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We generalize to N2LO Skyrme functionals the semi-classical approach of Grammaticos and
Voros [1, 2] in order to calculate the Extended Thomas Fermi expressions of the new densities
and currents appearing at the N2LO level. Within a one dimensional symmetric semi infinite nu-
clear matter model and using a simple Fermi-like density profile, we obtain an easy-to-use formula
for the surface energy including the contributions of the central, density-dependent and spin-orbit
terms up to ~

2. Such a formula can be easily used as a first attempt to constrain the surface prop-
erties of new N2LO Skyrme parametrizations. The N2LO parametrization tested in this paper is
shown to exhibit a shift (compared to a full Hartree-Fock calculation) which is quantitatively similar
to the one obtained with the traditional Skyrme parametrizations.

I. INTRODUCTION

Microscopic self-consistent models based on the mean field approximation have demonstrated their usefulness to
describe precisely a wide range of nuclear properties such as binding energies, radii, separation energies, energy spectra
or also fission barriers of heavy nuclei. At this time, they even allow rather pertinent analysis of spectroscopy of
superheavy nuclei for which there exists a lot of recent experimental results. All these models use as a basic ingredient
an effective interaction containing parameters which must be determined from a panel of pseudo and experimental data
within a precise protocol. Among the pseudo data used in the fitting procedure, properties of infinite matter are usually
incorporated but those of semi-infinite nuclear matter are often neglected because of the required computational time.
However, the surface energy has been recognized in the early years as one of the fundamental properties of nuclei and
thus entered the liquid drop formula even in its simplest form. In this particular formula, its role is to keep a nucleus
spherical (against Coulomb repulsion for instance) but more generally, its physical meaning is related to the shape of
a nucleus and its ability to deform. From a fundamental point of view, since this last property is controlled by the
compressibility for small density oscillations, both quantities are related [3, 4]. From a practical point of view, the
surface energy naturally contributes to the deformation properties of nuclei [5, 6] and thus in fusion reactions [7–11],
to the determination of fission barriers [12, 13] or in cluster decay [14] and neutron-star matter [15]. It is therefore of
the utmost importance to determine precisely the surface energy and each of the aforementionned constraints could
be used to fine tune the parameters of an effective interaction [5, 16, 17]. Historically, this was not the case and the
huge difference between the result obtained with a Skyrme parametrization and the experimental fission barrier height
of 240Pu induced the adjustment of SkM* [5]. This parametrization is a modified version of SkM [18] fine tuned in
such a way that the height of a semi classical calculation of the fission barrier [19] is well reproduced without any
modification of infinite nuclear matter isoscalar properties. The parametrization SkM* is still quite commonly used
for the description of fission phenomena [20].
Since neither the fission barriers neither a full Hartree-Fock (HF) calculation of the surface energy [21] can be

directly used in a fitting protocol because of the numerical cost, semi-classical methods and especially the Extended
Thomas Fermi (ETF) expansion method [1, 2, 19, 22–24] were developed as an alternative. This kind of approach is
of great interest when one is concerned by an approximation of the total energy of a fermionic system, let us say a
nucleus made with neutrons and protons, but not by an approximation of the total wave function. Generally speaking,
semi classical methods are mainly based on the Strutinsky theorem, such that one can split the Hartree-Fock energy of
a system of fermions in two parts: an important smoothly varying part which can be roughly described by the liquid
drop model, plus a smaller, but not smooth, part purely related to shell effects [25–29]. Semi-classical expansions are
actually known to give an accurate description of the smooth part of the energy. Practically speaking, they consist

∗ p.proust@ip2i.in2p3.fr
† d.davesne@ip2i.in2p3.fr
‡ jmeyer@ip2i.in2p3.fr

http://arxiv.org/abs/2205.12651v1
mailto:p.proust@ip2i.in2p3.fr
mailto:d.davesne@ip2i.in2p3.fr
mailto:jmeyer@ip2i.in2p3.fr


2

of an expansion in powers of ~ of the density matrix which allows us to express each of the densities and currents
appearing in the energy density functional as functions of the Fermi modulus kF , the effective mass field f and their
spatial derivatives. Then, by eliminating kF , one can express the energy with respect to the density and it’s spatial
derivatives alone. The great advantage comes from the variational principle with respect to the individual wave
functions which is replaced by a simpler variational principle with respect to the density profile itself. This leads to
an easy-to-use formula which reduces drastically the computer time when compared to microscopic HF calculations.
Two methods have been used in the past to obtain an ETF expansion. First an expansion in powers of ~ of the Bloch
density [19, 22–24] and second the Wigner-Kirkwood transform of a one-body hamiltonian [1, 2]. A direct and recent
application of this approach can be found in Jodon et al. [30] and in Ryssens et al. [6] where the authors examined
the correlation between the surface energy and the deformation properties of heavy nuclei. In Jodon et al. [30] in
particular, the authors revisited a very simple ETF expansion obtained by Krivine and Treiner [31, 32] in order to
obtain a simple formula for the surface energy and thus to obtain an easy-to-implement constraint in the fitting
procedure which leads to the so-called SLy5s parametrizations [30]. In this work, we extend the method developed
by Grammaticos and Voros [1, 2] to Skyrme energy density functional (EDF) containing 4th gradient terms (named
N2LO) which are expected to improve the calculated properties of nuclei [33]. Temperature effects, relativistic models
as well as the possibility of superfluidity are not been considered here. The paper is organized as follows. Section
II recalls the N2LO Skyrme EDF considered here. Section III generalizes the results obtained in [1, 2] for the new
densities appearing at the N2LO order. Section IV uses the semi-classical ETF results of the third section to calculate
the surface energy of a N2LO Skyrme functional within a 1D semi-infinite nuclear matter model. Section V presents
the discussion of our results.

II. THE SKYRME ENERGY DENSITY FUNCTIONAL AT THE N2LO ORDER

A. Local densities and currents

The interaction used in this paper is the so-called N2LO extension [34–37] of the traditional Skyrme interaction.
It implies gradients up to fourth order. In Ref.[38], the authors considered specific densities more suited to 3D HF
numerical calculations but for this formal work, we keep here the more compact notations for densities introduced
in [39]. The density matrix elements (the q-index is for the n/p representation) in direct and spin spaces reads:

〈rσ|ρ̂q|r′σ′〉 = ρq(rσ, r
′σ′) =

1

2
ρq(r, r

′) δσσ′ +
1

2
sq(r, r

′) 〈σ|σ̂|σ′〉 = 〈rσ| ρ̂q,r ⊗ 1̂σ + ŝq,r ⊗ σ̂

2
|r′σ′〉 , (1)

where

ρ̂q,r = Trσ(ρ̂q) , (2a)

ŝq,r = Trσ(ρ̂qσ̂) . (2b)

We introduce now the useful local densities as:

ρq(r) = ρq(r, r
′)
∣

∣

r=r′
, (3a)

sq(r) = sq(r, r
′)
∣

∣

r=r′
, (3b)

τq(r) = ∇ ·∇′ ρq(r, r′)
∣

∣

r=r′
, (3c)

τ (s)q,µν(r) =
1

2

(

∇µ∇′ν +∇ν∇′µ
)

ρq(r, r
′)
∣

∣

r=r′
, (3d)

Qq(r) = ∆∆′ρq(r, r
′)
∣

∣

r=r′
, (3e)

Jq,µν(r) =
1

2i

(

∇µ −∇′µ
)

sν,q(r, r
′)
∣

∣

r=r′
, (3f)

Cq,µν(r) =
1

2i

(

∆′∇µ −∆∇′µ
)

sν(r, r
′)
∣

∣

r=r′
. (3g)

Time reversal invariance is assumed which restrict our work to even-even nuclei or unpolarized infinite systems. Using
this assumption, the time odd part of the Skyrme EDF vanishes so that the corresponding densities do not appear
in the list above. The treatment of the time odd part of the NLO part of the Skyrme EDF has been made by
Grammaticos and Voros in [1]. It requires the definition of the corresponding currents but does not imply any specific
issues and will be treated in future developments.
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B. The Skyrme EDF

We consider in this paper a Skyrme pseudo potential containing a 2-body central (C) term and a spin-orbit (SO)
term up to NLO order (see Ref.[40] for notations) plus a central N2LO component as developed in [33]. Let us note
that the tensor (T) part of two body pseudo-potentials as developed in [41] could be also introduced without major
changes since the spin-gradient coupling present in the C part already generates a tensor component in the Skyrme
EDF (see the expression of HNLO

T , Eq. (4a) below). Similarly, the central three body part developed in [42, 43] could
be also taken into account by a modification of the concerned one body fields.
Finally, we can write the functional as (the q = n/p refers to the neutron/proton representation while the t = 0, 1

index refers to the isoscalar/isovector representation):

H = HLO
C + HNLO

C + HNLO
SO + HNLO

T + HN2LO
C + HN2LO

T , (4a)

HLO
C =

∑

t=0,1

Cρ
t [ρ0] ρ

2
t =

∑

t=0,1

[

Cρ
t + Cργ

t ργ0

]

ρ2t , (4b)

HNLO
C =

∑

t=0,1

C∆ρ
t ρt ∆ρt + Cτ

t ρt τt , (4c)

HNLO
T = − 1

2

∑

t=0,1

CT
t J2

t , (4d)

HNLO
SO =

∑

t=0,1

C∇J
t ρt (∇ · Jt) , (4e)

HN2LO
C =

∑

t=0,1

C
(∆ρ)2

t (∆ρt)
2
+ CMρ

t

[

ρt Qt + τ2t + 2
(

τ
(s)
t,µντ

(s)
t,µν − τ

(s)
t,µν ∇µ∇νρ

) ]

, (4f)

HN2LO
T =

∑

t=0,1

CMT
t

[

2Jt ·Ct −
1

2
Jt ·∆Jt

]

, (4g)

where Jt and Ct are the vector components of Jt,µν and Ct,µν respectively and where the repeated µ, ν indexes are
summed over the cartesian coordinates. At this stage, we made a second assumption which induced the reduction of
the tensor currents to their vector part. This occurs in spherical nuclei and also in semi infinite nuclear matter as we
will see in a further section.

C. The one body hamiltonian

The one body hamiltonian associated to the above N2LO EDF is given by:

hq(rσ, r
′σ′) = 〈rσ|ĥq|r′σ′〉 =

δE

δρq(r′σ′, rσ)
=

δ

δρq(r′σ′, rσ)

∫

R3

d3r′′H(r′′)

= Uq(r) δ(r− r′) δσσ′ − ∇µ

[

Bq,µν(r)∇νδ(r− r′)

]

δσσ′ + ∆

[

Dq(r)∆δ(r− r′)

]

δσσ′

+ iWq(r) ·
(

〈σ|σ̂|σ′〉 ×∇δ(r− r′)

)

+ i∇ ·
[

[Vq(r) · (〈σ|σ̂|σ′〉 ×∇) ] ∇δ(r− r′)

]

, (5)

where the fields can be separated in their NLO+N2LO components as

Uq(r) = UNLO
q (r) + UN2LO

q (r) , (6a)

Bq,µν(r) = BNLO
q (r) δµν + BN2LO

q,µν (r) , (6b)

Dq(r) = DN2LO
q (r) , (6c)

Wq(r) = WNLO
q (r) + WN2LO

q (r) , (6d)

Vq(r) = VN2LO
q (r) . (6e)
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The expressions of all the above fields in terms of densities and currents are given in Appendix A. At the N2LO
order two new fields appear, i.e. Dq(r) and Vq(r). Moreover, Bq(r) field is no longer a scalar (as for NLO) but now
becomes a symmetric rank 2 tensor with a non-zero contribution of its scalar part and its deviator (i.e. symmetric
and traceless) part.

III. THE SEMI CLASSICAL EXTENDED THOMAS FERMI APPROXIMATION

A. The Wigner-Kirkwood transform

We now focus on the semi-classical expansion of the N2LO functional and follow the notations of Grammaticos and
Voros [1, 2]. The Wigner-Kirkwood transform of an operator Â and of a product of operators ÂB̂ are respectively
given by [44]:

AW (R,p, ~) =

∫

R3

d3r 〈R− 1
2r|Â(~)|R+ 1

2r〉e
ipr/~ (7)

and [45] 1

(ÂB̂)W = AW e
1

2
i~
←→
Λ BW (8)

with

←→
Λ ≡

∑

i

( ←−
∂

∂ri

−→
∂

∂pi
−
←−
∂

∂pi

−→
∂

∂ri

)

(9)

where the above operator acts on left or right side depending on the arrows. The object of interest we want to expand
in powers of ~ is the density matrix which, at zero temperature, reads :

ρ̂q = Θ(EF,q 1̂r⊗σ − ĥq) (10)

where ĥq is the one-body hamiltonian and EF,q the Fermi energy of species q. Since we consider the case with a

spin-orbit term, the Wigner transform of ĥq can thus be expressed as (x ≡ (R,p)):

(ĥq)W (x, ~) = Hq,cl(R,p)1̂σ + ~Hq,so(R,p) · σ̂ (11)

where Hq,cl represents the classical limit (obtained formally when ~ goes to zero) and Hq,so the spin-orbit part, which
enters the expansion as a first-order ~ correction (see Ref.[2]). Given any analytical functions F of the hamiltonian

ĥq, the expansion in the vicinity of its classical value reads:

F (ĥq) =

∞
∑

n

1

n!
F (n)(Hq,cl(x))(ĥq −Hq,cl(x)1̂r⊗σ)

n (12)

so that the Wigner-Kirkwood transform is

(F (ĥq))W (x, ~) =

∞
∑

n

1

n!
F (n)(Hq,cl(x))Ĝq,n(x, ~) (13)

with

Ĝq,n(x, ~) = ((ĥq −Hq,cl(x)1̂r⊗σ)
n)W (x′, ~)

∣

∣

∣

x′=x

(14)

1 Note the presence of some sign errors in the derivation of the following formula in Ref [45]. However, the final result is correct.
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which are universal operators for a given Hamiltonian, i.e. independent of the function F . At order ~
3, we recover

the results of Grammaticos and Voros [2] :

Ĝq,0(x, ~) = 1̂σ

Ĝq,1(x, ~) = ~Hq,so · σ̂

Ĝq,2(x, ~) =
~
2

4

[

4Hq,so
2 + (∂2

xµpν
Hq,cl) (∂

2
xνpµ

Hq,cl) − (∂2
xµxν

Hq,cl) (∂
2
pµpν

Hq,cl)
]

1̂σ + O(~3)

Ĝq,3(x, ~) =
~
2

4

[

2 (∂2
xµpν

Hq,cl) (∂pµ
Hq,cl) (∂xν

Hq,cl) − (∂2
xµxν

Hq,cl) (∂pµ
Hq,cl) (∂pν

Hq,cl)

− (∂2
pµpν

Hq,cl) (∂xµ
Hq,cl) (∂xν

Hq,cl)
]

1̂σ + O(~3)
We thus immediately obtain for the density matrix :

(ρ̂q)W (r,p) = Θ(EF,q −Hq,cl(r,p)) 1̂σ −
∞
∑

n=1

Ĝq,n(x, ~)
n!

δ(n−1) (Hq,cl(r,p)− EF,q)

and the non zero densities and currents read

ρq(r) =

∫

R3

d3p

(2π~)3
(ρ̂q,r)W (r,p) , (15)

τq(r) =
1

4
∆

∫

R3

d3p

(2π~)3
(ρ̂q,r)W (r,p) +

∫

R3

d3p

(2π~)3
p2

~2
(ρ̂q,r)W (r,p) , (16)

τ (s)q,µν(r) =
1

4
∇µ∇ν

∫

R3

d3p

(2π~)3
(ρ̂q,r)W (r,p) +

∫

R3

d3p

(2π~)3
pµpν
~2

(ρ̂q,r)W (r,p) , (17)

Qq(r) =
1

16
∆∆

∫

R3

d3p

(2π~)3
(ρ̂q,r)W (r,p) +

∫

R3

d3p

(2π~)3
p4

~4
(ρ̂q,r)W (r,p) − 1

2
∆

∫

R3

d3p

(2π~)3
p2

~2
(ρ̂q,r)W (r,p)

+

∫

R3

d3p

(2π~)3
(p ·∇)2

~2
(ρ̂q,r)W (r,p) , (18)

Jq,µν(r) =

∫

R3

d3p

(2π~)3
pµ
~

(ŝq,r,ν)W (r,p) , (19)

Cq,µν(r) =
1

4
∆

∫

R3

d3p

(2π~)3
pµ
~

(ŝq,r,ν)W (r,p) −
∫

R3

d3p

(2π~)3
p2

~2

pµ
~

(ŝq,r,ν)W (r,p)

− 1

2
∇µ

∫

R3

d3p

(2π~)3
(p ·∇)

~
(ŝq,r,ν)W (r,p) , (20)

with

(ρ̂q,r)W (r,p) = Trσ[(ρ̂q)W(r,p)] ,

(ŝq,r)W (r,p) = Trσ[(ρ̂q)W(r,p) σ̂] .

If Hq,cl is invariant under rotations in momentum space, the above expressions can be simplified since the angular
average can be done explicitly. By instance, we define, following Ref.[1]

α̂q,k(r) =

∫ ∞

0

dp pk−1−n
〈

(ρ̂q,r)W (r,p)

〉

, (21)

where 〈f(r,p)〉 = 1
4π

∫

S2 d
2(pp ) f(r,p) is the momentum angular average over the unit 2-sphere S2. Taking Hq,cl as

the new integration variable 2, we can then write

α̂q,k(r) =
pkF
k

1σ −
∞
∑

r=1

1

r!





(

− 1
∂Hq,cl

∂p

∂

∂p

)r−1(

pk−1

∂Hq,cl

∂p

〈Ĝq,r〉
)





∣

∣

∣

∣

∣

p=pF (r)

(22)

2 We have to be careful at N2LO with this change of variable, since, for negative values of the p highest order term, the energy density
starts to quickly decrease to −∞ for large values of p. This generates a high momentum unphysical set for which the associated energies
are below the Fermi level. One may need to introduce a momentum cutoff at the N2LO level to avoid this unphysical region.
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Because of the spin-orbit and N2LO terms, we also need

α̂q,k,µ(r) = −
∞
∑

r=1

1

r!





(

− 1
∂Hq,cl

∂p

∂

∂p

)r−1(

pk−2

∂Hq,cl

∂p

〈pµ Ĝq,r〉
)





∣

∣

∣

∣

∣

p=pF (r)

(23)

α̂q,k,µν(r) =
pkF
3k

1σδµν −
∞
∑

r=1

1

r!





(

− 1
∂Hq,cl

∂p

∂

∂p

)r−1(

pk−3

∂Hq,cl

∂p

〈pµpν Ĝq,r〉
)





∣

∣

∣

∣

∣

p=pF (r)

(24)

We can thus write

ρq(r) =
Trσ(α̂q,3)

2π2~3
, (25a)

τq(r) =
∆Trσ(α̂q,3)

8π2~3
+

Trσ(α̂q,5)

2π2~5
, (25b)

τ (s)q,µν(r) =
∇µ∇νTrσ(α̂q,3)

8π2~3
+

Trσ(α̂q,5,µν)

2π2~5
, (25c)

Qq(r) =
∆2Trσ(α̂q,3)

32π2~3
− ∆Trσ(α̂q,5)

4π2~5
+

Trσ(α̂q,7)

2π2~7
+
∇µ∇νTrσ(α̂q,5,µν)

2π2~5
, (25d)

Jq,µν(r) =
Trσ(α̂q,4,µσ̂ν)

2π2~4
, (25e)

Cq,µν(r) =
∆Trσ(α̂q,4,µσ̂ν)

8π2~4
− ∇µ∇κTrσ(α̂q,4,κσ̂ν)

4π2~4
− Trσ(α̂q,6,µσ̂ν)

2π2~6
. (25f)

Concerning the NLO densities, our results agree with Ref.[2]. The only differences lie in the new densities and currents
specific to the N2LO order.

B. The one-body N2LO hamiltonian

The form of the hamiltonian we derived earlier is not very well suited for the Wigner-Kirkwood transform. We thus
consider the following form

〈r|ˆ̃hq|r′〉 = Ũq

(

r+ r′

2

)

δ(r− r′)1̂σ − B̃q,µν

(

r+ r′

2

)

∇µ∇νδ(r− r′)1̂σ + D̃q

(

r+ r′

2

)

∆∆δ(r − r′)1̂σ

− i σ̂ ·
[

Ṽq

(

r+ r′

2

)

×∇∆δ(r − r′)

]

− i σ̂ ·
[

W̃q

(

r+ r′

2

)

×∇δ(r− r′)

]

(26)

Both are of course equivalent if their fields verify the relations:

D̃q = Dq ,

B̃q,µν = Bq,µν +∇µ∇νDq −
1

2
∆Dqδµν ,

Ũq = Uq +
1

4
∇ν∇µBq,µν +

1

16
∆∆Dq ,

Ṽq = Vq ,

W̃q = Wq −
1

4
∆Vq , (27)

The Wigner transform of 〈r|ˆ̃hq|r′〉 is then straightforward :

(ĥq)W (R,p) = Ũq(R)1̂σ + B̃q,µν(R)
pµpν
~2

1̂σ + D̃q(R)
p4

~4
1̂σ + σ̂ ·

(

W̃q(R)× p

~

)

− σ̂ ·
(

Ṽq(R)× p

~

) p2

~2
(28)

As we can see, this hamiltonian is far much more complicated than the ones considered in Refs.[1, 2]. Because of
this complexity the calculation is no longer possible formally, which is the main advantage we are looking for. In
particular, the p4 and pµpν terms in the hamiltonian make a very tedious calculation of the α̂ since their denominator
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would contain polynomials of p and trigonometric functions so that only a numerical angular average becomes feasible.
Moreover, the N2LO fields in the single particle hamiltonian would lead to a equation over τµν highly non linear which
is not easily solvable by hand. Obviously, approximations are mandatory and we will proceed perturbatively: we will
keep only NLO potentials in the Wigner transform of the one-body hamiltonian but we will consider the N2LO terms
in the functional. As already described in Ref.[33], the 4-gradient terms give small numerical contributions to the
densities so that the approximation made here seems totally justified. In that case, the total one-body hamiltonian
simply reduces to:

(ĥq)W (R,p) = Uq(R)1̂σ + fq(R)
p2

2m
1̂σ + ~ σ̂ ·

(

gq(R)× p
)

(29)

with a direct correspondence with Ref.[2]:

Uq = Ũq = Uq +
1

4
∆Bq , (30)

fq =
2m

~2
B̃q =

2m

~2
Bq , (31)

gq =
1

~2
W̃q =

1

~2
Wq . (32)

Explicit expressions for Ĝi and α̂i functions are given in Appendix B. They contain several contributions (Thomas-
Fermi (TF), Extended Thomas-Fermi at order ~2 (ETF2) and spin-orbit (ETF2so)) which are easily identified. We
are thus now in position to determine the different densities and currents within the approximation described above.
We obtain (the r dependencies of all the densities are omitted for sake of simplicity)

τq = τTF
q + τETF2,c

q + τETF2,so
q (33)

with

τTF
q =

3

5

(

3π2
)2/3

ρ5/3q , (34a)

τETF2,c
q =

1

3
∆ρq +

1

36

(∇ρq)2
ρq

+
1

6

∇fq · ∇ρq
fq

− 1

12
ρq

(∇fq
fq

)2

+
1

6
ρq

∆fq
fq

, (34b)

τETF2,so
q =

1

2

(

2m

~2

)2

ρq

(

Wq

fq

)2

, (34c)

and similarly for the other densities or currents

τ (s),TF
q,µν =

1

5

(

3π2
)2/3

ρ5/3q δµν , (35a)

τ (s),ETF2,c
q,µν =

1

3
δµν

{

1

6
∆ρq +

1

6

∇fq · ∇ρq
fq

}

+
1

6
∇µ∇νρq +

1

36

(∇µρq)(∇νρq)

ρq
+ ρq

{

1

6

∇µ∇νfq
fq

− 1

12

(∇µfq)(∇νfq)

f2
q

}

, (35b)

τ (s),ETF2,so
q,µν =

1

4

(

2m

~2

)2

ρq

{

(

Wq

fq

)2

δµν −
Wq,µWq,ν

f2
q

}

, (35c)

QTF
q =

3

7

(

3π2
)4/3

ρ7/3q , (35d)

QETF2,c
q =

5

3
τTF
q

{

− 1

6

(∇fq
fq

)2

+
1

3

∆fq
fq

+
5

54

(∇ρq
ρq

)2

+
1

3

∇fq · ∇ρq
fqρq

− 1

9

∆ρq
ρq

}

, (35e)

QETF2,so
q =

5

3

(

2m

~2

)2

τTF
q

(

Wq

fq

)2

, (35f)

Concerning the currents, there is no TF contribution and we have

JETF2
q = −

(

2m

~2

)

ρq
Wq

fq
, (36a)

CETF2
q =

5

3

(

2m

~2

)

τTF
q

Wq

fq
. (36b)



8

One can easily check the agreement of our results with Ref.[19] and Refs.[1, 2] for all equations concerning NLO currents
and densities. Coming back to the full N2LO one-body hamiltonian one can justify the ”perturbative treatment” of
the N2LO component by inspecting by instance Eq. (34b): at N2LO order, the f field depends on τ itself, so that
the extraction of τ from the highly non linear Eq. (33) would be impossible. This remark holds also for the other
densities.

IV. THE SURFACE ENERGY IN 1D SEMI-INFINITE NUCLEAR MATTER

We use here the definition of the surface energy extracted from the simple one-dimensional semi-infinite nuclear
matter model which was originally developed by Swiatecki [46] and by Myers and Swiatecki [47, 48]. One considers
a medium where the density is constant along the two infinite directions x and y and a plane surface perpendicular
to the z−direction with neutron and proton density profiles denoted as ρq(z) (q = n, p). Since we are only interested
by the surface energy of a symmetric system we consider here only the isoscalar density ρ0(z) = ρn(z)+ ρp(z). Inside
the matter, i.e. for z → −∞, ρ0(z) → ρsat where ρsat is the equilibrium density in infinite nuclear matter and
E(z)/ρ0 → av the energy per particle in symmetric infinite nuclear matter. Outside the matter, i.e. for z → +∞,
ρ0(z)→ 0 and E(z)→ 0.
From now on, the surface energy can be simply written as

ES = S

∫ +∞

−∞

dz

{

E [ρ0(z)] −
E [ρsat]
ρsat

ρ0(z)

}

, (37)

Densities and currents have to respect the same symmetries as our system which are:

• translation invariance with respect to any axis which is orthogonal to z axis

• time translation invariance

• rotational invariance with respect to z axis

• reflection invariance with respect to any axis which is orthogonal to z axis

• time reversal invariance

Space and time translation invariances imply that the densities and currents will not depend on x, y cartesian
coordinates and time. Time reversal invariance associated with time translation invariance imply a vanishing time
odd part of the functional as already said. Rotational and reflection invariances coupled with translation invariance

induce the cancellation of every remaining densities and currents components except ρq, τ
(s)
q,xx, τ

(s)
q,yy ,τ

(s)
q,zz , Jq,xy, Jq,yx,

Qq, Cq,xy and Cq,yx. Furthermore, because of rotational invariance again, we also have τ
(s)
q,xx = τ

(s)
q,yy, Jq,xy = −Jq,yx

and Cq,xy = −Cq,yx. Thus, only the z component of the vector parts of Jq,µν and Cq,µν tensors remains. Moreover,
since we are here interested in symmetric nuclear matter, we have (omitting the z dependence) :

Un = Up = U , (38a)

fn = fp = f = 1 +
2m

~2
Cτ

0 ρ0 , (38b)

Wn = Wp = W = −CT
0 J0 − C∇J

0 ∇ρ0 . (38c)

Therefore, the energy density finally takes the following form

E [ρ0] =
~
2

2m
τ0 + Cρ

0 [ρ0] ρ
2
0 + C∆ρ

0 ρ0 ∂
2
zρ0 + Cτ

0 ρ0 τ0 −
1

2
CT

0 J2
0,z + C∇J

0 ρ0 ∂zJ0,z

+C
(∆ρ)2

0

(

∂2
zρ0
)2

+ CMρ
0

[

ρ0 Q0 + τ20 + 2
(

2(τ
(s)
0,xx)

2 + (τ
(s)
0,zz)

2 − τ
(s)
0,zz ∂

2
zρ0

) ]

+CMT
0

[

2 J0,zC0,z −
1

2
J0,z∂

2
zJ0,z

]

. (39)

The variational principle can then be applied with a simple Fermi-like density profile

ρ0(z) =
ρsat

1 + eαz
, (40)
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where the α parameter is determined in order to minimize the surface energy and ρsat is the equilibrium density of
symmetric nuclear matter. The result is

ES = S

[

Aα3 + B α +
C

α

]

, (41)

where the A,B,C coefficients can be written in such a way that one can easily identify the different contributions of
the Skyrme EDF and the different levels of approximation (TF, ETF2c, ETF2so). The results are presented below,
order by order.

For the sake of clarity, we introduced b =
2m

~2
Cτ

0 ρsat, c =
2m

~2
ρsatC

T
0 and d = b− c in the following sections.

A. The TF order

At the TF order the densities occurring in Eq. (39) are replaced by their TF values, and the result is

ANLO, TF = 0 , (42a)

BNLO, TF = − 1

6
C∆ρ

0 ρ2sat , (42b)

CNLO, TF = − 3

5

(

3π2

2

)2/3

ρ
5/3
sat

~
2

2m

3

2

[

1 +
π

3
√
3
− log 3

]

− Cρ
0 ρ

2
sat − Cργ

0

3

2
ρ3sat

+Cτ
0

3

5

(

3π2

2

)2/3

ρ
8/3
sat

(

−21

10
− π

2
√
3
+

3 log 3

2

)

, (42c)

AN2LO, TF =
1

30
C

(∆ρ)2

0 ρ2sat , (42d)

BN2LO, TF =
3

44
CMρ

0

(

3π2

2

)2/3

ρ
8/3
sat , (42e)

CN2LO, TF = CMρ
0

(

3π2

2

)4/3

ρ
10/3
sat

3

5

(

−351

49
+

2π
√
3

7
+

18 log 3

7

)

, (42f)

The third term of CNLO, TF coefficient corresponds to the density dependent term. This one has been chosen as
ργ with γ = 1 in order to compare our result with Ref.[1] where the autors considered the SIII parametrization.
However, many other exponents have been widely used in the literature and we give in Appendix C, the expressions
for a various panel of values of γ.
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B. The Central ETF2 contribution

Up to ~
2, the central ETF2 contributions to the τ , τµν and Q densities generate contributions to the surface energy

through the A,B,C coefficients as 3

ANLO,ETF2,c = 0 , (43a)

BNLO, ETF2,c =
~
2

2m

1

18
ρsat + Cτ

0 ρ2sat
1

12

[

−7

9
+

1

b2
− b+ 1

b3
log(1 + b)

]

, (43b)

CNLO, ETF2,c = 0 , (43c)

AN2LO,ETF2,c = CMρ
0 ρ2sat

[

− 7

1944
− 13

324b
− 3301

7776b2
− 899

1296b3
− 119

324b4

+

(

17

81b2
+

20

27b3
+

379

432b4
+

119

324b5

)

log(1 + b)

]

, (43d)

BN2LO, ETF2,c =

(

3π2

2

)2/3

CMρ
0 ρ

8/3
sat

{

− 7

44
+

1

10b
− 1

10b2
+

2

3b3

+
4 + b

3b11/3

[

1

6
log

[

(1 + b1/3)2

1− b1/3 + b2/3

]

− 1√
3
arctan

2b1/3 − 1√
3

− π

6
√
3

]}

, (43e)

CN2LO, ETF2,c = 0 . (43f)

C. The Spin-Orbit ETF2 contribution

We now take into account the spin-orbit field in the one-body hamiltonian. This constitutes the most elaborate
calculation presented in this paper. In our 1D semi infinite nuclear matter model, only the Jz(z) component of the
vector part of the current J(r) survives. Combining the ETF2 expression for J (see Eq. (36a) and the expression for
W (see Eq. (A3a)) we can write

W = CT
0

(

2m

~2

)

ρ0
W

f
− C∇J

0 ∇ρ0 , (44)

which gives easily the result already obtained in Refs.[30, 49]: 4

W =
−C∇J

0 ∇ρ0

1−
(

2m
~2

)

CT
0

ρ0

f

, (45)

As it can be easily seen, we also retrieve the case of Ref.[1] by taking CT
0 = 0. With the above expression, we can get

the spin-orbit contribution for each of the densities and currents:

τ
(s),ETF2,so
0,µν =

1

4

(

2m

~2
C∇J

0

)2

ρ0
(∇ρ0)

2δµν − (∇µρ0)(∇νρ0)
(

1 + d ρ0

ρsat

)2 (46a)

QETF2,so
0 =

5

3

(

2m

~2
C∇J

0

)2

τTF
0

(∇ρ0)
2

(

1 + d ρ0

ρsat

)2 (46b)

J
ETF2,so
0 =

(

2m

~2
C∇J

0

)

ρ0
∇ρ0

1 + d ρ0

ρsat

(46c)

C
ETF2,so
0 = − 5

3

(

2m

~2
C∇J

0

)

τTF
0

∇ρ0
1 + d ρ0

ρsat

(46d)

3 The BNLO, ETF2,c + BNLO, TF and CNLO, TF parts corresponds respectively to the B and C coefficient of eq (III.19) of [1].
4 Notice the misprint in Eq.(20) of Ref.[30] where ρ0 is missing.
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As expected there is no SO contribution at TF order so that the new contributions to the surface energy arising from
the SO term in the one-body hamiltonian read for NLO parts

ANLO,ETF2,so = 0 , (47a)

BNLO, ETF2,so =
(

C∇J
0

)2
ρ3sat

m

~2

1

d

[

1

d2
+

1

2d
− 1

6
−
(

1

d2
+

1

d3

)

log(1 + d)

]

, (47b)

CNLO, ETF2,so = 0 , (47c)

where the Jµν density contributes via the d coefficient. One can again retrieve the results of Ref.[2] by taking CT
0 = 0

i.e. c = 0. 5 Concerning for the N2LO contributions, we obtain

AN2LO, ETF2,so = CMρ
0

m4

~8

(

4

3
C∇J

0

)4

ρ6sat

[

−567

4d8
− 6237

32d7
− 4239

64d6
− 81

32d5
+

81

640d4

+

(

567

4d9
+

8505

32d8
+

1215

8d7
+

405

16d6

)

log(1 + d)

]

+CMρ
0

m2

~4

(

4

3
C∇J

0

)2

ρ4sat
1

c3

[

− 3

8b4
− 9

8b3
− 9

8b2
− 3

8b
+ c

(

1

4b5
+

15

16b4
+

9

8b3
+

7

16b2

)]

log(1 + b)

+CMρ
0

m2

~4

(

4

3
C∇J

0

)2

ρ4sat
1

c3

[

3

8b3
+

15

16b2
+

11

16b
+ c

(

− 1

4b4
− 13

16b3
− 71

96b2
− 1

8b

)]

+CMρ
0

m2

~4

(

4

3
C∇J

0

)2

ρ4sat
1

c3

[

3

8d4
+

9

8d3
+

9

8d2
+

3

8d
+ c

(

− 7

4d5
− 69

16d4
− 27

8d3
− 13

16d2

)

+c2
(

5

d6
+

21

2d5
+

27

4d4
+

5

4d3

)

+ c3
(

39

2d7
+

335

8d6
+

28

d5
+

45

8d4

)]

log(1 + d)

+CMρ
0

m2

~4

(

4

3
C∇J

0

)2

ρ4sat
1

c3

[

− 3

8d3
− 15

16d2
− 11

16d
+ c

(

7

4d4
+

55

16d3
+

173

96d2
+

1

8d

)

+c2
(

− 5

d5
− 8

d4
− 19

6d3
− 1

8d2

)

+ c3
(

− 39

2d6
− 257

8d5
− 217

16d4
− 17

24d3
+

23

480d2

)]

+CMs
0

m2

~4

(

4

3
C∇J

0

)2

ρ4sat

[

18

d6
+

99

4d5
+

57

8d4
+

3

80d2
−
(

18

d7
+

135

4d6
+

18

d5
+

9

4d4

)

log(1 + d)

]

,(48a)

BN2LO, ETF2,so =
(

CMs
0 − CMρ

0

) m2

~4

(

3π2

2

)2/3 (
4

3
C∇J

0

)2

ρ
14/3
sat

{

− 63

2d5
− 243

20d4
+

81

40d3
− 81

176d2

−9(14 + 11d)

2d17/3

[

1

6
log

[

(1 + d1/3)2

1− d1/3 + d2/3

]

− 1√
3
arctan

2d1/3 − 1√
3

− π

6
√
3

]}

, (48b)

CN2LO, ETF2,so = 0 . (48c)

V. RESULTS AND DISCUSSION

From a practical point of view, we first apply the variational principal to E[ρ0]/A and ES to determine ρsat and
α respectively. The surface energy is then calculated for a surface S given by S = 4πr2sat where rsat is the radius
of a nucleon at saturation density defined as 4

3πr
3
satρsat = 1. In other words, we have S ≡ 4π(3/4πρsat)

2/3. The
results are presented in Table I for the SN2LO1 parametrization of [33]. As expected, ρsat is independent of the
level of approximation since N2LO terms do not contribute to E[ρ0]/A in infinite nuclear matter (gradients terms).
On the contrary, α is slightly modified when the ~

2 second order-expansion is taken into account, in agreement with
Grammaticos and Voros [1]. This translates into a difference of 1.1 MeV of the surface energy, which is thus the
typical order of magnitude we can expect when we go from TF approximation to order ~2 in the expansion. Actually,
the main effect comes from the spin-orbit combined N2LO terms in the functional: we obtain a decrease of 3 MeV,
which is of course not negligible. However, beyond the numbers, what is really important and motivated the present

5 The reader may note differences between our result and the Eq. (III.26) in Ref.[2] due to some misprints in the power of the coupling
constant C∇J

0 and in the log(1 + b) factor.
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work, is the possible use of the explicit expressions of the surface energy written above, directly in the fitting protocol.
In that case, what is important is the shift between the ”exact” value (solution of HF equations) and the approximate
value coming from the semi-classical expansion presented here: a constant shift would enable us to fine tune directly
the surface energy during the fitting procedure, disregarding the numerical value itself. Since there is only one stable
N2LO parametrization in the literature, we decided to compare with results coming from series of Skyrme NLO
interactions.

From a practical point of view, we first apply the variational principal to E[ρ0]/A and ES to determine ρsat and α
respectively. The surface energy is then calculated for a surface S given by S = 4πr2sat where rsat is the radius of a
nucleon at saturation density defined as 4

3πr
3
satρsat = 1. In other words, we have S ≡ 4π(3/4πρsat)

2/3. In this way
we used three series of NLO Skyrme parametrizations: i) The SLy5sx series [6, 50] which has been constructed to
check the simple MTF (Modified Thomas-Fermi) semi classical approach in a fitting protocol to adjust the surface
properties of a symmetric semi infinite nuclear matter system. The MTF expansion was developed originally in [31] to
simulate effective mass and ~

4 effects with only two gradient terms beyond the TF term of the kinetic energy density.
The authors used such an approximation to generate a simple formula for the surface energy in semi infinite nuclear
matter [32]. This method was recently generalized to Skyrme EDF containing tensor terms as well as a full three-body
interaction [50]; ii) The SV series [51] which vary the bulk properties of infinite matter keeping constants the others;
iii) The SAMi series [52] which uses a quite similar protocol based on the SAMi parametrization. The results are
depicted on Fig. 1 for the series of SLy5sx parametrizations, on Fig. 2 for the series of SV and finally on Fig. 3 for the
series of SAMi parametrizations. On Fig. 1, is also shown the results obtained for the series: SIII, SkM, SkM*, SLy5
and SLy5* parametrizations taken here as references. On each Figure are presented (left panel) the numerical value of
the surface energy obtained with an HF solver (empty circles), within the ETF2 approximation presented here (empty
triangles), within the ETF4 approximation described in Ref.[1] (empty squares) which corresponds to an expansion
up to ~

4 of the density matrix and within the MTF (Modified Thomas-Fermi) approximation. To clearly exhibit the
difference of each semi classical calculation we present on right panel of each Figure the difference with the HF result.
On right panel of each Figure, we clearly see, for ETF4 and MTF approximations, a constant shift with respect to
the HF results in SLy5s series (respectively +0.5 and -0.5 MeV). Moreover, this shift is actually quite independent
of the fitting protocol (see SLy5, SLy5*, SkM, SkM*, as well as the SLy5sx, SV and SAMi series). And this is an
important feature. This fact was already noticed in Ref.[50] and gives a good insight about the existence of a constant
shift: the surface energy calculated by hand is sufficient to obtain the result of a full numerical solution of the HF
equations. The SIII parameter set was added for completeness and does not sustain the previous conclusion. However,
SIII is a particular case since this parametrization has special features like the density-dependent term by instance.
If we now come to the ETF2 approximation, the shift, instead of being constant, is seen varying in a range [0.7, 1.2]
MeV, which is however quite reasonable. The ETF2 calculation gives then a quite accurate order of magnitude of the
surface energy, which is sufficient to be incorporated in a fitting protocol including the surface energy as a primary
ingredient. Finally, an important feature of our results comes from the comparison to the HF result (see Ref.[53]) for
the SN2LO1 parametrization which exhibits quite the same shift (relative sign and amplitude). Even if the statistics
if of course not significant, there is however a valuable hint about the possibility to use safely our formulas in the
fitting procedure of future N2LO parametrizations.

order TF TF + ETF2,c ETF2

(ĥ)W
(

f p2

2m
+ V

)

1̂σ

(

f p2

2m
+ V

)

1̂σ

(

f p2

2m
+ V

)

1̂σ + ~ (g× p) · σ̂

ρsat (fm−3) 0.162 0.162 0.162

α (fm−1) 1.916 2.021 2.233

ES (MeV) 20.41 19.29 17.68

TABLE I. Numerical results obtained within different approximations with the SN2LO1 parametrization [33]. Second column
gives the TF results, i.e. ~0 order. Third and fourth columns give respectively the results which include TF + ETF2,c and TF
+ full ETF2 (central + spin-orbit contributions, i.e. ETF2c and ETF2so parts.
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SN2LO1

SkM
SkM*

SIII

SLy5
SLy5*

SLy5s8
SLy5s7
SLy5s6
SLy5s5
SLy5s4
SLy5s3
SLy5s2
SLy5s1

15 16 17 18 19 20

asurf (MeV)

HF ETF4 MTF ETF2 ETF2-Fermi

SN2LO1

SkM
SkM*
SIII

SLy5
SLy5*

SLy5s8
SLy5s7
SLy5s6
SLy5s5
SLy5s4
SLy5s3
SLy5s2
SLy5s1

-1 0 1 2

asurf vs HF (MeV)

FIG. 1. (Color online) Surface energy coefficients obtained within HF (empty circles), MTF (wide triangles) and ETF (empty
squares) approaches for the SLy5s series of Skyrme parametrizations (see text). The Figure has been enriched with the standard
SIII, SkM, SkM∗, and SLy5 and SLy5∗ parametrizations taken as references. The Figure shows also a preliminary HF result
for the N2LO SN2LO1 parametrization of Ref.[33].

VI. CONCLUSION

The semiclassical calculations are an alternative to Hartree Fock calculations which allow us to derive observables
without using wave functions formalism. In this paper, we extended the method developed in Refs.[1, 2] to Skyrme
N2LO functionals to get a handly expression of the surface energy. Our results have been obtained within two
approximations. The first one is the restriction to the order ~

2 in the Wigner-Kirkwood expansion of the density
matrix. This is justified since one of the conclusions of Ref.[1] is the non necessity to expand the density matrix Wigner
transform up to ~

4 order to get a good estimate of the surface energy compared to TF and ETF2 approximations. The
second approximation lies in neglecting the N2LO terms in the one-body hamiltonian. It comes from the impossibility
to derive formally the surface energy because of these terms. It is however justified by the relative size of N2LO terms
which are supposed to be small compared to NLO terms (see [33]). With this kind of semiclassical approach, there is
a loss of around 1 MeV in the precision of the surface energy with respect to the Hartree Fock results. However, for
NLO functionals, the difference between ”exact” Hartree Fock and ETF formula is close to constant: there is only a
constant shift between both results which enable us to incorporate the surface energy directly in the fitting procedure.
Since the same behavior appears to be true with the N2LO functional of Ref.[33], there is a good hint suggesting the
possibility to use the ETF estimations of the surface energy as pseudo-datas for a fitting program of N2LO functionals.
One can imagine to construct a similar fitting protocol already used in Ref.[50] to adjust the surface properties In
this regards, the results of this paper open opportunities to fit new N2LO parametrizations which shall incorporates
new fundamental features by construction.
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FIG. 2. (Color online) Same as Figure 2 for the SV series of NLO Skyrme parametrization (see Refs.[51, 54]).

Appendix A: N2LO one body hamiltonian

We give here all the expressions of the various parts of the N2LO one body hamiltonian (see Eq. (5)). We have
successively (omitting the r dependence of the densities in the right hand sides for sake of simplicity)

• central fields

UNLO
q (r) = 2 [Cρ

0 − Cρ
1 ] ρ0 + 4Cρ

1 ρq

+2
[

Cργ

0 − Cργ

1

]

ργ0 ρ0 + 4Cργ

1 ργ0 ρq + γ
[

Cργ

0 + Cργ

1

]

ργ+1
0 − 4 γ Cργ

1 ργ0 ρq + 4 γ Cργ

1 ργ−10 ρ2q

+2
[

C∆ρ
0 − C∆ρ

1

]

∆ρ0 + 4Cρ
1 ∆ρq + [Cτ

0 − Cτ
1 ] τ0 + 2Cτ

1 τq

+
[

C∇J
0 − C∇J

1

]

(∇κ Jκ,0) + 2C∇J
1 (∇κ Jκ,q) , (A1a)

UN2LO
q (r) = 2

[

C
(∆ρ)2

0 − C
(∆ρ)2

1

]

∆∆ρ0 + 2C
(∆ρ)2

1 ∆∆ρq

+
[

CMρ
0 − CMρ

1

]

Q0 + 2CMρ
1 Qq − 2

[

CMρ
0 − CMρ

1

]

∇µ∇ντ
(s)
0,µν − 4CMρ

1 ∇µ∇ντ
(s)
q,µν ,(A1b)

where the density dependent coupling constants Cρ
t [ρ0] have been expanded as already noticed in Eq. (4a).
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FIG. 3. (Color online) Same as Figure 2 for the SAMi series of NLO Skyrme parametrization (see Refs.[52, 55]).

• effective mass fields

BNLO
q (r) =

~
2

2m
+ [Cτ

0 − Cτ
1 ] ρ0 + 2Cτ

1 ρq , (A2a)

BN2LO
q,µν (r) = 2

[

CMρ
0 − CMρ

1

]

τ0δµν + 4CMρ
1 τqδµν + 4

[

CMρ
0 − CMρ

1

]

τ
(s)
0,µν + 8CMρ

1 τ (s)q,µν

− 2
[

CMρ
0 − CMρ

1

]

∇µ∇νρ0 − 4CMρ
1 ∇µ∇νρq , (A2b)

DN2LO
q (r) =

[

CMρ
0 − CMρ

1

]

ρ0 + 2CMρ
1 ρq . (A2c)

• spin-orbit fields

WNLO
q (r) = −

[

C∇J
0 − C∇J

1

]

∇ρ0 − 2C∇J
1 ∇ρq −

[

CT
0 − CT

1

]

J0 − 2CT
1 Jq , (A3a)

WN2LO
q (r) = 2

[

CMT
0 − CMT

1

]

C0 + 4CMT
1 Cq , (A3b)

VN2LO
q (r) = 2

[

CMT
0 − CMT

1

]

J0 + 4CMT
1 Jq . (A3c)
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Appendix B: Explicit expressions of Ĝi and α̂i functions

If we use the explicit expressions of Hq,cl and Hq,so with x = (r,p), we obtain:

Ĝq,0(x, ~) = 1̂σ

Ĝq,1(x, ~) = ~ (gq × p) · σ̂

Ĝq,2(x, ~) =
~
2

8m2

[

8m2g2
qp

2 − 8m2(gq · p)2 + 2(p ·∇fq)
2 − fqp

2∆fq − 2mfq∆Vq

]

1̂σ +O(~3)

Ĝq,3(x, ~) =
~
2

16m3

[

4fqp
2(p ·∇fq)

2 + 8mfq(p ·∇fq)(p ·∇Vq)− 2f2
qp

2(p ·∇)2fq − 4mf2
q (p ·∇)2Vq − fqp

4(∇fq)
2

− 4mfqp
2(∇fq) · (∇Vq)− 4m2fq(∇Vq)

2
]

1̂σ +O(~3) (B1)

We thus get

α̂q,3 =
p3F
3

1̂σ + ~
2

[

pF,q

(

m2gq
2

f2
q

+
7(∇fq)

2

96f2
q

−
∆fq
12fq

)

+
m

pF,q

(

(∇fq) · (∇Vq)

24f2
q

−
∆Vq

12fq

)

+
m2

p3F,q

(

−
(∇Vq)

2

24f2
q

)]

1̂σ

+O(~3) (B2)

α̂q,4,µ =− ~
m p3F,q

3fq
(σ̂ × gq)µ +O(~3) (B3)

α̂q,5,µν =
p5F,qδµν

15
1̂σ + ~

2

[

p3F,q

(

2m2gq
2δµν

3f2
q

−
m2gq,µgq,ν

3f2
q

+
19(∇fq)

2δµν
288f2

q

−
(∇µfq)(∇νfq)

9f2
q

−
(∆fq)δµν

18fq
+

7(∇µ∇νfq)

72fq

)

+m pF,q

(

∇µ∇νVq

12fq
−

(∆Vq)δµν
12fq

+
(∇fq) · (∇Vq)δµν

8f2
q

−
(∇µfq)(∇νVq)

12f2
q

−
(∇νfq)(∇µVq)

12f2
q

)

+
m2

pF,q

(

(∇Vq)
2δµν

24f2
q

)]

1̂σ +O(~3) (B4)

α̂q,5 =
p5F,q

5
1̂σ + ~

2

[

p3F,q

(

5m2gq
2

3f2
q

+
25(∇fq)

2

288f2
q

−
5(∆fq)

72fq

)

+m pF,q

(

5(∇fq) · (∇Vq)

24f2
q

−
∆Vq

6fq

)

+
m2

pF,q

(

(∇Vq)
2

8f2
q

)]

1̂σ

+O(~3) (B5)

α̂q,6,µ =− ~
m p5F,q

3fq
(σ̂ × gq)µ +O(~3) (B6)

α̂q,7 =
p7F,q

7
1̂σ + ~

2

[

p5F,q

(

7m2gq
2

3f2
q

+
7(∇fq)

2

96f2
q

)

+m p3F,q

(

35(∇fq) · (∇Vq)

72f2
q

−
5(∆Vq)

36fq

)

+m2pF,q

(

5(∇Vq)
2

8f2
q

)]

1̂σ

+O(~3) (B7)

where pF,q is the Fermi momentum. The corresponding Fermi energy is given by fq
p2

F,q

2m + Vq = EF,q. Since densities
and currents are not space independent, the Fermi momentum and the fields fq and Vq depend on the space variables
unlike EF,q. Thus, we get

m∇µVq = −
p2F,q(∇µfq)

2
− pF,qfq(∇µpF,q)

m∇µ∇νVq = −
p2F,q(∇µ∇νfq)

2
− pF,q(∇µfq)(∇νpF,q)− pF,q(∇νfq)(∇µpF,q)

− pF,qfq(∇µ∇νpF,q)− fq(∇µpF,q)(∇νpF,q) (B8)
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so that :

α̂q,3 =
p3F,q

3
1̂σ + ~

2pF,q

(

m2gq
2

f2
q

+
(∇fq)

2

24f2
q

− ∆fq
24fq

+
(∇fq) · (∇pF,q)

12fqpF,q
+

∆pF,q

12pF,q
+

(∇pF,q)
2

24p2F,q

)

1̂σ +O(~3) (B9)

α̂q,4,µ =− ~
m p3F,q

3fq
(σ̂ × g)µ +O(~3) (B10)

α̂q,5,µν =
p5F,qδµν

15
1̂σ + ~

2p3F,q

(

2m2gq
2δµν

3f2
q

− m2gq,µgq,ν
3f2

q

+
(∇fq)

2δµν
72f2

q

− (∇µfq)(∇νfq)

36f2
q

− (∆fq)δµν
72fq

+
∇µ∇νfq
18fq

− ∇µ∇νpF,q

12pF,q
+

(∆pF,q)δµν
12pF,q

+
(∇fq) · (∇pF,q)δµν

12fqpF,q
− (∇µpF,q)(∇νpF,q)

12p2F,q

+
(∇pF,q)

2δµν
8p2F,q

)

1̂σ +O(~3) (B11)

α̂q,5 =
p5F,q

5
1̂σ + ~

2p3F,q

(

5m2gq
2

3f2
q

+
(∇fq)

2

72f2
q

+
∆fq
72fq

+
(∇fq) · (∇pF,q)

4fqpF,q
+

∆pF,q

6pF,q
+

7(∇pF,q)
2

24p2F,q

)

1̂σ +O(~3) (B12)

α̂q,6,µ =− ~
m p5F,q

3fq
(σ̂ × gq)µ +O(~3) (B13)

α̂q,7 =
p7F,q

7
1̂σ + ~

2p5F,q

(

7m2gq
2

3f2
q

+
5(∆fq)

72fq
− (∇fq)

2

72f2
q

+
5(∇fq) · (∇pF,q)

12fqpF,q
+

5(∆pF,q)

36pF,q
+

55(∇pF,q)
2

72p2F,q

)

1̂σ +O(~3)

(B14)

Appendix C: Density dependent term in the CNLO, TF coefficient

The CNLO, TF coefficient of the surface energy (see Eq. (42)) is obviously dependent of the exponent γ of the density
dependence occurring in the Skyrme EDF. In the text, i.e. in Eq. (42), we gave the result for γ = 1. In the general
case, the contribution due to the density-dependent term, namely

CNLO, TF ≡ −Cργ

0 ρ30
3

2
, (C1)

has to be replaced by

CNLO, TF ≡ − Cργ

0 ργ+2
0 Cγ , (C2)

where the Cγ coefficient can be read in Table II for the density dependencies commonly used in the literature.

γ Cγ

1 3
2

2/3 21
10

+ π

2
√

3
−

3 log 3

2

1/2 8
3
− log 4

1/3 15
4
−

π

2
√

3
−

3 log 3

2

1/4 24
5
−

π
2
− log 8

1/5 35
6
−

5 log 5

4
−

√
5

4
log

√
5+1√
5−1

− π
2

√

1 + 2√
5

1/6 48
7
− π

√
3

2
−

3 log 3

2
− log 4

TABLE II. Expressions of the Cγ coefficient (see text) according to the value of the power of the density dependent term in
the NLO Skyrme EDF.
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