
This may be the author’s version of a work that was submitted/accepted

for publication in the following source:

Zhan, Haifei & Gu, YuanTong

(2012)

Surface effects on the dual-mode vibration of [110] silver nanowires with

different cross-sections.

Journal Physics D: Applied Physics, 45(46), pp. 1-10.

This file was downloaded from: https://eprints.qut.edu.au/54364/

c© Consult author(s) regarding copyright matters

This work is covered by copyright. Unless the document is being made available under a

Creative Commons Licence, you must assume that re-use is limited to personal use and

that permission from the copyright owner must be obtained for all other uses. If the docu-

ment is available under a Creative Commons License (or other specified license) then refer

to the Licence for details of permitted re-use. It is a condition of access that users recog-

nise and abide by the legal requirements associated with these rights. If you believe that

this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

Notice: Please note that this document may not be the Version of Record

(i.e. published version) of the work. Author manuscript versions (as Sub-

mitted for peer review or as Accepted for publication after peer review) can

be identified by an absence of publisher branding and/or typeset appear-

ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1088/0022-3727/45/46/465304

https://eprints.qut.edu.au/view/person/Zhan,_Haifei.html
https://eprints.qut.edu.au/view/person/Gu,_YuanTong.html
https://eprints.qut.edu.au/54364/
https://doi.org/10.1088/0022-3727/45/46/465304


Surface effects on the dual-mode vibration of <110> silver 

nanowires with different cross-sections 

H.F. Zhan and Y.T. Gu*
 

School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 

Brisbane 4001, Australia 

 

 

 

 

 

 

 

 

 

 

 

*Corresponding Author: Dr. Yuantong Gu 

Mailing Address: School of Chemistry, Physics and Mechanical Engineering, 

                               Queensland University of Technology, 

                                                                   GPO Box 2434, Brisbane, QLD 4001, Australia   

Telephones: +61-7-31381009 

Fax: +61-7-31381469 

                               E-mail: yuantong.gu@qut.edu.au 

mailto:yuantong.gu@qut.edu.au


1 

 

Abstract: Dual-mode vibration of nanowires has been reported experimentally through actuation of 

the nanowire at its resonance frequency, which is expected to open up a variety of new modalities for 

the NEMS that could operate in the nonlinear regime. In the present work, we utilize large scale 

molecular dynamics simulations to investigate the dual-mode vibration of <110> Ag nanowires with 

triangular, rhombic and truncated rhombic cross-sections. By incorporating the generalized Young-

Laplace equation into Euler-Bernoulli beam theory, the influence of surface effects on the dual-mode 

vibration is studied. Due to the different lattice spacing in principal axes of inertia of the {110} atomic 

layers, the NW is also modeled as a discrete system to reveal the influence from such specific atomic 

arrangement. It is found that the <110> Ag NW will under a dual-mode vibration if the actuation 

direction is deviated from the two principal axes of inertia. The predictions of the two first mode 

natural frequencies by the classical beam model appear underestimated comparing with the MD 

results, which are found to be enhanced by the discrete model. Particularly, the predictions by the 

beam theory with the contribution of surface effects are uniformly larger than the classical beam 

model, which exhibit better agreement with MD results for larger cross-sectional size. However, for 

ultrathin NWs, current consideration of surface effects is still experiencing certain inaccuracy. In all, 

for all different cross-sections, the inclusion of surface effects is found to reduce the difference 

between the two first mode natural frequencies. This trend is observed consistent with MD results. 

This study provides a first comprehensive investigation on the dual-mode vibration of <110> oriented 

Ag NWs, which is supposed to benefit the applications of NWs that acting as a resonating beam. 

 

Keywords: dual-mode vibration, nanowire, surface effects, natural frequency, beam theory 

 

1. Introduction 

Nanowires (NWs) exhibit extraordinary mechanical, electrical, optical and thermal properties, which 

enabled them being widely utilized as active components of nanoelectromechanical systems (NEMS) 

[1], such as high frequency resonators [2], field effect transistors (FETs) [3], nano switches [4], and 

other devices [5-7]. Specifically, NWs commonly play a role of a vibrating beam in NEMS, and very 

minute changes in the local environment, such as perturbations in forces, pressure or mass, can be 

detected by monitoring the corresponding changes in the resonance frequency of the NW [8]. 

Successful applications of this nanowire-based NEMS can be found in atomic force microscopy 

(AFM) and various kinds of sensors and actuators [7, 9]. Hence, it is crucial to characterize the 

vibrational properties of NWs. 

Currently, great research efforts have been made to probe the vibrational properties of NWs. A 

number of experimental studies on the resonant frequencies of both metallic and semiconducting NWs 

can be found [10-17]. Using either surface-based extensions of continuum elasticity theory [18, 19] or 

multi-scale computational techniques [20-22], some researchers examined surface stress effects on the 
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resonant frequencies of NWs. Other studies on the vibrational properties of metal NWs have also been 

conducted by molecular dynamics (MD) simulations [8, 23, 24]. It is noticed that most of these 

studies have assumed a priori that NWs oscillate in a single plane. According to the work by Conley 

et al. [25], NW resonator can suddenly transit from a planar motion to whirling, ‘jump rope’ like 

motion, i.e., nonlinear or nonplanar vibration. Similar dual-mode resonance has also been observed in 

ZnO nanobelts [26] and GaN NWs [27], which is expected to open up a variety of new modalities for 

the NEMS that could operate in the nonlinear regime.  

It is believed that NWs will vibrate in all planes with an identical frequency if the cross-section is 

symmetry. However, once this symmetry is broken, the single vibrational resonance peak will split 

into two closely spaced peaks of similar amplitude, with the peaks corresponding to vibrations in 

orthogonal planes [28]. Upon this fact, Gil-Santos et al. [28] proposed a new approach to mass 

sensing and stiffness spectroscopy, which allows the mass, stiffness and azimuthal arrival direction of 

the adsorbate to be determined. Our recent work [29] reported that the <110> FCC metal NWs (with 

circular or square cross-section) naturally possess two closely spaced resonance frequencies due to the 

specific lattice spacing in the {110} atomic layers, i.e., the NW exhibit a beat phenomenon or dual-

mode vibration. Moreover, according to the recent experimental reports that the <110> NWs could be 

controlled to grow with a triangular cross-section [30], rhombic or even truncated rhombic cross-

section [31]. It is noticed that, such asymmetric cross-section would leave the NW vibrating in two 

orthogonal planes, i.e., under dual-mode vibration. Thus, these NWs could be a good candidate for the 

application proposed by Gil-Santos et al. [28], which naturally exhibit two resonance frequencies. 

However, it is found that the understanding of the dual-mode vibration of NWs with triangular, 

rhombic or truncated rhombic cross-section is still lack in the current literature, a few previous works 

can be found regarding the tensile and bending behaviors of such NWs by using MD simulation [32-

34]. Because of this, it is crucial to study the mechanical properties of <110> metal NWs with these 

kinds of cross-sections as obtained through vibration, or resonance tests and simulations, which could 

benefit their applications as resonators. Thus, we perform such a comprehensive investigation using 

large scale MD simulations in the present work, and the surface effects on this dual-mode vibration is 

discussed based on the modified Euler-Bernoulli beam theory. 

 

2. Numerical and Theoretical Basics 

Large-scale MD simulations were carried out on <110> orientated Ag NWs with triangular, rhombic 

and truncated rhombic cross-sections. For different NWs, a constant aspect ratio of 10 is selected, 

with different cross-sectional size ranging from 3-8 nm. We modelled Ag using the embedded-atom-

method (EAM) potential developed by Foiles et al. [35] This potential was fitted to a group of 

parameters, including cohesive energy, equilibrium lattice constant, bulk modulus, and others 

including a lattice constant a which is chosen as 0.409 nm [36]. 
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During each simulation, the NW was first created assuming bulk lattice positions, and then relaxed 

to a minimum energy state using the conjugate gradient algorithm, i.e. the length of the NW was 

allowed to decrease in response to the tensile surface stress. We then used the Nose-Hoover 

thermostat [37, 38] to equilibrate the NW at a constant temperature 10 K (NVT ensemble) for 400 

picoseconds (psec) at a time step of 4 femtoseconds while holding the newly obtained length of the 

NW fixed. Finally, the NWs are actuated by applying a sinusoidal velocity excitation ( ) sin( )v z kz  

along the x or y-axis, where   is the actuation amplitude, and k equals / L . As illustrated in figure 

1(a), the two ends of the NW are fixed in all three directions to mimic a doubly clamped beam. No 

periodic boundary conditions were utilized at any point during the simulation process.  

We also emphasize that the NW is modeled using an energy-conserving (NVE) ensemble during 

the free vibration process following the velocity actuation, and that the applied velocity field 

increased the total potential energy by less than 0.1%, which ensures that the oscillations occur in the 

linear regime. The overall simulation methodology to study the oscillatory properties of the NWs is 

identical to that used previously for metal NWs [8, 22, 24]. All simulations were performed using the 

open-source LAMMPS code developed at Sandia National Laboratories [39] . 

For the free vibration of thin beam, the governing equation is given as below, while including the 

surface effects [18, 19] (both surface tension and surface elasticity) 

 
4 2

4 2
( )* ( , )EI p z t A

z z

  
  

 
 (1) 

where ( , )z t  is the NW transverse displacement,   is the density and A  is the cross-sectional area 

of the NW. ( )*EI  is the effective flexural rigidity, which incorporates the surface elasticity according 

to the composite beam theory [40, 41]. ( , )p z t  is the distributed transverse force resulted from the 

surface stress, which can be approximated as 2 2( , ) /p z t H z    according to the generalized 

Young-Laplace equation [42]. H  is a constant depending on the residual surface tension and the 

cross-sectional shape, e.g., for the rectangular cross-section, 2H w , where w  is the width, and   

is the surface stress given as 0
s zE    . 0 is the surface stress along NW longitudinal direction, 

sE  is the surface elastic modulus, and z  is the longitudinal strain of the surface caused by the force 

acting on the NW. By assuming small deformation, 0  . Note that, small deformation 

approximation will be adopted through the present work. For the doubly clamped end condition, the 

characteristic equation equals [18] 

 2
1 2 1 2 1 1 2 2 2 1 1 2(cos cosh ) ( sin sinh )( sin sinh ) 0L L L L L L                  (2) 

Here, 
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

  



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
          

   

 (3) 

where L  is the NW length, ( )* /( )EI A  ,   is the angular resonance frequency, and   is the 

nondimensional surface effect factor defined as 2 / ( )*HL EI  . 

 

3. Results and Discussion 

Following discussions will focus on <110> Ag NWs with three kinds of cross-sectional geometries, 

i.e., rhombic, truncated rhombic and triangular cross-sections. Both the classical (continuum) and 

discrete models will be adopted to calculate the principal moments of inertia [29]. The discrete model 

is based on the discrete nature of the atomic system. In general, the moments of inertia are given as 

 
 
 

2 2

2 2

x n n a
A

y n n a
A

I y dA y A I

I x dA x A I

   


  




 (4) 

To discuss the surface effects, the normalized resonance frequency fR  is defined as the ratio of 

the two first mode resonance frequencies along the two orthogonal vibrational planes (i.e., fx/fy). 

Several numerical testing will first be conducted to affirm that for the asymmetric cross-section, the 

NW will under a dual-mode vibration once the actuation direction differs from the two principal axes 

of inertia. Continue discussions will focus on how the surface effects influence the dual-mode 

vibration of the NW. 

 

3.1. Dual-mode Vibration of Nanowires 

Figure 2 illustrates the four types of cross-sections being studied. For each case, we consider three 

actuation directions as highlighted by the green and red arrows in figure 2 (i.e., x, y and x’-axes). Due 

to the similarity of the results, only the results from rhombic NWs are presented here, other results can 

be found in the Supplemental Materials.  

Figure 3 shows the MD results for the NW with rhombic cross-section during the free vibration for 

a total of 7600 psec, the actuation is applied in the x or x’-axis. Generally, for the NW under the 

actuation along the x-axis, the external energy (EE) amplitude decreases as a linear function of time, 

where the EE is defined as the difference in the potential energy before and after the transverse 

velocity actuation is applied to the NW [8, 22]. As demonstrated in figure 3(a), no obvious EE 

dissipation is observed during the time of 0-2200 psec, which indicates a high quality (Q)-factor. 

Whereas, for the NW under the actuation along the x’-axis, EE amplitude appears highly nonlinear. 

Utilizing the fast Fourier transform (FFT) [43], two frequency components are identified in figure 3(d) 
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as 13.74 GHz and 19.13 GHz for the EE spectrum in figure 3(c). We note that the larger value is the 

same as identified from the EE spectrum in figure 3(a), and the smaller one is the same as obtained 

from the EE spectrum for the NW under the actuation along y-axis (see Supplemental Materials for 

details). This result indicates that the NW is under a dual-mode vibration that is comprised of two 

orthogonal vibrational components when the actuation direction is deviated from x or y-axis. Other 

MD simulations are then conducted for the NW with truncated rhombic and triangular cross-sections, 

from which the appearance of the dual-mode vibration is also observed. Therefore, considering the 

apparent generality of the dual-mode vibration for the <110> NW (with rhombic, truncated rhombic 

or triangular cross-section), we then proceed to study the surface effects on this phenomenon. To 

mention that all following MD simulations are carried out for a group of Ag NWs with the aspect 

ratio of 10, and the actuation direction of x’-axis (see figure 2(a)). 

 

3.2. Nanowire with Rhombic Cross-section 

The rhombic cross-section is firstly discussed. As illustrated in figure 4, the rhombic cross-section of 

a <110> Ag NW is enclosed by four {111} surfaces. For the continuum model, the principal moments 

of inertia are given as 

4 3

4 3

sin cos / 3

sin cos / 3
cx

cy

I b

I b

 
 

 
 

,                                                                   (5a) 

and the area equals 22 sin cosA b   . Here, b is the side length, and   is the angle as specified in 

figure 4. On the other hand, under the discrete model, we have 

 

 

2 2

1

2 2

1

(2 1) 2( ) 1 2

(2 1) 2 2( ) 1

N

dx a a a

i

N

dy a a a

i

I N I N i A a i I

I N I N i A a i I





         

        




,                                      (5b) 

and the area equals 2(2 2 1) aA N N A   , where N  is an integer and related with the side length b  

by / cosb Na  . a  is the lattice constant, 
aA  is the projection area of a single atom and aI  is the 

principal moment of inertia around the atom’s own axis. 

To evaluate the surface effects, the NWs are modeled as a superposition of surface layers and bulk 

volume follow previous researchers [40, 44]. The grey areas in figure 4 schematically represent the 

{111} surface layers with an elastic modulus 1E  and thickness 1t . The thickness 1t  is assumed to be 

much smaller comparing with the cross-section size b . The relation between 1E  and 1sE  is 1 1 1sE E t  

[19]. According to the composite beam theory with the assumptions of 1t b , the effective flexural 

rigidity is approximated as 
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sin* 2 3 2
1 1 10

cos* 2 3 2
1 1 10

( ) 4 / sin 4 sin / 3

( ) 4 / cos 4 cos / 3

b

x x x s

b

y y y s

EI EI E y t dy EI E b

EI EI E x t dx EI E b





 

 

    

    




,                      (5c) 

where 1sE  is the elastic modulus of the {111} surface. In the meanwhile, from the Young-Laplace 

equation, the distributed transverse force ( , )p x t  can be approximated as 

2

1 2

2

1 2

( , ) 4 sin

( , ) 4 cos

x

y

p z t b
z

p z t b
z

  

  






 

,                                                     (5d) 

where 1  is the {111} surface stress along the NW longitudinal direction. For the Ag NW, 1sE  equals 

-1.39 N/m, 1  equals 0.65 N/m and E  equals 76 GPa [45, 40].  

Recall Eqs. (2) and (3), we now compare the first mode natural frequencies of Ag NW between the 

predictions by the classical Euler-Bernoulli beam theory, modified Euler-Bernoulli beam theory with 

surface effects and MD simulations. As revealed in figure 5(a), for both two natural frequencies ( xf  

and yf ), the discrete model enhanced the theoretical predictions comparing with the MD results. It is 

evident that, the inclusion of the surface effects increases the first natural frequencies for both discrete 

and continuum models, which also exhibit better agreements with MD results. Furthermore, it is 

noticed that, the theoretical predictions become closer to MD results for NWs with larger cross-

section (especially for the frequency of yf ), which claims the crucial influence from surface effects 

on ultrathin NWs.  

Figure 5(b) reveals the surface effects on the dual-mode vibration of the NWs. As is seen, for the 

classical beam model, the normalized resonance frequency fR  is a constant value, which equals 2 , 

while utilizing the discrete model, fR  appears almost unchanged with minor decrease for ultra small 

cross-sections. However, the consideration of the surface contribution obviously decreased the gap 

between the two first natural frequencies, i.e., fR  shows considerable decrease comparing with the 

classical beam model. Particularly, this trend is found to agree with the MD results. Just as expected, 

with the increase of the cross-sectional size, the influence of the surface effects diminishes, and the 

normalized resonance frequency converges to the classical value of 2 . 

 

3.3. Nanowire with Triangular Cross-section ( ) 

As reported by previous researchers, <110> NWs can be controlled to grow with two kinds of 

triangular cross-sections during the synthesization process [30]. One of them is illustrated in figure 6 

(denoted as triangle α), which is enclosed by two {111} surfaces and one {110} surface. For the 

continuum model, the principal moments of inertia around its centroid are given as 
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4 3

4 3

sin cos /18

sin cos / 6
cx

cy

I b

I b

 
 

 
 

,                                                           (6a) 

and the area equals 2 sin cosA b   . To aware that for the discrete model, the centroid position 

offsets from / 3h  to (2 1) / [6( 1)]h N N  , where N  is an integer and related with the side length b  

by / cosb Na  . h  is the height of the triangle (see figure 6) and equals sinh b  . Therefore, the 

principal moments of inertia are induced as 

  
 

2

1

2 2

1

2 2 3 ( 1) 2 / 2 (2 1) / 6( 1)

( 1) 2 ( ) 1

N

dx a a

i

N

dy a a a

i

I N i A i a h N N I

I N I N i A a i I





           

        




,                   (6b) 

and the area equals 2( 2 1) aA N N A   .  

Following previous surface layers assumption, i.e., consider the {111} and {110} surface layers 

with an identical thickness 1t , and an elastic modulus 1E  and 2E , respectively. The relation between 

2E  and 2sE  is 2 2 1sE E t . According to the composite beam theory, the effective flexural rigidity for 

the continuum model can be approximated as  

2 sin /3* 2 2
2 1 1 1sin /3

cos cos* 2 2
2 1 1cos 0

( ) (2 cos )( sin / 3) 2 / sin

( ) 2 / cos

b

x x
b

b b

y y
b

EI EI E bt b E y t dy

EI EI E x tdA E x t dx





 



  







   

   




 
, that is 

* 3 2 3 2
2 1

* 3 3 3 2
2 1

( ) 2 sin cos / 9 2 sin / 9

( ) 2 cos / 3 2 cos / 3
x x s s

y y s s

EI EI E b E b

EI EI E b E b

  
 

   
   

,                             (6c) 

where 2sE  is the elastic modulus of the {110} surface. Based on the Young-Laplace equation, the 

distributed transverse force ( , )p x t  can be approximated as 

2

1 2

2

1 2 2

( , ) 2 sin

( , ) (2 cos 2 cos )

x

y

p z t b
z

p z t b b
z

  


    






  

                                       (6d) 

where 2  is the {110} surface stress along the NW longitudinal direction. For the Ag NW, 2sE  equals 

-4.74N/m, 2  equals 0.70 N/m [45]. 

Recall Eqs. (2) and (3), the first mode natural frequencies of Ag NW with triangular cross-section 

( ) are compared between the predictions by different beam models and MD simulations. As shown 

in figure 7(a), for the first mode natural frequency along x-axis ( xf ), the theoretical predictions are 

smaller than MD results. While, for fy, the theoretical predictions with surface influence are 

overestimated. Similar as the results for the rhombic cross-section in figure 5(a), the predictions 
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appear closer to the MD results with the increase of the cross-sectional size, and the discrete model 

gives better estimation to the resonance frequency than the continuum model.  

Figure 7(b) reveals the surface effects on the dual-mode vibration of the NWs. For the classical 

beam model, the normalized resonance frequency fR  equals 6 , which shows minor decrease under 

the discrete model. In the opposite, the inclusion of surface effects exerts an evident decrease to fR . 

As seen in figure 7(b), the MD results demonstrate the same trend, and the influence from surface 

effects reduces as the cross-sectional size increases.  

 

3.4. Nanowire with Triangular Cross-section ( ) 

Another kind of triangular cross-section is revealed in figure 8 (denoted as triangle  ), which is 

enclosed by two {111} surfaces and one {100} surface. Similarly, for the continuum model, the 

principal moments of inertia are given as: 

4 3

4 3

sin cos /18

sin cos / 6
cx

cy

I b

I b

 
 

 
 

,                                                        (7a) 

and the area equals 
2 sin cosA b   . Here,   is the angle as specified in figure 8. For the discrete 

model, the principal moments of inertia are deduced as: 

    
 

2

2 2

1

2 2 3 ( 1) (2 1) / 6( 1)

( 1) ( ) 1 2

dx a a

N

dy a a a

i

I N i A i a h N N I

I N I N i A a i I


        



        


,                       (7b) 

and the area equals 2( 2 1) aA N N A   , where N  is an integer and related with the side length b  by 

/ sinb Na  . h  is the height (see figure 8) and equals h Na .  

Consider the {100} surface layer with an elastic modulus 3E , thickness 1t  and the relation 

between 3E  and 3sE  is 3 3 1sE E t . Then, the effective flexural rigidity can be approximated as 

2 sin /3* 2 2
3 1 1 1sin /3

cos cos* 2 2
3 1 1 1cos 0
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( ) 2 / cos

b

x x
b

b b

y y
b
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



 


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





   

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



 
, that is  

* 3 2 3 2
3 1

* 3 3 3 2
3 1

( ) 2 sin cos / 9 2 sin / 9

( ) 2 cos / 3 2 cos / 3
x x s s

y y s s

EI EI E b E b

EI EI E b E b
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 

   
   

                       (7c) 

where 3 3 1sE E t , which is the elastic modulus of the {100} surface. From the Young-Laplace 

equation, the distributed transverse force ( , )p x t  can be approximated as. 
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where 3  is the {110} surface stress along the NW longitudinal direction. For the Ag NW, 3sE  equals 

1.22 N/m, 3  equals 0.89 N/m [45, 40]. 

According to Eqs. (2) and (3), the first mode natural frequencies of Ag NW with triangular cross-

section (  ) are compared between the predictions by different beam models and MD simulations. 

From figure 9(a), for the first mode natural frequency along x-axis ( xf ), the continuum model with 

surface effects shows good agreements with MD results for cross-sectional size smaller than 6 nm. 

With the increase of cross-sectional size, the MD results become closer to the predictions by discrete 

model with surface effects. For the first mode natural frequency along y-axis ( yf ), the continuum 

model with surface influence also provides better estimations than other models.  

Figure 9(b) presents the surface effects on the dual-mode vibration of the NWs. Firstly, for the 

classical beam model, the normalized resonance frequency fR  equals 6 / 2 , which shows minor 

decrease for ultra small cross-sections under the discrete model. Similar as previous cases, the 

inclusion of surface influence also leads to an apparent decrease to the normalized resonance 

frequency fR , which is consistent with the MD results. It is expected that, with the increase of the 

cross-sectional size, the influence of the surface effects diminishes, and normalized resonance 

frequency converges to the classical value of 6 / 2 . 

 

3.5. Nanowire with Truncated Rhombic Cross-section 

Recently, Kolibal et al. [31] reported that the <110> orientated Ge NWs can be controlled to grow 

with a truncated rhombic cross-section as shown in figure 10, which is enclosed by four {111} 

surfaces and two {100} surface. To investigate such specific cross-sectional geometry, we consider 

the rhombic cross-section being truncated at the middle of its side as illustrated in figure 10. For the 

continuum model, the principal moments of inertia are given as 

4 3

4 3

5 sin cos /16

5 sin cos / 48
x

y

I b

I b

 
 

 
 

,                                                           (8a) 

and the area equals 23 sin cos / 2A b   . Under the discrete model, the principal moments of inertia 

are deduced as 
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and the area equals 2(3 / 2 2 1) aA N N A   , where N  is an even integer and related with the side 

length b  by / (2cos )b Na  . 

Under the conception of surface layers and follow the assumptions made to the {100} and {111} 

surface layers, the effective flexural rigidity is approximated as below 
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From the Young-Laplace equation, the distributed transverse force ( , )p x t  can be approximated as 
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Refer Eqs. (2) and (3), the first mode natural frequencies of Ag NW with truncated rhombic cross-

section are compared between the predictions by different beam models and MD simulations. As 

revealed in figure 11(a), the first mode natural frequency yf  from MD simulations exhibit good 

agreement with the predictions by the discrete model with surface effect. In the other hand, the first 

mode natural frequency xf  from MD results appear good agreement with the predictions by the 

continuum model with surface effect when the cross-section size is smaller than 6 nm, which becomes 

closer to the predictions by the discrete model with surface effects with a increase of the cross-

sectional size.  

Figure 11(b) reveals the surface effects on the dual-mode vibration of the NWs with truncated 

rhombic cross-section. Basically, for the classical beam model, the normalized resonance frequency 

fR  equals 6 / 3 , whist utilizing the discrete model, a relative obvious increase appeared for ultra 

small cross-sections. The consideration of the surface contribution apparently decreased the gap 

between the two first natural frequencies, which leads certain increase to the fR . Particularly, this 

trend is found to agree with the MD results. It is appeared that, with the increase of the cross-sectional 

size, the influence of the surface effects diminishes, and normalized resonance frequency converges to 

the classical value of 6 / 3 . 
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3.6 Discussions 

Generally, according to the above results, the modified beam models with surface effects show 

better estimations of the first natural frequency for different cross-sectional geometries than the 

classical beam model. However, these models still show certain inaccuracy, which might arise from 

the simplified or inaccurate interpretation of the surface effects. As is reported for ultrathin NWs [46], 

the contribution of surface-stress-induced surface elasticity to the NW’s behaviors is always 

considerably smaller than that due to the nonlinear elasticity of the NW core. Recent work also 

reported that for NWs under bending [47], the current inclusion of the surface effect into the Euler-

Bernoulli beam model still suffers from certain overestimating (especially for ultrathin NWs), and by 

introducing an inverse NW core effect (i.e., reduce the surface effect with a factor that smaller than 

one), the theoretical predictions appears considerable improvement. It is interesting to mention that, 

such scenario is also observed in figures 5, 7, 9 and 11, from which, the modified beam models 

exhibit closer predictions to MD results for the rhombic cross-section than other three cross-sections 

(i.e., both triangular and truncated cross-sections), since either triangular or truncated rhombic cross-

section area is much smaller (means thinner) than that of the rhombic cross-section for the identical 

side length b , therefore, the theoretical predictions appear poorer. 

Conclusively, to depict the occurrence of dual-mode vibration, the normalized resonance 

frequency fR  can be generalized and re-defined as an overall asymmetric factor   as 

/ ( ) ( )x y cg ls sef f b b                                                         (9) 

cg  represents the asymmetric factor from the cross-sectional geometry, which equals /y xI I . 
ls  

and 
se  represent the asymmetric factor from the different lattice spacing and surface effect, 

respectively. Both of them are a function of the cross-sectional size b. According to Eq. (9), the 

overall asymmetric factor (  or fR ) for the four theoretical models discussed in this paper is actually 

a sum from different asymmetric factors, i.e., for the continuum model, C cg  ; for the continuum-

surface model, ( )CS cg se b    ; for the discrete model, ( )D cg ls b    ; for the discrete-surface 

model, ( ) ( )DS cg ls seb b      . Based on these models, it is easy to find that 
ls D C    . Aware 

that, due to the difference of the cross-sectional area, the asymmetric factor 
se  in the discrete-surface 

model is cross influenced by 
ls . To avoid such influence, se  can be calculated from se CS C    .  

According to the results in figures 5(b), 7(b), 9(b) and 11(b), 
ls  exerts minor influence to cg , 

especially for the rhombic, and triangular cross-sections. Whereas, the inclusion of surface effect (i.e., 

se ) shows a considerably obvious influence to the overall asymmetric factor. These results indicate 

that for the symmetrical cross-section geometry such as square or circular (when 1cg  ), 
ls  and se  
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will induce remarkable influence to the resonance behaviours of NWs, i.e., 
ls  and 

se  will raise the 

deviation of   from one and the difference between the two first natural frequencies, which will 

attract a beat phenomenon as reported by Zhan et al. [29]. While for the asymmetrical cross-section 

geometry (e.g., rhombic, triangular or truncated rhombic), 
ls  and 

se  usually intend to mitigate the 

dual-mode vibration, i.e., reduce the deviation of   from one and the difference between the two first 

natural frequencies. However, since cg  is a constant value that already apparently different from one 

for the asymmetrical cross-section, hence, the influence from ls  or 
se  will be greatly concealed or 

hided, and an apparent dual-mode vibration still arises. It is no doubt that, larger deviation of   from 

one means more significant difference between the two first mode natural frequencies, and induces 

more apparent dual-mode vibration.  

4. Conclusion 

Based on the large-scale MD simulations and Euler-Bernoulli beam models including and ignoring 

surface effects, we study the dual-mode vibration of doubly clamped <110> orientated Ag NWs with 

three kinds of cross-sections, i.e., rhombic, truncated rhombic, and triangular cross-sections. The 

surface effects on the dual-mode vibration of NWs are studied by incorporating the generalized 

Young-Laplace equation into Euler-Bernoulli beam theory. Due to the different lattice spacing in 

principal axes of inertia of the {110} atomic layers, the NW is also modeled as a discrete system to 

reveal the influence from such specific atomic arrangement. Major conclusions are summarized as 

below: 

1) The <110> Ag NW with rhombic, truncated rhombic or triangular cross-section will under a dual-

mode vibration if the actuation direction is deviated from the two principal axes of inertia; 

2) For the four types of cross-section geometries, the classical beam model shows underestimated 

predictions for the two first natural frequencies comparing with the MD results, whist the discrete 

model is found to enhance the predictions by the continuum model; 

3) The predictions by the beam theory with the incorporation of surface effects uniformly larger than 

the classical beam model, which is agreed with previous researchers that a positive surface stress 

increases the resonance frequencies of doubly clamped NWs. 

4) It is found that though the modified beam model (with surface effects) provides better estimations 

to the resonance frequency than the classical beam model, the values still appear certain gap 

comparing with the MD results, especially for the two kinds of triangular cross-sections. Particularly, 

we note that, the theoretical predictions exhibit better agreement with MD results for larger cross-

sectional size. Hence, it is concluded that for ultrathin NWs, current consideration of surface effects is 

still experiencing certain inaccuracy, and the consideration of the nonlinear elasticity of the NW core 

might be able to overcome such deficiency. 
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5) For all different cross-sections, the inclusion of surface effects is found to reduce the difference 

between the two first mode natural frequencies. This trend is observed consistent with MD results. 

In summary, this study provides a first comprehensive investigation on the dual-mode vibration of 

<110> oriented Ag NWs with rhombic, truncated rhombic and triangular cross-sections. The 

influence of surface effects on the dual-mode vibration is extensively discussed. This study is 

supposed to benefit the applications of NWs that acting as a resonating beam. 
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FIG.4 Atomic layer of the rhombic cross-section, the grey edge schematically refers the surface 
layers. 

 

 

FIG. 5 (a) Comparison of the first natural frequencies between theoretical predictions and MD results. 
(b) Comparison of the normalized resonance frequency ( /f x yR f f ) between theoretical predictions 

and MD results. 

 

 

FIG.6 Atomic layer of the triangular cross-section ( ), the grey edge schematically refers the surface 
layers. 
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FIG.7 (a) Comparison of the first natural frequencies between theoretical predictions and MD results. 
(b) Comparison of the normalized resonance frequency ( /f x yR f f ) between theoretical predictions 

and MD results. 
 

 

FIG.8 Atomic arrangement of the triangular cross-section (  ), the grey edge schematically refers the 
surface layers. 

 

 
 

FIG.9 (a) Comparison of the first natural frequencies between theoretical predictions and MD results. 
(b) Comparison of the normalized resonance frequency ( /f x yR f f ) between theoretical predictions 

and MD results. 
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FIG.10. Atomic arrangement of the truncated rhombic cross-section, the grey edge schematically 
refers the surface layers. 

 

 

FIG.11 (a) Comparison of the first natural frequencies between theoretical predictions and MD results. 
(b) Comparison of the normalized resonance frequency ( /f x yR f f ) between theoretical predictions 

and MD results. 

 


