sx + dx), where

dx = max(sh − ( b
sxδ

+ 1), 0), and the total error bound in

the distance is f(δ) ≤ δ
√

(sx + dx)2 + s2
y .

6 Implementation and Performance

In this section we describe the implementation of our al-

gorithm to compute surface distance maps and its applica-

tion to proximity queries between deformable models. We

also compare our algorithm with prior distance field com-

putation algorithms.

6.1 Implementation

We have implemented our algorithm on a PC with a

2.4Ghz Opteron 280 CPU, 2GB of memory and an NVIDIA

7800 GTX GPU connected via a PCI-Express bus, running

Windows XP operating system. We used OpenGL as the

graphics API and the Cg programming language for imple-

menting the fragment programs. The initial mapping from

the manifold objects to the texture atlas is computed using

NVIDIA’s Melody 1 software. The surface distance map of

each object is computed on a floating point buffer using 32-

bit floating point precision. The distance vectors are passed

as texture parameters to the fragment program.

Our algorithm can compute high-resolution (512 × 512
to 1K × 1k) surface distance map of objects with tens of

thousands of polygons in fraction of a second. We highlight

the performance of our algorithm on scenes with varying

polygon counts is highlighted in the graph. We also com-

pute the gradient of the distance field which gives the di-

rection to the closest primitive for a point on the surface of

an object. As compared to prior approaches based on vol-

umetric techniques, our surface distance map computation

algorithm is about 5 − 10 times faster.

6.2 Proximity Queries

We use our algorithm to compute proximity information

among 3D deformable models. This includes separation

distance, collision detection, penetration depth and contact

normal computation [HZLM01]. We first localize the re-

gion of overlap between two objects O1 and O2, and com-

pute the surface distance map for all triangles of each object

that lie inside the localized region. The separation distance

between two objects is computed using minimum Euclidean

distance from points on one object to points on the other

object. We read back the surface distance maps of O1 and

O2, and scan the pixels to determine the minimum distance.

Collision detection is performed by checking for pixels with

zero distance. In order to compute local penetration depth,

we assign a sign to the distance values based on the orien-

tation of the surface. In particular, all points of O2 that are

inside O1 are assigned negative distance values. We then

compute the maximum of these values to approximate the

local penetration depth.

1http://developer.nvidia.com/object/melody home.html
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Figure 7: Proximity computation on deformable models: Dynamic simulation of two deforming bunnies, each with 2K

triangles . (a)-(b) Two frames from the simulation. (c) The surface distance map of both the bunnies that shows the distance

field on the boundary. The distance increases from red to green. Our algorithm can compute the global distance maps and

proximity queries in 300 − 320ms at a resolution of 512 × 512.

We used our algorithm for proximity query on 2 scenar-

ios consisting of deforming objects. The first is a sequence

of two deforming alphabets as shown in figure 3. The al-

phabet ’E’ consists of 2.1K polygons, while the object ’G’

consists of 1.6K polygons. At each frame, we compute a

surface distance map at a resolution 512×512. The average

time to perform all proximity queries is 110ms. As com-

pared to [HZLM01, SGGM06], our surface distance algo-

rithm results in speedup of 8 times. All these GPU-based

algorithms are image-space algorithms. Since we are com-

puting the distance map at a much higher resolution, the

image-space error using our algorithm is much lower as

compared to prior approaches. We also perform the prox-

imity computation on a sequence of two deforming bunnies.

Each bunny consists of 2K polygons. At each frame, we

compute a surface distance map at a resolution 512 × 512.

The distance map computation and proximity queries take

about 300 − 320 ms per frame.

6.3 Comparison

In this section, we compare the features and performance

of our surface distance map algorithm with prior approaches

that compute the distance field on a uniform volumetric grid

using GPUs. These include DiFi [SOM04], linear factor-

ization [SGGM06] and efficient GPU implementations of

CSC algorithm [SPG03, PS05]. All the prior approaches

com pute the distance field along a uniform 3D grid. Since

the GPU computes the distance field along one slice, these

algorithm perform the computations along different slices

and exploit spatial coherence between the slices to speed up

the computation.

The precision of the distance field computed using a vol-

umetric approach is governed by the cell size in the uniform

grid. Let the number of cells in the grid n×n×n, and stor-

age overhead is O(n3). Then the error of the distance field

is
√

3

2m
. In comparison, for a surface distance map of size

n × n, the storage cost is O(n2), and the error in the dis-

tance field is
√

2

2n
in absence of any scale and shear. As the

model undergoes deformation, the error bound for surface

distance map is given by the function f( 1

m
) presented in

Section 5. Typically, the maximum amount of deformation

dm is small, and the error in the distance field is O( 1

m
). As

a result, our approach results in higher resolution distance

fields. Current GPUs have 512MB or 1GB of video mem-

ory. It may not even be possible to store a volumetric dis-

tance at a very high memory (e.g. (1K)3) on current GPUs,

as it would require 8GB of memory. Furthermore, the cost

of reading back a 3D distance field of (1K)3 and scanning

is rather high, i.e. about 16 seconds using a readback band-

width of 500MB/sec. On the other hand, we restrict the

distance field computation to the surface of a mesh and can

compute a high resolution mesh at interactive rates.

Let there be m sites in each object. Then the computation

cost to compute the global distance field using a volumetric

approach varies between O(mn3) and O(n3). For narrow

bands, the cost is O(m + n1) where n1 is the number of

pixels near the surface. On the other hand, the rasteriza-

tion cost of computing the global surface distance map on

the GPU varies between O(mn2) and O(n2). For narrow

bands, the cost is close to O(n2) - as all n2 pixels lie on the

surface.

A quantitative comparison of average time to compute

the distance fields on deformable models is shown in figure

8.

7 Limitations

Our approach has many limitations. We compute a 2D

domain triangle for each triangle in the 3D mesh. We pack

all these 2D domain triangles in the texture atlas and our

9



Figure 8: Timing comparison between our algorithm and a

GPU-based volumetric distance field algorithm [SGGM06]

labeled as SDF and Linear Factorization respectively:

Our algorithm is able to achieve 5–10 times speedup in

proximity computation between two deforming alphabets.

The scene is composed of 3.7K polygons. The surface dis-

tance field is computed at a resolution of 512× 512 and the

volumetric distance field is computed at 180 × 150 × 256.

Our algorithm is able to obtain higher accuracy in distance

field computation on the surface and achieves an interactive

performance of 5–10 frames per second.

current packing algorithm may not be optimal. Our current

approach is limited to deforming triangles with fixed con-

nectivity. If the underlying simulation consists of objects

with changing topologies, we may need to update the pla-

nar parameterization and recompute the spatial hierarchies.

The accuracy of our proximity computation algorithm is

governed by the resolution of the distance map. One pos-

sibility is to combine our algorithm with conservative dis-

tance bounds[SGG∗06] and perform the proximity compu-

tations at object-space precision in a conservative manner.

Furthermore, our current algorithm can only perform prox-

imity computations between a pair of objects, and does not

perform N-body computations.

8 Conclusions and Future Work

We present a new algorithm to compute surface distance

maps for triangulated models using the texture mapping

hardware. We compute a planar parameterization of the

mesh and use the affine mapping to efficient evaluate the

distance maps. We also present culling and clipping tech-

niques to speed up the computations. We highlight the per-

formance of our algorithm on complex models and use it to

perform interactive proximity queries between deformable

models.

There are many avenues for future work. We could fur-

ther improve the performance of our algorithm by using

spatial and temporal coherence between successive frames.

It may be possible to extend our algorithm to objects with

changing topologies, where we incrementally recompute

the affine transformations. We would like to use proxim-

ity computation algorithm to perform self-proximity queries

including self-collisions or self-penetrations in cloth simu-

lation. Surface distance maps could also be useful to accel-

erate ray tracing dynamic scenes [SKALP05].
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