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We have observed a distinct surface phase transition for an important class of giant
magnetoresistance materials@La12xSrxMnO3(x50.35)#. The surface phase transition occurs at 240
K compared to 370 K for the bulk and is fundamentally different. In the bulk, a ferromagnetic metal
to paramagnetic bad-metal transition occurs, while the lower-temperature surface transition is from
an insulator to a semimetal. The surface of this manganese perovskite is electronically and
compositionally quite different from the bulk with important implications for the behavior of
artificially grown layered transition-metal oxides and for the use of surface sensitive techniques to
probe the bulk. ©2000 American Institute of Physics.@S0003-6951~00!00630-6#

The creation of a surface breaks the symmetry of a crys-
tal inducing electronic, magnetic, and geometrical changes,
which will change the order parameters associated with vari-
ous types of phase transitions. Thus with strong coupling
among the spin, charge, and lattice degrees of freedom in
transition metal oxides~TMOs!,1 dramatic changes in the
order parameters should be expected at the surface. Further-
more, the surface free energy should be different from the
bulk free energy inducing surface segregation.2 Since the
phase diagram of TMOs is critically dependent upon the
doping concentration, the surface could be a ‘‘different ma-
terial.’’ In addition, many of the surfaces in the TMOs will
be polar surfaces, i.e., the net charge in the plane is not zero.
This too will drive either a structural or electronic recon-
struction at the surface. Despite the fascinating possibilities
for observing new surface phases and the technological po-
tential of artificially structured TMO layered materials,3

there have been surprisingly few studies of the properties of
their surfaces or interfaces. Understanding the surface phases
of these materials will also benefit interpretation of surface
sensitive experimental techniques such as angle resolved
photoemission.

We have observed a distinct surface phase transition for
the TMO La0.65Sr0.35MnO3. At a temperature of 240 K the
surface undergoes an insulator to semimetal phase transition,
while bulk measurements on the same sample show a
metallic–ferromagnetic to semiconductor~bad-metal! para-
magnetic transition at 370 K. There have been indications of
the low temperature surface insulating phase in other studies
on spin-polarized tunneling4 and thickness-dependent
magnetotransport5 in La0.67Sr0.33MnO3 thin films.

La12xSrxMnO3(x50.35) thin films ~nominal thickness
of 1000 Å! were grown on~100! LaAlO3 substrates by rf
sputtering in a 2:1 argon/oxygen atmosphere maintained at

20 mTorr. The bulk chemical composition of the films was
determined from energy dispersive analysis of x-ray emis-
sion spectroscopy and found to be similar to the targets with
the final compositions La0.65Sr0.35MnO3. The films were sub-
sequently annealed at 900 °C in an oxygen atmosphere of 2
atm for 10 h. The crystallinity and orientation was estab-
lished by x-ray diffraction and the electronic and magnetic
properties were determined with temperature dependent re-
sistivity and magnetization measurements. Appropriate sur-
face preparation was established by x-ray photoemission
spectroscopy~XPS!, ultraviolet photoemission, and inverse
photoemission. Prior to each experiment, samples were
cleaned by annealing at 500 °C for 2 h. XPS measurements
were undertaken with the MgKa line ~1253.6 eV! using a
commercial system. The angle resolved inverse photoemis-
sion spectra were obtained on a home made system by using
variable energy electrons and a Geiger–Mu¨ller detector. In
our scheme, 9.8 eV photons were detected with the Geiger–
Müller tube with;400 meV bandwidth. The overall energy
resolution in inverse photoemission was;450 meV.

Figure 1 compares our measurements of the bulk~a! and
surface ~b! properties of a ;1000 Å thick film of
La0.65Sr0.35MnO3. Panel~a! shows the magnetization and the
resistivity indicating that the transition is atTC

B;370 K, con-
sistent with measurement of bulk samples.1 In panel~b! the
surface sensitive measurements are displayed. The solid
circles represent the O 1s core level binding energy as a
function of temperature. The binding energies of the core
levels shift to greater binding energies with decreasing tem-
perature, where the extent of the shift is observed to strongly
depend upon the x-ray source power~flux!. The greater the
incident x-ray flux becomes, the larger is the core level shift
~toward higher binding energies! for temperatures below 240
K. The fact that the core level binding energies depend upon
x-ray flux indicated that surface charging of the sample oc-
curs below 240 K. The open circles represent the density of
states at the Fermi energy~integrated from20.3 to10.3 eV!a!Electronic mail: eplummer@utk.edu
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as a function of temperature measured with inverse photo-
emission. There is no measurable density of states at the
Fermi energy below;240 K indicating that the surface is
insulating at low temperatures, consistent with the core level
data. From all of this data we conclude that there is an elec-
tronic transition in the surface atTC

S5240610 K. Below this
temperature the surface is an insulator, while above this tem-
perature the surface is metallic or semimetallic.

Figure 2 displays the inverse photoemission spectra,
taken atki50.13 Å21, as a function of the sample tempera-
ture. The shaded region shows the energy segment ofDE
560.3 eV which was integrated to produce the density of
state data presented in Fig. 1~b!. There is no measurable
intensity ~above background! at the Fermi energy for tem-
peratures below;240 K, within the energy resolution enve-
lope of 60.3 eV. As the temperature is reduced well below
240 K, two new, well defined, inverse photoemission fea-
tures appear in the spectra at binding energies of;3 and
;4.5 eV above the Fermi energy. The geometry of this ex-
periment was chosen~10 deg off normal! to dramatize these
two unoccupied states. These two empty states observed in
the low temperature insulating phase have quite different dis-
persion, which can be measured by changing the angle of the
incident electron beam with respect to the surface normal.
The dispersion is shown in the inset. The peak in the 180 K
spectrum labeledLM displays considerable dispersion with
an effective mass of;0.5me . In contrast, the other peak in

the same spectrum at;3 eV has no dispersion and its inten-
sity varied from sample to sample and with the details of the
cleaning and annealing process. We identify this peak with a
localized defect state on the surface. Interestingly, both of
these peaks are gone above the surface transition tempera-
ture, so they are associated with the low temperature-
insulating phase.

The quadratic light electron mass band which appears
above the Fermi energy is reminiscent of quantum well
states, except that, in this case, it applies to an insulating film
setting on a metallic substrate. Inverse photoemission is sen-
sitive to the states extending into the vacuum6 so it is diffi-
cult to tell if this state is an image potential state or quantum
well state, i.e., primarily outside or inside the surface.

The angular dependence of the core levels’ intensities
can yield quantitative information about the surface compo-
sition of solids.7 If the relative concentration of La and Sr
was independent of the depth into the sample the relative
core level intensity would be roughly independent of the
emission angle. The black squares in Fig. 3~a! show the mea-
sured intensity ratio of the (Sr3d5/21Sr3d3/2) to La3d5/2

core levels as a function of the emission angle. The ratio is
not constant with the Sr to La ratio significantly increasing
with increasing emission angle. Qualitatively this shows that
the surface region is Sr rich. This data can be analyzed using
a previously developed semiempirical method2 to give a
more quantitative picture of the degree of surface segrega-
tion. The XPS calculated intensity ratioRc(u) is defined as

FIG. 1. Upper panel shows the bulk transition in our measurement of resis-
tivity and bulk magnetization. Lower panel shows the binding energy of the
oxygen 1s peak ~closed-circles! and indicators of the surface transition in
the density of states, from the inverse photoemission spectra, nearEf5EF

~open circles! all as functions of temperature.

FIG. 2. Inverse photoemission spectra of La0.65Sr0.35MnO3, at an incidence
angle of 10 deg off normal, as a function of temperature. The inset shows
the band dispersion of the marked states in spectrum taken at 180 K.
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wheres is the photoionization cross section,T is the trans-
mission coefficient of the analyzer,f j is the atomic fraction
of Sr at the j th layer, d is the interlayer distance,l is the
inelastic mean free path of the emitted electrons, andu is the
emission angle with respect to the surface normal. The cross
sections were taken from Scofield’s calculations for an exci-
tation energy of 1253.6 eV (MgKa)8 ~5.29 for Sr 3d and
26.49 for La 3d5/2!. The transmission of our analyzer varies
as the inverse of the kinetic energy of the emitted electrons.
The mean free paths of the electrons in the material were
calculated according to the scheme of Tanumaet al.9 ~;20
Å for Sr 3d and;10 Å for La 3d5/2!. The Sr atomic fraction
f j has been chosen by assuming an exponential segregation
profile.

We found that in order to fit all intensity ratios~e.g.,
Sr/La, Mn/Sr! a major restructuring of the surface region
need to be considered.10 Actually, the chemical composition
of the surface region was found to be that of
(La0.65Sr0.35!2MnO4 (K2NiF4 structure! influenced by the ef-
fect of Sr segregation.10 Thus, the surface is a quite different
material compared to the bulk.

The best fit to the data for the two possible terminations
of La1.3Sr0.7MnO4 is shown in Fig. 3~a! ~the solid line for
MnO2 terminal layer and the dashed line for La/SrO terminal
layer!. From this fitting of the measured intensity ratio, the
Sr atomic fraction can now be plotted as a function of layer
number as shown in Fig. 3~b! ~the solid circles are for the
case of La/SrO terminal layer whereas the open ones are for
MnO2 terminal layer!. We see that there is a significant sur-
face segregation of Sr to the subsurface layer. In fact, accord-
ing to this fitting procedure the first layer that contains Sr in
both terminations is almost a full SrO layer. This segregation
profile is found to be stable over the temperature range 180
to 300 K.

The fact that unique surface phases exist in this TMO
should not come as a surprise. Interest in these materials is
driven by their complex behavior, a consequence of the fact
that the structural, electronic, and magnetic properties are
strongly coupled. A small change in one property~e.g., struc-
ture! can produce a large change in another property~e.g.,
the magnetic state!.1 Creation of a surface or interface is a
significant change, breaking the inherent symmetry and re-
ducing the effective dimensionality. Furthermore, all indica-
tions point to the fact that growth conditions, especially pro-
longed annealing, play a major role in stabilizing distinct
surface phases in these materials. There is every reason to
believe that the door has been opened to a new dimension in
TMO phase transition associated with surfaces and inter-
faces. The challenge is to engineer new coupled electronic,
magnetic, and structural transitions at a surface, an inter-
faces, or with tuned architecture.3

In closing, it is important to point out that for all of the
reasons discussed above the surface of a TMO should be
different from the bulk. All experimental data on these sys-
tems should be interpreted based on the premise that the
surface is different electronically, structurally, and magneti-
cally unless proven otherwise.

The primary support for this work came from the Joint
Center for Atom Technologies~JRCAT! through the Atomic
Technology Partnership. The effort of one author~P.A.D.!
was also supported by NSF~# DMR-98-02126! and the Cen-
ter for Materials Research and Analysis~CMRA! at the Uni-
versity of Nebraska.
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FIG. 3. Upper panel shows the relative XPS intensity of Sr 3d peaks to that
of La 3d5/2 peak and the best fit to the data as a function of the electron
emission angle. Lower panel shows the Sr atomic fraction as a function of
the layer number~the closed circles are for the case of the La/SrO terminal
layer, whereas the open ones are for the MnO2 terminal layer!.
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