
Research Article

Surface Evaluation by Estimation of Fractal
Dimension and Statistical Tools

Vlastimil Hotar1 and Petr Salac2

1 Department of Glass Producing Machines and Robotics, Technical University of Liberec, Studentská 1402/2,
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Structured and complex data can be found in many applications in research and development, and also in industrial practice. We
developed a methodology for describing the structured data complexity and applied it in development and industrial practice.
�e methodology uses fractal dimension together with statistical tools and with so	ware modi
cation is able to analyse data in a
form of sequence (signals, surface roughness), 2D images, and dividing lines. �e methodology had not been tested for a relatively
large collection of data. For this reason, samples with structured surfaces produced with di�erent technologies and properties were
measured and evaluated with many types of parameters. �e paper intends to analyse data measured by a surface roughness tester.
�emethodology shown compares standard and nonstandard parameters, searches the optimal parameters for a complete analysis,
and speci
es the sensitivity to directionality of samples for these types of surfaces.�e text presents application of fractal geometry
(fractal dimension) for complex surface analysis in combination with standard roughness parameters (statistical tool).

1. Introduction

Due to continuously increasing pressure from competitors
to improve the quality of products, there is a demand for
objective measurement and control methods for materials,
processes, and production processes. However, it is almost
impossible to describe many structures using conventional
methods (e.g., defects, surfaces, cracks, and time series from
dynamic processes) because they are complex and irregular.
One approach is the application of fractal dimension which
is successfully used in science.

�e fractal dimension is closely connected to fractals
that were de
ned by Mandelbrot [1], though scientists found
some geometric problems with speci
c objects (e.g., the
measurement of coast lines using di�erent lengths of rulers
by Richardson). A potentially powerful property of the fractal
dimension is the ability to describe complexity by using a
single number that de
nes and quanti
es structures [2, 3].
�e number is mostly a noninteger value and the fractal
dimension is higher than the topological dimension. For

example, the Koch curve (one of the most famousmathemat-
ical deterministic fractals) has the topological dimension��
= 1, but the fractal dimension �� = 1.2619. A smooth curve
as a line has the topological dimension�� = 1 and the fractal
dimension �� = 1. �e fractal dimension can be computed
for a set of points, curves, surfaces, topological 3D objects,
and so forth and if the fractal dimension is higher than the
topological dimension, we name the objects fractals.

Fractal dimension is part of a wider theory, fractal geom-
etry. Fractal geometry is closely connected to chaos theory.
Furthermore, the obtained structures were produced by real
dynamic systems and the obtained data was in�uenced by
these dynamic systems [2, 4, 5].�e data can also be tested to
chaotic properties (future work) and also simulated. Chaotic
system can be identi
ed by standard tools like Lyapunov
coe�cient, Hurst coe�cient, and also fractal dimension. An
alternative and promising way to identify chaotic system
is evolutionary reconstruction [6]. Application of chaotic
system reconstruction can be practically used for a chaotic
cryptosystem procedure [7].
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Table 1: List of analysed samples with their production properties.

Sample Technology of surfaces production

1 Polished surface to maximum gloss

2
Ballotini (glass beads) blasting, grain size F120 (mean
diameter 0.109mm)

3
Corundum blasting, grain size F36 (mean diameter
0.525mm)

4
Corundum blasting, grain size F12 (mean diameter
1.765mm)

5 Electro-erosion machining 29A

6 Electro-erosion machining 42A

7 Electro-erosion machining 54A

8 Sandpaper, K400

9 Emery cloth, 120

10 Emery cloth, 80

11
Vertical milling machine, milling cutter 20mm,
120 rpm, feed 30mm/min

12 Grinding wheel, 98A 60J 9V C40

13 Grinding wheel, 96A 36P 5V

14
Vertical milling machine, milling cutter 20mm,
120 rpm, feed 240mm/min

Even though applications of fractal dimension in industry
are quite rare and experimental [8], it is possible to 
nd
a promising test and applications [9–14]. Fractal dimen-
sion in conjunction with statistics can be used as a useful
and powerful tool for an explicit, objective, and automatic
description of production process data (laboratory, o�-line,
and potentially on-line). Fractal dimension does not sub-
stitute other tools like statistics and should be used with
other parameters for complete analysis. Here, we carry out
research into thementioned tools on amethodology that uses
standard and nonstandard parameters to evaluate complex
data from industrial practice [15, 16] and laboratories [17–19].
�e methodology 
nds suitable parameters for a complete
analysis of the data from a set of parameters. Only the chosen
parameters should be used in order to reduce processing time
in industrial practice. �e chosen parameters can also be
recalculated to one number and the number can be used in
quality assessment, for example, [16].

However, no research based on a deeper analysis of a
relatively large data set has been conducted yet. For reliable
usage of the methodology and analysis used, their properties
and limitations have to be de
ned. We also wanted to
analyse one source of data with di�erent measured methods.
�e given theoretical results will be used for improvement
of the methodology and 
nding relationships among the
parameters and results of various tests. �e main motivation
is to answer whether parameters like fractal dimension are
useful and bene
cial for a complex description of the data
from industrial practice.

For this purpose we analysed 14 surfaces produced by
5 di�erent processes and in di�erent conditions, Table 1.
Figure 1 shows 28 samples (with 14 surfaces). �e analysed
structures were chosen so as to be di�erent and to cover
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Figure 1: Analysed samples with machined surfaces.

the most common surfaces in industrial practice.�e chosen
samples were made purposely from identical material. �is
allows us to subsequently ignore material properties and
to analyse the change of technological parameters and the
in�uence of technology used.

�e samples were measured using 3 methods: with a
surface roughness tester, by image-capturing with an elec-
tron microscope, and by image-capturing of metallographic
samples using an optical microscope, Figure 2. �ese three
methods generate three data types that are the most common
types in industrial practice (sequences, signals, 2D images,
and dividing lines). �e measurements were analysed using
the developed methodology with 30 parameters. Results
comparison of a surface roughness description, 2D images,
and dividing lines seem to be interesting topics for future
work.

�is paper presents the 
rst results of conducted research
and it focuses on data from a surface roughness tester.
Nine parameters were chosen for detailed analysis. Further
measurements and comparison of the measurements will be
published later.

�e aims of this phase of the presented research are

(i) to compare standard and nonstandard parameters;

(ii) to 
nd the optimal parameters for a complete analysis;

(iii) to specify the sensitivity to directionality of samples
for these types of surfaces.

2. Methodology and Tools Used

�e un
ltered reading (raw data) from a surface roughness
tester is called a pro
le (curve). �e pro
le can be evaluated
using various methods. �e parameters obtained can be
divided into three groups, as follows:

(i) parameters of amplitude, useful for depth character-
ization (Std: standard deviation, ��: average rough-
ness, ��: maximum roughness, ��: mean roughness
depth, etc.);

(ii) parameters of frequency, used to describe surface pro-

le spacing parameters and for corrugation frequency
characterization (e.g., ��: mean spacing);
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Figure 2: Measurement of samples, obtained data, and analyses.

(iii) parameters of complexity and deformation, estimation
of fractal dimension by compass dimension (DC) [1–
3], by EEEmethod [20], or by relative length (��) and
proportional length (�	) of the pro
le.

�e mentioned parameters of amplitude and frequency
are commonly used in industrial practice. �ese parameters
are based on statistics. Average roughness, maximum rough-
ness, mean roughness depth, and mean spacing are surface
pro
le parameters de
ned by standard ISO 4287-1997 [21].
�e parameters of complexity and deformation were selected
based on previous experiences.

Average roughness (��) is also known as the arithmetical
mean roughness. �e Average roughness is the area between
the roughness pro
le and its mean line or the integral of
the absolute value of the roughness pro
le height over the
evaluation length:

�� = 1� ∫



0
|� (	)| 
	, (1)

where � is the evaluation length and � is the deviation from
the center line�, Figure 3.When evaluated from digital data,

the integral is normally approximated by a trapezoidal rule, as
follows:

�� = 1�
�
∑
�=1

���������� , (2)

where � is the number of measurements. Graphically, the
average roughness is the area (yellow in Figure 3) between
the roughness pro
le and its centre line � divided by the
evaluation length. In this 
eld of research, a 
ltered pro
le
is not being used. For this reason the average roughness is
called ��.

Maximum roughness (��), also maximum height, or total
roughness, is the vertical distance from the deepest trough
to the highest peak, Figure 3. For the un
ltered pro
le,
maximum roughness is denoted by ��.

Mean roughness depth (��5) is the arithmeticmean of the
single distance from the deepest trough to the highest peak
from 5 sampling lengths (�1–�5), Figure 3. For the un
ltered
pro
le, mean roughness depth is denoted by��5.�� is the mean spacing between peaks, now with a peak
de
ned relative to themean line. A peakmust cross above the
mean line and then cross back below it. If the width of each
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Figure 3: Parameters ��, ��, ��5, �� with the centre line�.

peak is denoted as ��, then the mean spacing is the average
width of a peak over the evaluation length, Figure 3:

�� = 1�
�
∑
�=1
��. (3)

�e estimated compass dimension expresses the degree of
complexity of the pro
le by means of a single number [1].
A compass method [1–3] is based on measuring the pro
le
(curve) using di�erent ruler sizes (Figure 4(a)) according
to

� � (��) = �� (��) ⋅ ��, (4)

where � � is the length in �-step of the measurement, �� is
the ruler size, and �� is the number of steps needed for the
measurement. If the pro
le is fractal, and hence the estimated
fractal dimension is larger than the topological dimension,
then the length measured increases as the ruler size is
reduced.�e logarithmic dependence between log2�(��) and
log2�� is called the Richardson-Mandelbrot plot (Figure 4(b)).
�e compass dimension is then determined from the slope �
of the regression line, as follows:

�
 = 1 − � = 1 − Δlog2� (�)Δlog2� . (5)

For better comparison of the results, the dimension is
multiplied by 1000 (�
1000). �e fractal dimension can also
be estimated using a di�erent method [2, 3].

�e rate of pro
le deformation can be evaluated from its
relative length ��. �is fast and reliable method measures
the ratio of the pro
le length �PIXEL (red curve in Figure 3)
using the smallest ruler (1 pixel) �PIXEL and the length of the
projection � (Figure 3), as follws:

�� = �PIXEL� . (6)

Another similar approach is to compute the proportional
length of the pro
le �	. �e proportional length is the ratio
of the pro
le length measured with a de
ned ruler �� (e.g.,
green line in Figure 4(a)) and the length measured with the
maximum ruler ��max (the length between the 
rst and the last
point of the pro
le):

�	 = ����max

. (7)

�e EEEmethod (evaluation of length changes with elimina-
tion of insigni
cant extremes) [20] stems from an estimation
of the fractal dimension, so it measures changes of lengths in
sequential steps. �e method does not use a 
xed “ruler” for
its measurement in every step, but the line is de
ned by local
extremes (maxima and minima).�emethod is based on the
length evaluation of a pro
le (curve or signal).

�e pro
le is de
ned by measured values, which are iso-
lated points 	1, 	2, . . . , 	� in the range �(	1), �(	2), . . . , �(	�).
�e points represent local extremes (maxima and minima).
On the pro
le, unnecessary extremes are classi
ed with a
de
ned ruler and a new simpli
ed function is de
ned by the
remaining points. A relative length ��1 of the new function
is measured and the result is saved.

�e procedure for the elimination of insigni
cant
extremes is applied to the simpli
ed function (pro
le).
�e function obtained is also measured and the process
is reiterated. �e last function is formed from the global
maximum and minimum of all functions, at which point the
analysis is stopped. �e steps � of the analysis are plotted
against the computed relative lengths ��� of the functions.
�e relation between the relative lengths ��� and the steps
of elimination � is evaluated by a suitable regression function
that can be a regression line, a quadratic function, or a
hyperbolic function. In the case of using a regression line, the
dimension can be computed from the slope � by the following
equation:

�EEE = 1 + |�| . (8)

For better comparison of the results the dimension is multi-
plied by 1000 (�EEE 1000). More information can be found in
[20].

3. Measurement of Samples

�e surface roughness tester Mitutoyo SV 2000 was used
for takingmeasurements (parameters: traverse range: 50mm;
linearity of traverse: 0.3 �m/50mm; stylus speed measuring:
0.5mm/s; positioning: 2mm/s). A standard type of stylus
with a 60∘ angle was used with a measuring force: 0.75mN.

All samples (2 samples with the same surface) were
measured in 9 positions, each position in 3 directions, 	, �,
and transverse. �e length of measurement is 4800 �m and
the sampling interval is 0.5 �m. All data obtained is in
the form of un
ltered pro
les. A so	ware tool for a data
evaluation was developed in Matlab.

4. Results

�e samples analysed have clearly di�erent structural charac-
ters. In Figure 1, the samples are ordered from the smoothest
to the most structured surface (from le	 to right). �e
two upper lines represent blasted and electroeroded surfaces
(random surfaces) and the two bottom lines represent the
classically machined surfaces. Graphs in Figures 5, 6, 7, 8, 9,
10, 11, 12, and 13 show the results of analysis for the surfaces
from the measurement of the pro
les in one direction
(	-axis). A correlation between the chosen parameters is
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Figure 4: Estimation of the fractal dimension by the compass method.
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Figure 5: Results of parameter Standard deviation (	-axis).

clearly visible (��, �EEE 1000, and ��). �e �
1000 parameter
correlates lower and the �� parameter does not correlate.
To evaluate the parameters objectively, Pearson’s correlation
coe�cients were computed, see Table 2 (the parameters are
normally distributed). �e aim is to specify the appropriate
parameters for fast and reliable analysis for industrial data
evaluation [15] (e.g., production control or quality moni-
toring). Only the chosen parameters should be used for a
complete analysis of the data in order to reduce processing
time. Some parameters linearly correlate with others (they
provide similar information about the data), Table 2. If the
situation is simpli
ed and a linear correlation is assumed,
we can specify suitable parameters for evaluation of these
types of data as follows: average roughness, �� (parameter
of amplitude), Mean Spacing, �� (parameter of frequency),
compass dimension, and�
1000 (parameter of complexity and
deformation). �ese 3 parameters provide diverse informa-
tion about the data.

A decisive number (a testing number, a quality number) is
required in several applications. Typically, during a subjective
testing by an operator (mostly by human eyes), one tested
number is obtained, based on subjective comparison with
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Figure 6: Results of �� parameter (	-axis).

etalons [15, 16]. �e demand for only one testing number
for quality evaluation comes from industrial practice. �ree
parameters that fully describe the data can be used for
objective evaluation. In these cases the single number has to
be calculated from the 3 parameters by weight coe�cients
and can be converted to a speci
ed quality scale. �e weight
coe�cients for each of the three parameters have to be
speci
ed using an appropriate methodology.

Measurements were taken at 9 di�erent measurement
points in the 	, �, and transverse direction for each of the 28
samples examined.�iswas done for all 9 presentedmethods.

�e mean values of the data obtained from individual
samples of 	-axis directions (�1), �-axis directions (�2),
and the transverse directions (�3) were compared for each
sample. Conformity of the mean values was tested by one-
way analysis of variance (ANOVA) [22] at signi
cance level
� = 0.05 using Matlab so	ware. �us,

�0 : �1 = �2 = �3
�1 : non �0.

(9)
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Figure 7: Results of �� parameter (	-axis).
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�e test results are shown in Table 3, where value 0 means
a rejection �0 and a bene
t �1 (results of measurement are
dependent according to direction). Value 1 does not consti-
tute rejection �0 (results are independent on the direction).
� values for rejection of the hypothesis �0 in favor of the
alternatives�1 are also shown in Table 3.

Samples 1 to 7were prepared by technologies that produce
random structures. Samples 8 to 14 were produced by a
standard machining method that generates directionally
visible structures (Figure 1). Samples 8, 9, 10, 12, and 13
have linearly oriented structures. Samples 11 and 14 have
rotationally oriented structures, because of the milling tech-
nology. Parameters �
1000, �EEE 1000, ��, and �	 (parame-
ters of complexity and deformation) show good results in
recognition of the directionality. �e only exception was
for samples 11. �ese samples have a smooth rotationally
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Figure 13: Results of proportional lengthmeasurement, �	 (	-axis).

oriented structure that is identi
ed as a random structure.
�e results show that thementioned parameters are useful for

nding directionally dependent and independent structures.
However, the conclusion is valid only for the analysed data
and must be veri
ed in further research.

5. Conclusions

�e methodology for evaluation of complex and irregular
data was developed and applied in industrial practice. �e
fractal dimension is used in combinationwith statistical tools;
thus commonly used parameters and relatively new param-
eters are used simultaneously. �is methodology searches
appropriated parameters for a complex evaluation of data.
Only the chosen parameters are used for a complete analysis
of the data in order to reduce processing time.

We conducted this research to verify and 
nd properties
of the methodology on data measured from 14 samples.
�e samples were produced by 5 di�erent technologies
(commonly used in industry) under di�erent production
properties. �e samples were measured using 3 methods: by
a surface roughness tester, by an electron microscope, and by
an optical microscope.

In the 
rst phase of the research we analysed data sets
obtained from a surface roughness tester. �e nine used
parameters were divided into sets: parameters of amplitude,
parameters of frequency, parameters of complexity, and
deformation. One parameter in each set was determined
using the correlation coe�cient to evaluate these data types:
average roughness, ��(parameter of amplitude), Mean Spac-
ing, �� (parameter of frequency), and compass dimension,
�
1000 (parameter of complexity and deformation). �ese
3 parameters provide diverse information about the data
and can be used for a complete data analysis. Within the
framework of the research, sensitivity to sample directionality
for these types of surfaces was determined. Parameters of
complexity and deformation: compass dimension (�
1000),
EEE dimension (�EEE 1000), relative length (��), and propor-
tional length (�	) can be used for linear structure recognition
of the presented data. Based on these results, it can be inferred
that the tools represented here are suitable for recognition
directionally dependent and independent structures. De
facto one-way analysis of variance (ANOVA) illustrates the
parameter sensitivity of complexity and deformation to the
detection of random structures. Veri
cation of whether the
structure is chaotic and also if the structure must be chaotic
for detection with the speci
ed procedure will be carried
out.

Our future work will focus on two other forms of data: 2D
images and dividing lines. Further research will also compare
data analyses in various forms (sequences, signals, 2D images,
and dividing lines). �e potential of the mentioned method-
ology for industrial practise will be veri
ed. Subsequently,
veri
cation of whether the description of complex data is
only possible with the use of fractal dimension or su�cient
“standard tools” (especially statistical tools) will be executed.
Chaotic properties of obtained data will also be studied,
because they come from real dynamic systems that can be
chaotic.

�e fractal dimension is widely used in science, but
industrial applications are rather rare. Data analysis using
the fractal dimension has great potential in combination
with statistical and other measurements in industry. �is
and previously presented results show possibilities of appli-
cation in practical use in industry and production laborato-
ries. Structured surface, complex time series, and di�culty
describing dividing lines aremuchmore common than can be
expected.
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[15] V. Hotař, “Fractal geometry for industrial data evaluation,”
Computers andMathematics with Applications, vol. 66, no. 2, pp.
113–121, 2013.
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