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Abstract 

Surface definition, a process of defining three dimensional surface from volume data, 
is essential in three dimensional volume data rendering. The traditional method applies 
a three dimensional gradient operator to the volume data to estimate the strength and 
orientation of surface present. Applying this method to ultrasound volume data does 
not produce satisfactory results due to noisy nature of the images and the sensitivity 
of certain signals to the direction of insonation. A Bayesian approach is proPosed 
here for surface definition of noisy images in general. We formulate the problem as the 
estimation of posterior means and standard deviations of Gibbs distributions for surface 
believability and normal direction. The prior distribution reflects shape properties at 
multiple scales. The design and implementation of such an approach and its application 
on ultrasound images are the subject of this paper. 

Introduction 

Three dimensional arrays of digital data have been generated in many areas of medical imag­

ing in ever increasing number. Multiple 2D slices of computed tomography (CT), magnetic 

resonance (MR), and single-photon emission computed tomography (SPECT) create volume 

data. A research project currently conducted in the Duke/UNC Engineering Research Cen­

ter on Emerging Cardiovascular Technologies includes building a new generation transducer 

that can capture three dimensional volume of ultrasound data in real time [vonRamm88] 

[Shattuck84]. These volume data represent complex anatomy or functional process under 

study. Effective visualization of these volnme data helps physicians in diagnostic interpreta­

tion or surgical planning. 
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Volume rendering, a method of direct rendering of volume data, has been successfully 

applied in visualizing volume data of CT, MRI, and PET images. The operational principle of 

volume rendering is to render the volume data directly instead of fitting geometric primitives 

and then rendering the primitives. This direct rendering is done by com positing images from 

the results of two separate and parallel processes. The first process performs surface shading 

at every voxel of volume data with a locally computed surface normal. The second process 

performs surface classification to obtain a partial opacity for every voxel. Independence 

of shading and classification calculations insures an undistorted visualization of 3D shapes. 

Non-binary classification increases the likelihood that small or poorly defined features are 

perserved [Levoy88]. 

Successful application of volume rendering depends heavily on the estimation of the 

local surface normal and surface classification. Usually one tries to take advantage of knowl­

edge about the relationship of voxel values with surfaces and their normals. For example, in 

CT image studies one can make the assumption that CT numbers represent the percentages 

of material contained in voxels; hence the surface normal and surface classification can be 

obtained from the local gradient of an approximate percentage measure. Unfortunately this 

simple technique can not be satisfactorily applied to ultrasound volume data since ultrar 

sound images suffer from serious speckle phenomena due to the coherent radiation source. 

Common speckle phenomena include random speckles spots from within soft tissues and 

broken contours on organ boundaries. Applying the above simple classification technique 

serves to pick up boundaries of random speckle spots as surfaces and miss boundaries at 

contour gaps. The locally computed surface normals tend to be incorrect. 

In this paper we study the surface classification and normal estimation problem from 

a Bayesian perspective in general. We formulate the problem as the estimation of posterior 

means and standard deviations of Gibbs distributions for surface believability and normal 

direction. We show that the Gibbs distribution can be extended to model global structures 

by using a data augmentation scheme. We apply this method on ultrasound images in 

two dimensions and show the results. The remainder of this paper is organized as follows. 

The next section presents the Bayesian approach. The following two sections describe our 

filter design for producing ultrasound image edge-related measurements to which Gibbs­

compatible likelihood functions pertain. Then the design of Gibbs priors reflecting shape­

related knowledge about the variables to be extracted is presented, followed by a summary 

of the complete algorithm. We then present results and close with a discussion. 

Approach 

Given an observed image we can apply measurements on the voxel values to determine 

whether a given voxel is on a boundary and, if it is, the associated normal direction. A 

representation of the target boundaries and normal directions can then be determined from 
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the measurements. However, this representation will not always be the true representation 

of the boundaries and normal directions of underlying targets due to the fact that the image 

is contaminated by noise. Instead, there is a certain strength of conviction or believability 

associated with this representation. 

The believability is obviously dependent on the measurements and is generally differ­

ent in different parts of an image. We usually have strong conviction as to the representation 

of a part of an image when the measurements on that part show relatively high values and 

weak conviction when the measurement values are low. For example, the output of an edge 

detector affects our conviction about the presence of an edge - the higher the output value 

the stronger the conviction. This conviction is also affected by the measurements in the 

neighboring voxels. For example, the believability concerning the existance of a boundary 

at two neighboring voxels increases when their normal direction measurements confirm each 

other but decreases when the normal directions contradict each other. 

Putting this dependency of believability on measurements and consistency into a 

mathematical form produces a Bayesian formulation for the conviction. In other words, the 

believability is really the posterior odds of a representation given measurements. It depends 

on a likelihood function, which is a distribution of measurements conditioned on a boundary 

representation, and a prior, which models the consistency in a representation, that is, the 

geometry of the situation. 

Under the Bayesian framework we can define a random field with the same dimen­

sions as the input image. Each site of the random field has two components: a boundary 

value, whose value is either zero or one, representing whether the corresponding voxel is on 

a boundary or not, and a normal which is a unit vector in the half unit-sphere of positive 

z component. A representation of object boundary and normal direction is thus a sample 

drawn from the random field. In regard to this representation there is an associated pos­

terior odds between zero and one, and the value is monotonic with the believability of this 

representation. 

We compute the posterior means and standard deviations of boundary value and 

normal directions for each voxel. This produces a summary representation of the ensemble 

of all possible representations. This summary representation provides information useful for 

volume-rendering. For example, the mean of the normal direction of a voxel can be used as 

the surface normal for shading. The standard deviation of normal direction can be used to 

make the mean normal direction fuzzy before it is used as the surface normal. As a result 

a shiny surface might show a high confidence about the local surface normals while a dull 

surface showed a low confidence. The mean of the boundary value could be used to modulate 

the opacity of the voxel, and the standard deviation of the boundary value could be used 
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to modulate the color. Here the color of a surface would show the relative confidence about 

our judgement of the presence of a local surface. Ideally this creates an image portraying 

the target shapes and with additional visual information of confidence about the shapes. 

Later we will show that under certain assumptions this random field has the Marko­

vian property. By the equivalence theorem of Markov random fields and Gibbs distributions 

due to Geman and Geman [Geman84], the posterior distributions of this random field is a 

Gibbs distribution. The Gibbs sampler can then be used to draw samples from the random 

field repeatedly. We thus can compute the ensemble posterior mean and standard deviation. 

Filter Design for Boundary Measurement 

We take as our likelihood function the distributions of local image features conditioned on 

the presence or absence of boundaries and, in the case of boundary presence, the true normal 

direction. The features could be just the image intensity; or more often measurements from 

some filters. In any case, we wish to select the features that can help better discriminate 

true boundaries from false ones and select the true normal directions. In other words, we 

wish to have well separated feature distributions between the cases of boundary presence 

and boundary absence, with the feature distribution peaking at the true normal direction. 

The selection of these features, and in turn the design of the filters, apparently will be 

application dependent. In the rest of this section and the next section we shall concentrate 

on ultrasound images in two dimensions. We shall discuss briefly the properties of ultrasound 

image noise and then introduce a set of filters for detecting boundary and associated normal 

directions based on those properties. We shall then present our measured distribution of the 

filter outputs and approximations to the filter output distributions. 

Ultrasound imaging is an unusual imaging modality in that it uses a coherent radia­

tion source. A sound beam is produced at a transducer and directed into targets. Echoes 

are generated at interfaces of media with different acoustic impedances along the path of 

sonic transmission. The incident beam is partially reflected back toward the transducer with 

the angle of reflection equal to the angle of incidence [HykesS85]. This type of reflection 

is responsible for major organ outlines seen in diagnostic ultrasound examinations. These 

reflections usually appear to be very bright in the image and they form mostly continuous 

boundaries. We shall call this kind of boundary the specular boundary. Specular boundaries 

tend to be broken where the boundary orientation is parallel to the beam direction and the 

reflection is directed away from the transducer, a phenomenon called echo drop-outs. Spec­

ular boundaries also appear to be broken where the random scatterers around the boundary 

happen to produce a destructive component echo which is out of phase with the specular 

reflection. 

Strong echoes can also originate from within homogeneous organ tissues, like livers, 
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Figure 1: Filter shape 

m the absence of apparent acoustic :mismatch. These echoes appear in the image as a 

texture of random bright spots, called speckles. In fact, these echoes originate from the 

supporting fibers in these tissues because they have elasticity much different from their 

neighboring cells [Fields73]. The intensity distribution of these echoes usually approximates 

Rayleigh distributions with different mean intensities for different tissue types. The interface 

of different tissues also forms a boundary and sometimes can be visually detected in the 

image. We shall call this kind of boundary the texture boundary. We are interested in both 

specular boundaries and texture boundaries. 

We wish to design a set of filters which provide accurate edge response and orien­

tation for both specular and texture boundaries. We have selected directional derivatives 

of anisotropic gaussians as the filter kernels [Canny86], [Korn88]. The rationale for this is 

as follows. Suppose we know the local boundary orientation. We can compute the average 

intensities on the two sides of the hypothesized boundary. The absolute value of the differ­

ence of the two averages then is a good indication of the presence or absence of an edge. 

We would like to get as many samples as possible on either side to get reliable statistical 

averages. But at the same time we would like to avoid the problem of mixing intensities from 

other nearby image structures. The directional derivatives of anisotropic gaussians with the 

elongated side oriented along boundary serve these constraints. In our implementation we 

use such filters of fixed widths but increasing lengths at multiple scales. The purpose of 

more elongated filters, which will be detailed in the section describing the prior specificaton, 

is to aid closing broken boundaries of different gap sizes. The shape of such a filter is shown 

in figure 1. 

Notice that these filters work for specular boundaries as well as texture boundaries. 

What are the correct sizes for the filter to be used in the likelihood function? For texture 

boundaries we argue that the short side should be at least two speckles wide and the long 

side should be several speckles in length in order to get good statistical averages. For 

5 



specular boundaries smaller filters can be used to get better localization of edges. In current 

implementation we used the same filter sizes for both kinds of boundaries, which is about 

2 speckles for the short side and 2.6 speckles for the elongated side. (Strictly speaking, the 

filter sizes should also change with the orientations of edges since the speckles are themselves 

anisotropic and always lie perpendicular to the beam direction. ) 

In reality we do not know the orientations of boundaries, which is required for the 

filters to work correctly. We address this problem by applying the filters in several orienta­

tions and averaging the responses from all orientations. In the current implementation we 

use four orientations at 0, 45, 90, and 135 degrees. The response from each filter is taken to 

form a vector in the polar coordinate system with its corresponding angle. These vectors are 

transformed to a new vector by doubling their angles, averaging by vector summation, and 

then halving the angle of resulting vector. This angle doubling and halving before and after 

the vector summation averaging is necessary because we do not distinguish inner normals 

from outer normals. 

Empirical Approximation of the Likelihood Function 

The likelihood function that we need to estimate is p(fb(i,j),fn(i,j)IB(i,j),N(i,j)), i.e. 

the filter response at voxel ( i, j) given the true boundary situation at voxel ( i, j). /b and 

fn are the magnitude and phase of the smallest scale filter response, B(i,j) is either 1 or 

0 representing boundary presence or not respectively, and N ( i, j) is the normal direction 

in the case of boundary presence. Both In and N(i,j) are modulated by 180 degrees and 

quantized to 16 discrete orientations in our implementation. Here we shall assume that 

/b(i,j) is independent of N(i,j) and In (i,j) is independent of B(i,j). Furthermore, we shall 

assume that In and lb are independent of each other. It then follows that we need ouly 

estimate p(fb(i,j)IB(i,j)) and p(fn(i,j)IN(i,j)) since p(fb(i,j),/n(i,j)IB(i,j),N(i,j)) = 

p(fb( i, j) IE( i, j) )PUn ( i, j) IN( i, j)) · 

Three test images are used as the training set for determining these condi tiona! distri­

butions. These three images are a slice through a cone phantom simulating a diffuse target, 

a slice through a liver, and a slice of of a baby doll hanging in a water tank, as shown in 

figure 2 . Contours in these images have been manually drawn as reference ground truth. 

The histograms of /b on the contours are computed and plotted in figure 3. Regions in 

the images containing no boundaries are randomly selected to gather samples for computing 

the histograms of lb in the absence of boundaries. These regions are as marked in figure 2 and 

the histograms are plotted in figure 3. These histograms can be reasonably fitted by normal 

distributions after a cube root transform on fb. Figure 4 shows the transformed histograms 

and the fitting normal distributions. In these plots /b is linearly scaled to between zero and 

one by normalizing by the maximal lb in each image. 
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Figure 2: Test images: (a) Cone phantom, (b) Liver, and (c) Baby doll 
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Figure 3: (a), (b), and (c): Histograms of !b measured on boundaries of cone phantom, liver, 
and baby doll. (d), (e), and (f): Histograms of !b measured on no boundary regions of cone 
phantom, liver, and baby doll 
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P(fn(i,j)!N(i,j)) is estimated by the difference of fn(i,j) and N(i,j), i.e., p(h(fn(i,j), N(i,j))), 

where h(·, ·) is a distance measure of normal angles. N(i,j) is computed from the drawn 

boundaries by fitting a straight line through five neighboring boundary voxels with least-

square error. Figure 5 shows the histograms of h(fn(i,j), N(i,j)). These histograms all peak 

at zero, indicating that our filters give approximately unbiased normal directions. These his-

tograms can also be approximated by normal distributions. In summary: 

p(!b( i,j), In ( i, j) IE( i, j), N( i, j)) = 

where v;,l = (fb-J1b1) 2/2al1 +h(fn(i,j),N(i,j))2j2a';. 
where v;,l = (!b- J1b2) 2 /2al2 

Prior Specification 

if B(i,j) = 1 
if B(i,j) = 0 (1) 

The prior defines the distribution of object shapes. Due to the enormous possibilities of 

object shapes projecting onto the random field it is difficult to directly specify the joint 

distribution of the large number of random components in the random field. However, since 

local object shapes do not have absolute correlation with distant parts of global shapes, it 

seems reasonable to assume a Markovian property for the random field. In other words, we 

assume that the values of a given site depend only on values of nearby sites. 

Random fields having Markovian property are called Markov Random Fields (MRFs). 

Geman and Geman [Geman84] have shown that for a MRF an equivalent Gibbs distribution 

can be defined on the field. LetS= {s1os 2 , ... ,sN} be the set of grid points on a MRF. 

A neighborhood system, 9 = {9., s E S} for S, is any collection of subsets of S for which 

1) s if_ 9s and 2) s E 9r <* r E 9., where 9s is the set of neighbors of s. A subset C ~ S 
is a clique if every pair of distinct sites in C are neighbors. A Gibbs distribution relative 

to {S, 9} is a probability measure 1r: on 11, the state space of the random field, with the 

following representation: 
1 7r:(w) = -e-U(w) z (2) 

where w is an outcome of the random field, Z is a constant and U, called the energy function, 

is of the form 

U(w) = L Vc(w) (3) 
CEC 

where C is the set of cliques for 9. Each Vc is a function on D with the property that Vc ( w) 

depends only on those components X 8 of w for which s E C. Sucll a family {Vc, C E C} is 

called a potential. Z is the normalizing constant: 

Z ~ 1 e-U(w) (4) 

and is called a partition function. For details ofMRF and Gibbs distribution we refer readers 

to [Geman84]. 
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We used a nearest-pair neighborhood system in modeling the local shape probabil­

ity. There are four kinds of cliques in this neighborhood system: (s;,j,Si+I,j), (s;,j,Si,j+I), 

(s;,j, s;+l,j+l), and (s;,j, s;+I,j-I)· For each kind of pair there are three combinations for the 

boundary values on the two grid points: both on boundaries, exactly one on a boundary, or 

neither on a boundary. For each case there are constraints on the normal directions for the 

points on boundaries: if both points are on boundaries the normal direction should change 

smoothly, while if only one point is on a boundary its normal direction should be oriented 

such that the assumed boundary direction does not point to the other point. The latter 

condition effectively penalizes blindly ending boundaries. Specifically, we have the following 

potentials for horizontal cliques: 

Vc2 = B(i,j) * B(i + 1,j) * h(N(i,j),N(i + 1,j))2
/ah1 

+ (1- B(i,j)) * B(i + 1,j) * h(N(i + 1,j), 0) 2 
jah2 

+ B(i,j) * (1- B(i + 1,j)) * h(N(i, j), 0) 2 
/ah2 (5) 

where B(i,j) and N(i,j) are the boundary value and normal direction at location (i,j), 
and h(·, ·) is the distance measure of two angles modulated by 180 degrees. ah1 and ah2 are 

scale parameters, which control how strongly the object shapes conform to the corresponding 

shape constraints. Potential functions for the other three cliques are similarly defined. 

This set of cliques can effectively capture the smooth property of surface normals and 

the unlikeliness of blindly ending boundaries. Nevertheless, it is insufficient for distinguishing 

true object surfaces from ones induced from erroneous filter response of random speckles. 

Furthermore, the broken surface speckle phenomenon may cause the filter to miss boundaries 

due to destructive echoes received at transducers. In either case we need to look beyond 

local neighboring properties to correctly determine the presence of true boundaries. 

These problems can be overcome by analyzing object shapes in multiple scales to find 

support from increasing neighborhoods. Local boundary points suggested by the smallest 

scale filter are not to be regarded as true boundaries unless enough support is found from ex­

tended neighborhoods. Local non-boundary points are not to be regarded as non-boundaries 

if the global shape structures in some extended neighborhood strongly suggest they are on 

broken boundaries. 

The prior is designed with a component to capture global shape structures in multiple 

scales. It uses a parallel algorithm for the multiscale analysis and infers two global shape at­

tributes, length and weight, for all points. The length attribute is the length of the boundary 

fragment of a boundary point. Boundary points induced from random speckles should have 

rather short length attributes while those from true object boundaries should have longer 

length attributes. The weight attribute is designed to address the destructive echo problem 

on continuous surfaces. The weight of a non-boundary point suggests the chances that point 
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is actually on a boundary. This weight depends on the presence of two ending boundaries 

on either side of a point, the compatability of the tangents at the two end points, and the 

filter responses at different scales. 

The algorithm computes length and weight by building a pyramid of cells of 4 by 4 

overlapping receptive fields [Shneier81] [Meer90]. At each level in the pyramid, boundary 

fragments in child cells are joined together in the parent cell and their lengths are summed. 

A stochastic decision is then made to close the gap between a pair of boundary fragments 

based on the compatibility condition and the filter response at that scale. A weight inversely 

proportional to the gap size is then assigned to all points along the trajectory of the closing 

gaps. This algorithm then makes a downsweep of the pyramid, tracing down the exact 

boundary locations while propagating the length and weight attributes at the same time. 

See [Lin91] for details of this algorithm. 

With the values of the length and weight attributes, L(i,j) and W(i,j), we define 

the following potential function: 

. ·. ( ALl Awl ) (" . (L(i,j) W(i,j)) 
Vcs=B(z,J)* L(i,j)+CL+W(i,j)+Cw +(l-Bz,J))* AL2 + Aw2 (6) 

where AL1, Aw1 , AL2, Aw2 are scaling factors, and Cw, CL are positive constants introduced 

to prevent infinite potentials when the attribute values are zeros. Although this potential 

function looks like a single element clique, it is actually derived from extended neighbor­

hoods. The L and W in this potential are global shape attributes computed from the 

extended neighborhood, and serve as latent data in our data augmentation scheme to be 

described in detail in the following section. By incorporating global attributes in a data 

augmentation scheme we have extended the use of Gibbs distribution to modeling global 

structures. Currently the parameters in the prior are determined empirically. Formal ways 

of determining these parameters are under investigation. 

Architecture of the Solution Algorithm 

Let X be the random field X= {(xij = (B(i,j),N(i,j)),lfi,j}. Let Y be the output of 

the filters from the input image, i.e. Y = {Yij = (fb(i,j),fn(i,j)),lfi,j}. We shall assume 

the conditional distribution p(Yij!X) of observing filter output Yij at voxel (i,j) given X 

depends only on Xij and that the values of Yij are independent of each other. It follows from 

our prior specification and likelihood function that the augmented posterior p(X!Y, L, W) is 

a Gibbs distribution with the energy function [Lin91]: 

U(w) = I; I; Vc,(w) (7) 
CiECi=1,6 

where Vol comes from the likelihood function, and vc2, vc3, Vc., vc5 come from the local 

shape constraints and Vc6 comes from the global shape attributes. But what we are re­

ally interested in is p(X!Y) . . We use a data augmentation scheme, which is similar to an 
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Figure 6: Operation of the Solution Algorithm 

EM algorithm [Dempster77], to iteratively calculate p(XIY) from the augmented posterior 

p(XIY, L, W) and the predictive distribution p(L, WIY) by alternatively sampling these two 

distribution [Tanner87] [Gelfand90]. The predictive distributionp(L, WIY) is the integration 

of p(L, WIX, Y)P(XIY) over all possible X. 

The operation of the complete algorithm is shown in figure 6. The current boundary 

values and normal directions to be estimated are shown in the shaded area. The initial 

boundary values are obtained by applying a threshold on !b ( i, j), and the initial values of 

normal directions are fn ( i, j). The algorithm then makes repeated updates on the whole field. 

Each iteration includes successive updates to each voxel. A sample from p(L, WIY) is drawn 

by performing the pyramid operation on the the current configuration. The Gibbs sampler is 

used to produce a new sample Xij for each voxel. It involves first computing the augmented 

marginal posterior p(xijiXsjij, Y, L, W), where Xsjij denotes the neighborhood of Xij· Each 

p(XijiXsjij, Y, L, W) is computed from equations (2), (4), and (7) with only those cliques 

including voxel ( i, j). A sample is then randomly drawn accordingly and replaces the old 
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(b) 

(d) 

Figure 7: Our filter outputs: (a) Cone phantom, (b) Baby doll. Sobel filter outputs: (c) 
Cone phantom, (d) Baby doll. 

In the current implementation we compute the pyramid only up to the sixth level. 

At this level each cell covers a 32 by 32 region. This size is considered large enough to 

compute reliable global attributes to reveal false boundaries. The values of B(i,j),N(i,j) 

and squared values of them are accumulated during each iteration. They serve to compute 

the means and variances of the boundary and normal estimations. 

Results 

We applied our filters on the baby doll image and the cone phantom image. Figure 7 show 

the outputs images from our filters, contrasted with those from a Sobel filter, which is a 

typical filter used in volume rendering. These pictures show our filter gives more accurate 

boundary measurements on the boundaries of the diffuse phantom and smooths out broken 

boundaries of the baby doll image. 

Discussion 

We have described a Bayesian framework for estimating surfaces in noisy images. This frame­

work produces a reference image of surface representations which can be further mapped to 

opacity for volume rendering. This reference image is a summary of all possible reconstruc­

tions of target shapes. This is a general idea. 
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We have applied this approach to two dimensional ultrasound images in particular 

and have demonstrated its usefulness in producing meaningful boundary representations. 

This boundary representation can not only be used in visualization but can also be the basis 

of image segmentation. We believe segmenting via this boundary representation will produce 

better results than segmenting the original ultrasound images based on the Sobel filter. We 

have implemented an active contour model using Gibbs distributions and are ready to test 

this idea using this model [Lin91]. 

This Bayesian framework is general enough to be applied to many applications, pro­

vided the likelihood function is appropriately adapted to the particular noise properties. 

In the case of ultrasound images we use larger elongated filters to handle the large speckle 

size. The Gibbs prior has also been extended to incorporate the important property of global 

shapes via multiscale analysis. By incorporating the global attributes in a data augmentation 

scheme we have extended the use of Gibbs distribution on modeling global structures. 

Due to the large size of our filter, the localization of boundaries and corners are not 

optimal. In future reasearch we wish to use a multiscale likelihood function in which filter 

outputs of different scales are weighted by types of boundary and boundary curvatures. 

This should help better locate boundary locations. Another direction of future work is to 

extend our implementation to three dimensions to truly test this 3D ultrasound visualization 

approach. 
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