
Surface excitations in electron spectroscopy.
Part I: dielectric formalism and Monte Carlo
algorithm
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The theory describing energy losses of charged non-relativistic projectiles crossing a planar interface is derived on the basis of the
Maxwell equations, outlining the physical assumptions of themodel in great detail. The employed approach is very general in that
various common models for surface excitations (such as the specular reflection model) can be obtained by an appropriate choice
of parameter values. The dynamics of charged projectiles near surfaces is examined by calculations of the induced surface charge
and the depth- and direction-dependent differential inelastic inverse mean free path (DIIMFP) and stopping power. The effect of
several simplifications frequently encountered in the literature is investigated: differences of up to 100% are found in heights,
widths, and positions of peaks in the DIIMFP. The presented model is implemented in a Monte Carlo algorithm for the simulation
of the electron transport relevant for surface electron spectroscopy. Simulated reflection electron energy loss spectra are in good
agreement with experiment on an absolute scale. Copyright © 2012 John Wiley & Sons, Ltd.
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Introduction

A quantitative understanding of any spectroscopy technique
based on the analysis of reflected, transmitted, or emitted charged
projectiles from solid surfaces relies on an accurate description of
the inelastic interaction of the projectiles with the target. In the
bulk of the solid, the stopping of the projectile can be accurately
described within the semiclassical dielectric formalism for infinite
media: the presence of the charged projectile perturbs the equilib-
rium charge distribution of the solid, which becomes polarized
and induces an electromagnetic (e.m.) field that acts as a stopping
force on the projectile. Within the semiclassical approximation, the
Fourier spectrum of the field set up by the projectile is interpreted
as a distribution of energy losses and momentum transfers at
individual, discrete inelastic interactions. Thus, the semiclassical
approximation serves as the link between the classical dielectric
description and the quantal nature of inelastic interactions. The
presence of an interface, e.g. solid-vacuum or between two solids,
imposes strict boundary conditions on the total (and hence also
on the induced) e.m. field. Thus, the stopping of the projectile close
to the interface is substantially different than in the bulk of the solid:
an additional dependency is found on the distance to the interface
(at either side) and on the surface crossing direction.

A collective response of the electrons in the surface region of
the solid due to the passage of charged projectiles through the
interface was predicted in the 1950s by Ritchie[1] and confirmed
experimentally by Powell and Swan.[2,3] A number of models have
been developed in the last decades to understand the collective
(and single-particle) response.[4–23] Different approaches and
approximations are adopted: some models use a classical electro-
dynamics framework whereas others use many-body quantum
theory, some assume a simplified dielectric response of the solid,
some are valid for particular trajectories of the projectile (e.g.

perpendicular or parallel to the surface). Simplifying mathematical
assumptions are often made in order to highlight the relevant
physics, to obtain more treatable expressions, and to keep the
computation time within reasonable limits. Unfortunately, the effect
of the different approximations on the resulting physical description
of the stopping of the projectile has not been scrutinized.

It is the purpose of the present work to present a self-contained
description of the dynamics of charged projectiles near a planar
interface within the semiclassical dielectric formalism, taking
special care to avoid further approximations such as those
addressed above. A common framework is provided which allows
one to compare a subset of models in the literature and to expose
the effects of their implied approximations. The calculation
procedure presented here has been implemented in a Monte Carlo
algorithm for the simulation of reflection-electron-energy-loss
spectra. Finally, the quality of the model will be assessed by means
of comparisons of simulated reflection electron energy loss spectra
(REELS) with experimental REELS on an absolute scale.

This work is structured as follows: In section “Theory”, the dielec-
tric formalism for the stopping of charged projectiles in an infinite
medium is briefly reviewed and extended to take into account
the presence of a planar interface to another medium. An expres-
sion for the differential inelastic inverse mean free path (DIIMFP)
of a charged projectile in the vicinity of a planar interface is derived.
In section “Results”, the dependence of the derived DIIMFP on the
velocity of the projectile, on the distance at each side of the
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interface, and on the surface crossing direction is examined.
Calculated DIIMFPs are compared with those given by another
model from the literature, exposing the effects of its implied
approximations. Next, a Monte Carlo algorithm for the simulation
of electron reflection experiments is described. Simulated spectra
are compared in absolute units with experimental spectra. Finally,
in section “Conclusions”, the presented results are summarized,
and conclusions are drawn.

Theory

We consider the geometry depicted in Fig. 1i. A projectile of charge
Z0emoves near the interface between two semi-infinite media with
dielectric functions Ea(q,o) and Eb(q,o), where the subscripts a and
b imply above and below the interface, respectively.† For the formu-
lae to apply for electrons, Z0 must be set to –1. We use a system of
Cartesian coordinates where the surface is the plane z=0 and the

unit vector along the z axis, z^, points towards medium a. The
charged projectile moves in a uniform motion with velocity v

making an angle � with the positive z axis. We denote the z coordi-
nate of the projectile’s position as d. There is mirror symmetry with
respect to the plane spanned by v and the z axis, and, furthermore,
in the case of normal escape and normal incidence (v parallel and

opposed to z^, respectively), all physical quantities we derive must
be invariant under an arbitrary rotation around the z axis. We will
use the Gaussian system of units [1/(4pE0) = 1, where E0 is the
vacuum permittivity, and m0/(4p) = 1, where m0 is the vacuum
permeability] throughout the calculation, unless stated otherwise.
First, the method of image charges will be used to solve

Maxwell’s equations in order to obtain the total e.m. field set
up by the projectile with the appropriate boundary conditions.
Next, the e.m. field induced at the position of the projectile will
be determined. Finally, an expression for the average energy loss
per unit path length (the so-called electronic stopping power)
will be derived as a function of the distance to the interface, d,
the surface crossing angle, �, and the speed of the projectile, v.
The connection between this classical description and the quan-
tized nature of the inelastic interaction of the charged projectile
in the solid will be made at the final stage of the calculation by

means of the semiclassical approximation: ℏq and ℏo will be con-
sidered as the momentum and energy transfers from the projec-
tile to the solid in an individual inelastic interaction. Here, q and
o are the Fourier conjugate variables of the position and time
variables r and t, respectively. By strict analogy with the quantal
calculation, one may derive not only the average energy loss
per unit path length, but also the DIIMFP, a quantity proportional
to the probability of undergoing a discrete energy loss between
W and W+dW per unit path length.

We will work in the Coulomb gauge, where the vector poten-
tial A(r,t) is transverse: r �A(r,t) = 0. We recall that the electric
field in terms of the scalar potential ’(r,t) and the vector potential
A(r,t) is given by[25,26]

E r; tð Þ ¼ �r’ r; tð Þ � 1

c

@A r; tð Þ
@t

; (1)

where c is the speed of light in vacuum. As we are concerned
with energy losses of relatively slow projectiles (with speeds
much less than c), the transverse components of the e.m. field
can be ignored. Consequently, we take A= 0, so that (B is thus
automatically set to zero):

E r; tð Þ ¼ �r’ r; tð Þ: (2)

The effect of this approximation is twofold: (i) Maxwell’s
equations are formally reduced to the electrostatic case even
though the position of the charged projectile and, hence, the
induced field vary with time and (ii) the theory does not describe
the effect of ‘transverse interactions’, which contribute to the
energy loss of relativistic projectiles and cause effects such as
transition radiation and Cerenkov radiation. In the case of
electrons, this implies that the present calculation is valid for
kinetic energies up to a few tens of keV. Retardation effects due
to the finite propagation speed of the e.m. field are not accounted
for explicitly.

We assume that the perturbation caused by the passage of
the projectile through the media is small enough so that the
media respond in a linear fashion. For homogeneous media,
this is equivalent to assuming that the electric displacement
field D r; tð Þ and the electric field are related via the linear
relationship

D r; tð Þ ¼
Z

R
3
dr

0
Z 1

�1
dt

0
Eðr� r

0
; t � t

0ÞEðr0 ; t0Þ: (3)†Although in practice the medium above the surface will often be taken as
vacuum, with �a(q,o) = 1, we keep an arbitrary medium a to retain generality.

i) Semi-infinite geometry ii) Pseudo-medium a iii) Pseudo-medium b

Figure 1. (i) Considered geometry: a non-relativistic projectile of charge Z0e and velocity v is at a distance d at either side of the interface between two
media Ea(q,o) and Eb(q,o) moving with a polar angle �. (ii) and (iii): Schematic representation of the method of image charges for dielectrics. By an
appropriate choice of the contributions p1, p2, and p3 (unity or zero) different models found in the literature can be reproduced, such as the surface-
reflection model, for which p1= p2= p3=1 [see text and Eqn (8)].
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In Fourier space, this expression becomes

D q;oð Þ ¼ E q;oð ÞE q;oð Þ; (4)

where E(q,o) is the dielectric function of the medium. The linear-
response approximation is formally equivalent to a first-order Born
approximation in perturbation theory, which is valid for projectile
energies of about 20 times the characteristic energies of the
active target electrons (ionization energies in the case of inner-shell
excitations).[27] Other estimations in the case of inelastic scattering
in solids[15] suggest a lower bound of valid kinetic energies in the
order of 7EF, where EF is the Fermi energy of the solid. Thus, in
the case of electrons, the present calculation is strictly valid for
kinetic energies between � 100 eV and � 10 keV.

We recall that the dielectric function gives the response of
the solid to the (q,o)-Fourier component of an external e.m. field. If
the external perturbation is a plane wave with frequency o

propagating along a given direction, e.g. the electric field carried
by incoming photons in the case of x-ray or UV spectroscopy, the
modulus of the electric field is independent of the spatial coordinates
and, hence, the response of the solid is characterized by a dielectric
function that depends only on the frequency of the wave, E(o). If
the perturbation is due to a moving charged projectile, the electrons
of the solid around the projectile interact with it via the Coulomb
potential, which evidently depends on the spatial coordinates. Thus,
the polarization of the material is non-local and is therefore in
general a non-trivial function of both r and t, or q and o in Fourier
space. Therefore, strictly speaking, in order to describe the dielectric
response of a solid to the passage of a charged projectile, a dielectric
function of the form E(q,o) is needed. This kind of dielectric function
is known in the literature as spatially dispersive, owing to the
dependency on q, namely on r in real space.

Finally, we recall that the boundary conditions of the electric field
and of the electric displacement field at the interface read[25]

limz!0þ Ek r; tð Þ ¼ limz!0� Ek r; tð Þ
limz!0þ D⊥ r; tð Þ ¼ limz!0� D⊥ r; tð Þ; (5)

where the subscripts k and ⊥ indicate, respectively, the compo-
nents parallel and perpendicular to the surface. These boundary
conditions must hold at all times at any point on the surface. They
also apply for time-varying fields.[25]

Method of image charges

Maxwell’s equations for electrostatics with a given set of
boundary conditions can be formally solved by means of the
Green’s function formalism.[26,25] The potential is given as an
integral relationship within a closed volume involving a kernel of

the form G r; r
0� �
¼ 1= r� r

0�� ��þ F r; r
0� �
, where r is the observation

point and r
0
is the source point. The first term of G r; r

0� �
is the

potential at r due to a point charge at r
0
. The second term, F r; r

0� �
,

is seen to satisfy the Laplace equation[25] (r 2’(r,t) = 0, potential
in a region of space with no charges) and can therefore be
understood as the potential of a system of charges external to the
integration volume, chosen in such a way that, together with a

source at r
0
, the required boundary conditions are satisfied. The

method of image charges for dielectrics,[25] also known in the
literature as the method of extended pseudomedia,[28,29] is a prac-

tical approach which is formally equivalent to determining F r; r
0� �
,

with the benefit of a conceptually simpler development. It consists
in finding an alternative representation of the problem in terms of
fictitious charge distributions chosen in such a way that the electric

field (i) can be trivially found and (ii) verifies the same differential
equation (Maxwell’s equations) and the same boundary conditions
as in the original problem. Such an alternative representation is
therefore equivalent to the original problem for all purposes.

We consider two infinite pseudomedia a and b with bulk
dielectric functions Ea(q,o) and Eb(q,o), respectively (see Fig. 1ii
and iii). In order to emulate the effect of the interface in the real
problem, fictitious charge distributions will be added to each
pseudomedium. Next, the electric field in each pseudomedium,
Ea r; tð Þ and Eb r; tð Þ, will be determined. The electric field in the
semi-infinite geometry will then be given by

E r; tð Þ ¼ Ea r; tð Þ for d > 0;
Eb r; tð Þ for d ≤ 0:

�
(6)

At this point, the electric field will still contain the fictitious charge
distributions explicitly. Next, the boundary conditions (5) will be ap-
plied and the fictitious charges shall be completely determined in
terms of other parameters and disappear from the equations, thus
serving as a convenient means of solving Maxwell’s equations sat-
isfying the corresponding boundary conditions at the planar inter-
face. Each infinite pseudomedium exhibits translational invariance:
its dielectric response can be described in terms of the bulk dielec-
tric function. Thus, the method of image charges allows us to de-
scribe surface effects using bulk properties of the media (!). We
point out for completeness that an alternative approach consists
in determining the surface dielectric response explicitly.[30,31]

The fictitious charge distributions at each pseudomedium will
now be specified. The question arises as to whether the electric
field is uniquely defined, that is, whether different choices of
fictitious charges yield the same electric field. We recall that the
electrostatic problem is uniquely determined only for Dirichlet or
Neumann boundary conditions[25] (specifying the potential or the
normal derivative of the potential, respectively, everywhere on a
closed surface). The boundary conditions, Eqn (5), are neither
Dirichlet nor Neumann boundary conditions: only continuity of
the parallel component of the electric field and of the normal
component of the displacement through the surface is required,
not a specific value. We therefore assume that the electric
field which satisfies the required conditions is not unique. Other
authors make similar statements: Chan et al.[11] state that ‘different
choices of fictitious charge distributions correspond to different
boundary conditions’ and, similarly, Flores et al.[29] mention that
‘there exists a precise relationship between boundary conditions,
physical models of surface scattering, and corresponding surface
pseudostimuli.’ Thus, it must be observed that different choices of
fictitious charges yield different descriptions of the inelastic
scattering of charged projectiles near a surface. See the note after
Eqn (8) for a further clarification of this point.

Recall that the velocity of the projectile is given by v= (vx,vy,vz).
The planar interface z=0 suggests a candidate fictitious charge at
each pseudomedium: the specular image charge of the projectile,
which moves with a velocity �v ¼ vx ; vy ;�vz

� �
. Furthermore, as we

will see below, the use of spatially dispersive dielectric functions
implies that a fictitious surface charge rs(rk,t) must be added at
the plane z=0.[32,33] Thus, we express the charge distributions in
pseudomedia a and b as

ra r; tð Þ ¼ Z0ed r� vtð Þ þ p1Z0ed r��vtð Þ þ rs r; tð Þ
rb r; tð Þ ¼ p2Z0ed r� vtð Þ þ p3Z0ed r��vtð Þ � rs r; tð Þ; (7)

respectively. Notice the opposite sign of the surface charge in
pseudomedium b in Eqn (7). This sign is necessary; otherwise, the
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normal component of the electric displacement field cannot be
continuous through the surface.[33] The scalar parameters p1, p2,
and p3 have been introduced to conveniently reproduce different
models found in the literature:

p1; p2; p3ð Þ¼ 1; 1; 1ð Þ Ref:4;28;34 specular reflection model;SRMð Þ
0; 1; 0ð Þ Ref:16;21;23

�

(8)

If the calculation is carried out including the transverse part of the
electric field, one finds that the boundary conditions for the trans-
verse part ofD r; tð Þ can only be satisfied if the image charge is se-
lected, e.g. (p1, p2, p3) = (1,1,1). It is then seen that this point image
charge accounts for a bulk polarization current moving away from
the interface as the projectile moves towards it in the medium side.
It is implicitly understood that the electrons of the solid bounce
back towards the inside of the medium at the interface as they
are repelled by the projectile (assuming an electron). This picture
corresponds to the specular reflection model.[4] In the present cal-
culation, where we neglect the transverse part ofE r; tð Þ, the bound-
ary conditions are not restrictive enough: they allow for the variety
of image charges (and therefore of surface-scattering models) dis-
cussed above.
Figures 1ii and 1iii show ra(r, t) and rb(r, t), respectively, for a

case where the charge is in medium a. The Fourier transforms
[Eqns (A1) and (A3)] of the charge distributions read

ra q;oð Þ ¼ Z0e

2p
d o� q�vð Þ þ p1d o� q��vð Þ½ � þ rs q;oð Þ

rb q;oð Þ ¼ Z0e

2p
p2d o� q�vð Þ þ p3d o� q��vð Þ½ � � rs q;oð Þ:

(9)

We now express the boundary conditions in terms of ra(q, o)
and rb(q, o). First, the electric field and the displacement field will
be expressed in terms of ra(q, o) and rb(q, o). Poisson’s equation
reads[25,26]

r�D r; tð Þ ¼ 4pr r; tð Þ; (10)

where r(r, t) is the distribution of external charges. In Fourier space,
this equation becomes

iq�D q;oð Þ ¼ 4pr q;oð Þ; (11)

where r(r, t) is the distribution of free charge. Using Eqn (4) and the
Fourier transform of Eqn (2),

E q;oð Þ ¼ �iq’ q;oð Þ; (12)

we can recast Eqn (11) as

E q;oð Þ ¼ �i4p
q

q2
1

E q;oð Þr q;oð Þ (13)

and write

D q;oð Þ ¼ �i4p
q

q2
r q;oð Þ: (14)

Taking the Fourier transform of the boundary conditions (5) and us-
ing Eqns (13) and (14), we have that the boundary conditions in
terms of ra(q, o) and rb(q, o) are given by

Z 1

�1
dqz

1

q2k þ q2z

1

Ea q;oð Þra q;oð Þ ¼
Z 1

�1
dqz

1

q2k þ q2z

1

Eb q;oð Þ rb q;oð Þ

(15)

and

Z 1

�1
dqz

1

q2k þ q2z
ra q;oð Þ ¼

Z 1

�1
dqz

1

q2k þ q2z
rb q;oð Þ; (16)

respectively. To derive the last two expressions, we have used
the fact that the boundary conditions must hold everywhere
on the surface at all times (8 x, y, t). Notice that the dielectric
functions at each side of the interface depend on q and o. For
the equalities to hold for all qk and o, the charge densities must
have a continuous dependency on q and o. A collection of point
charge distributions of the form r(q,o)� d(o�q � v) is therefore
not enough to satisfy these two equalities for dispersive dielec-
tric functions. An extended charge distribution with dependency
on qk and o (a surface charge distribution) is required, as we
anticipated above.

The boundary conditions are now imposed. We start by
inserting ra(q, o) and rb(q, o), Eqn (9), into Eqn (15). The fictitious
surface charge distribution which renders the two infinite
pseudomedia consistent with the semi-infinite geometry can be
immediately isolated:

where in the numerator, q should be understood as (qk, Kz). The
integral over Kz can be readily carried out using

d o� q � vð Þ ¼ 1

vzj j d Kz �
o� qk�vk

vz

� �
; (18)

d o� q ��vð Þ ¼ 1

vzj j d Kz þ
o� qk�vk

vz

� �
: (19)

Defining

kz ¼
o� qk�vk

vz
(20)

and

f qk;o
� 	

¼ p2

Eb qk; kz;o
� 	� 1

Ea qk; kz;o
� 	þ p3

Eb qk;�kz;o
� 	� p1

Ea qk;�kz;o
� 	

2
4

3
5

� 1
Z 1

�1
dkz

1

q2k þ k2z

1

Ea qk; kz;o
� 	þ 1

Eb qk; kz;o
� 	

2
4

3
5

(21)

rs q;oð Þ ¼ Z0e

2p
�

Z 1

�1
dKz 1

q2kþK2
z

d o� q�vð Þ p2
Eb q; oð Þ � 1

Ea q; oð Þ

h i
þ d o� q��vð Þ p3

Eb q; oð Þ �
p1

Ea q; oð Þ

h in o

Z 1

�1
dkz 1

q2kþk2z

1
Ea qk; kz ; oð Þ þ

1
Eb qk ; kz ; oð Þ


 � ; (17)
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we can recast rs(q,o) as

rs q;oð Þ ¼ Z0e

2p

vzj j
q2kv

2
z þ ðo� qk�vkÞ2

f
�
qk;o

�
: (22)

This expression coincides with Eqn (3) in Ref.[16] within notation
changes. The second boundary condition, Eqn (16), yields a closure
relationship between p1, p2, and p3 which restricts the value of the
fictitious point image charges:

p1 þ p2 � p3 ¼ 1: (23)

All literature models listed in Eqn (8) satisfy this relationship.
Once rs(q,o) has been obtained, the total electric field, Eqn (13),

is completely determined as

E q;oð Þ¼�i4p
q

q2

"
Y dð Þ

Ea q;oð Þ

(
Z0e

2p
d o� q � vð Þ þ p1d o� q ��vð Þ½ � þ rs q;oð Þ

)

þ Y �dð Þ
Eb q;oð Þ

(
Z0e

2p
½p2d o� q � vð Þ þ p3d o� q ��vð Þ� � rs q;oð Þ

)#
;

(24)

which can be recast more conveniently as

E q;oð Þ ¼�i4p
q

q2

(
Z0e

2p
d o� q � vð Þ Y dð Þ

Ea q;oð Þ þ
p2Y �dð Þ
Eb q;oð Þ


 �

þ Z0e

2p
d o� q ��vð Þ p1Y dð Þ

Ea q;oð Þ þ
p3Y �dð Þ
Eb q;oð Þ


 �

þ rs q;oð Þ Y dð Þ
Ea q;oð Þ �

Y �dð Þ
Eb q;oð Þ


 �)
;

(25)

whereY(d) is the Heaviside step function, which is 1 if d> 0 and 0 if
d≤ 0. The induced electric field,Eind q; oð Þ, is obtained by subtract-
ing the field that the projectile would create in vacuum,Evac q; oð Þ,
from the total electric field. From Eqn (13), we have that

Evac q;oð Þ ¼ �i4p
q

q2
Z0e

2p
d o� q � vð Þ: (26)

Thus, the induced electric field is given by

Eind q;oð Þ ¼ �i4p
q

q2

(
Z0e

2p
d o� q�vð Þ Y dð Þ

Ea q;oð Þ þ
p2Y �dð Þ
Eb q;oð Þ � 1


 �

þ Z0e

2p
d o� q��vð Þ p1Y dð Þ

Ea q;oð Þ þ
p3Y �dð Þ
Eb q;oð Þ


 �

þ rs q;oð Þ Y dð Þ
Ea q;oð Þ �

Y �dð Þ
Eb q;oð Þ


 �)
:

(27)

Finally, using Eqn (12), we have that the induced potential is
given by

’ind q;oð Þ ¼ 4p
1

q2

(
Z0e

2p
d o� q�vð Þ Y dð Þ

Ea q;oð Þ þ p2Y �dð Þ
Eb q;oð Þ � 1


 �

þ Z0e

2p
d o� q��vð Þ p1Y dð Þ

Ea q;oð Þ þ p3Y �dð Þ
Eb q;oð Þ


 �

þ rs q;oð Þ Y dð Þ
Ea q;oð Þ � Y �dð Þ

Eb q;oð Þ


 �)
:

(28)

The induced electric field can be interpreted as the superposition of
a field created by induced charges in the bulk of the media [first
two terms in Eqn (27)] and a field created by an induced surface
charge [third term in Eqn (27)]. Thus, the fictitious surface charge
rs(r, t), which has so far served as a trick to satisfy the boundary
conditions, is found to coincide with the induced surface charge.

Induced surface charge

Before carrying on with the calculation of the stopping power, it
is instructive to examine in some detail the induced surface charge
rs(r, t) imposed by the boundary conditions, since all surface-related
quantities will be obtained as integral transformations of rs(r, t)
[see, e.g. Eqns (25) to (28)]. Thus, knowledge of the dependency
of rs(r, t) on d, �, and v gives valuable insight into the conditions
for which surface effects are to be expected.

The inverse Fourier transform of Eqn (22) reads

rs r; tð Þ ¼ 1

4p2
Z0e vzj jd zð Þsign dð Þ

�
Z 1

�1
do

Z

R
2
dqk ei qk�vk�otð Þ f ðqk;oÞ

q2kv
2
z þ ðo� qk�vkÞ2

:

(29)

where we have carried out the trivial integration over qz and where
the term sign(d) has been explicitly introduced here to automatically
select the appropriate sign of rs(q, o) depending on whether the
projectile is above or below the surface, see Fig. 1 and Eqn (7). With
the change of variables eo ¼ o� qk � vk, we have

rs r; tð Þ ¼ 1

4p2
Z0e vzj jd zð Þsign dð Þ

�
Z

R
2
dqk

Z 1

�1
deo e�ieot f ðqk; eoþ qk�vkÞ

q2kv
2
z þ eo2 :

(30)

Causality arguments imply that 1/E(q,o) is analytic in the upper half-
plane of complex o.[25] Thus, f(qk,o) has all poles in the lower half-
plane. For t< 0, we can therefore perform the integration over eoby
closing the integration contour as indicated in Fig. 2 and using Eqns
(B3) and (B8) to obtain

rs r; tð Þ ¼ 1

2p
Z0ed zð ÞY �tð Þsign dð Þ

Z 1

0
dqk e�qk dj j

�
Z p=2

�p=2
df

0
Re eiqk� rk�vktð Þf qk;qk�vk þ iqk vzj j

� 	h i
;

(31)

where qk= qk(cosf0, sinf0, 0).
In the case t> 0, we consider Eqn (30) and use the second line

of lemma (B1) and the property E(q,o) = E*(�q,�o) to obtain
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rs r; tð Þ ¼ 1

2p2
Z0e vzj jd zð ÞY tð Þsign dð Þ

�
Z

R
2
dqk

Z 1

0
deo

2cos eotð Þ � e�qk dj j� 

q2kv
2
z þ eo2

� Re eiqk � rk�vktð Þf ðqk; eoþ qk�vkÞ
h i

:

(32)

Figure 3 displays the surface polarization charge rs(r, t),
Eqns (31) and (32), induced by an outgoing 500 eV electron that
moves from Al (d< 0) to vacuum (d> 0) perpendicular to the
interface (� = 0) for different values of the distance to the inter-
face, d. The dielectric-function model used to produce this figure
is given below, Eqn (66). The figure should be read by columns in
order to follow the time evolution of rs(r, t) at different stages of
the trajectory of the electron. The black arrows with the label v̂
represent the direction of motion of the electron. When the
electron approaches the interface from the Al side (d< 0), the
induced surface charge rs(r, t) is negative, and therefore a

Figure 3. Surface polarization charge, Eqns (31) and (32), induced by a 500 eV electron that moves from Al into vacuum perpendicularly to the surface
(� =0) at different stages of its trajectory.

Figure 2. Integration contour used to carry out the integral over eo in
Eqn (30).
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repulsive force is induced on the electron. This force,
schematically represented in the figure by the arrows labeled
Find,S, opposes the direction of motion of the electron: the
electron is decelerated. Similarly, when the electron is at the
vacuum side (d> 0), rs(r, t) is positive, and therefore an attractive
force is induced on the electron. This attractive force opposes
the direction of motion of the electron: the electron is also
decelerated at the vacuum side. Thus, the contribution of the
induced surface charge to the total induced force on an outgoing
projectile moving perpendicularly to the surface results in a
deceleration at both sides of the interface.

In Fig. 4, we consider the opposite trajectory: an incoming
electron with an energy of 500 eV crosses the interface from
the vacuum side (d> 0) to the Al side (d< 0) in a direction
perpendicular to the surface (� = 180∘). As the electron
approaches the surface from the vacuum side (d> 0), a positive
charge is induced at the surface, which creates an attractive force
on the electron. This force is now along the direction of motion:
the electron is accelerated. When the electron has crossed the
interface into the Al side (d< 0), a negative charge is induced
on the surface. Thus, a repulsive force Find,S acts on the electron.
This force is also along the direction of motion: the electron is

accelerated. Therefore, the contribution of the induced surface
charge to the force induced on an incoming projectile moving
perpendicularly to the surface results in an acceleration at both
sides of the interface.

Regarding the effect of the induced surface charge on the
probing projectile in the vacuum side, we can conclude the
following: when a charged projectile approaches the inter-
face to the medium perpendicularly, it is accelerated towards
the surface. Conversely, when the projectile crosses the inter-
face from the medium into the vacuum side, it is decelerated
as it leaves the surface behind. This description is in accor-
dance with Ref.[35] Regarding the medium side, it should be
noted that there is an additional contribution to the
induced force from the induced bulk charges. We anticipate
that, as we will see below, the acceleration and deceleration
of the projectile cannot be directly translated into energy
gains or losses.

In Fig. 5, we repeat the calculation for an oblique incoming
trajectory with � = 120∘. A general behavior is observed in
rs(r, t) in the three studied cases (� = 0, � = 120∘, and � =180∘).
As the projectile approaches the interface (regardless from
which side), the magnitude of rs(r, t) increases monotonically.

Figure 4. Same as Fig. 3 for � =180∘ (incoming trajectory perpendicular to the surface).
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The projectile carries on with its motion, crosses the
surface and, as it leaves the interface behind, the magnitude
of rs(r, t) does not decrease monotonically: it exhibits an
oscillating behavior which is eventually damped out as the
projectile moves further away from the interface. Conse-
quently, the force induced on the projectile is also expected
to oscillate as the projectile moves away from the surface.
Such oscillatory behaviors will be seen repeatedly in the
following sections. In the studied cases, the magnitude of
rs(r, t) is substantially different from zero only within a very
thin layer of a width in the order of 1 nm or 2 nm around
the interface. Therefore, surface effects are to be expected
only in a very thin layer around the interface of, at most, a
few nm. This also illustrates the surface sensitivity of con-
temporary surface-analysis techniques: surface characteristics
originating from a layer of a few Angstroems within the
surface are resolvable. We point out how remarkable it is
that the method of image charges allows one to use the
bulk dielectric functions of the media to describe processes
that happen in a truly limited region of space.

Stopping power

In order to gain a better insight into the dynamics of a charged
projectile in the vicinity of an interface, in this section, we examine
in detail the variation of its kinetic energy E per unit time:

dE

dt
¼ d

dt

1

2
m v � vð Þ ¼ mv � dv

dt
¼ v � Find r; tð Þ

����
r¼vt

: (33)

Following Ref.,[29] this equation can be trivially recast as

dE

dt
¼ v � Find r; tð Þ

�����
r¼vt

þZ0ed’ind r; tð Þ
dt

�����
r¼vt

� Z0ed’ind r; tð Þ
dt

�����
r¼vt

; (34)

which merely states that the variation in kinetic energy is the
variation in the total energy (kinetic plus potential, first two terms)
minus the variation in potential energy (third term). On the other
hand, the variation in kinetic energy of the projectile is given by
the workW done on the projectile per unit time, which, in general,
is the sum of a conservative and a dissipative contribution:

Figure 5. Same as Fig. 3 for � =120∘ (oblique incoming trajectory).
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dE

dt
¼ dWcons

dt
þ dWdiss

dt
: (35)

The conservative contribution dWcons/dt is given by the work done
by the induced field, which is indeed conservative because it is the
gradient of a potential:

dWcons

dt
¼ �Z0e

d’ind r;tð Þ
dt

�����
r¼vt

: (36)

This conservative work can be recovered in principle by returning
the projectile to its original configuration. The remaining two terms
in Eqn (34) constitute the dissipative part of the variation in kinetic
energy per unit time:

dWdiss

dt
¼ v�Find r; tð Þ

r¼vt

þ Z0ed’ind r; tð Þ
dt

�����
r¼vt

:

����� (37)

This dissipated work is by definition not recoverable at later stages
of the trajectory; it is invested in an irreversible way in energy losses
(or gains in very exceptional circumstances, see below) of the
projectile in the excitation of certain modes of the solid. Thus, it is
precisely this part of the kinetic energy variation that is needed to
sample genuine energy losses of the projectile in a Monte Carlo
simulation. Consequently, in what follows, we will concentrate on
the analysis of the dissipative part of the variation of the kinetic
energy. Carrying out the full time derivative in Eqn (37), we obtain

dWdiss

dt
¼ v � Find r; tð Þ

�����
r¼vt

þ Z0e
@’ind r; tð Þ

@t
þ
X3

i¼1

@’ind r; tð Þ
@xi

@xi
@t

" #

r¼vt

;

(38)

where {x1, x2, x3} are {x, y, z}, respectively. Thus, we have

dWdiss

dt
¼ v � Find r; tð Þ

�����
r¼vt

þ Z0e
@’indðr; tÞ

@t

�����
r¼vt

� v � Find r; tð Þ
�����
r¼vt

¼ Z0e
@’ind r; tð Þ

@t

�����
r¼vt

:
(39)

The variation due to the acceleration or deceleration caused by
Find(r, t) (first term) is exactly cancelled out by the third term.
Therefore, the conclusions drawn in the previous section regard-
ing the acceleration or deceleration of the projectile should not
be translated directly into an increase or a decrease in the kinetic
energy, i.e. into non-recoverable energy losses or gains. It is the
implicit time dependency of ’ind(r, t) which ultimately determines
the dissipated kinetic energy.

The approach we have followed (disregarding the conservative
part of the variation in kinetic energy) is strictly valid for swift
projectiles only. For these projectiles, the contribution of the
conservative part along a reflected trajectory or a trajectory
passing through a slab vanishes, provided that the velocity is
not substantially modified during the interaction with the solid.

Incidentally, we notice that in an infinite medium, there is
space and time invariance and, thus, the induced potential
evaluated at the position of the projectile cannot exhibit a
dependency on time. Therefore, the dissipative part of the
variation in the kinetic energy, Eqn (37), reduces to v � Find(r, t).
Moreover, the conservative part of the variation in the kinetic

energy, Eqn (36) vanishes. Under these special circumstances one
can conclude whether the projectile undergoes an irreversible
energy loss (or gain) alone from the direction of Find(r, t). In the
case of a semi-infinite geometry, Eqn (39) must be used.

The stopping power S is defined as the energy loss per unit
path length,

S ¼ �dWdiss

ds
; (40)

where ds= vdt. This quantity has dimensions of force. Using
Eqn (39), we have

S ¼ � Z0e

v

@’ind r; tð Þ
@t

�����
r¼vt

: (41)

In terms of the Fourier transform of the induced potential, ’ind

(q, o), we have

S ¼ i
Z0e

v

1

2pð Þ2
Z

R
3
dq

Z 1

�1
do o eit q � v�oð Þ’ind q;oð Þ: (42)

Using Eqn (28), we have that the stopping power is given by

S ¼ i

p

Z0e

v

Z 1

�1
do o

Z

R
3
dq eit q � v�oð Þ 1

q2

(
Z0e

2p
d o� q � vð Þ

� Y dð Þ
Ea q;oð Þ þ

p2Y �dð Þ
Eb q;oð Þ � 1


 �

þ Z0e

2p
d o� q�vð Þ p1Y dð Þ

Ea q;oð Þ þ
p3Y �dð Þ
Eb q;oð Þ


 �

þ rs q;oð Þ Y dð Þ
Ea q;oð Þ �

Y �dð Þ
Eb q;oð Þ


 �)
:

(43)

The first, the second, and the third summand are the stopping
power of the projectile due to the interaction with the induced
charges in the bulk, with the image charge (if selected), and
with the induced surface charge, respectively. We will refer
to these contributions using the symbols SB, SP, and SS, respec-
tively. In what follows, we shall concentrate on the surface
model with (p1, p2, p3) = (0,1,0), which implies setting the sec-
ond term of Eqn (43) to zero. This approach then encompasses
the models of Refs.[16,17,21,23] The effect of the image charge,
and to what extent it reproduces other models in the litera-
ture, will be discussed in a future work. See also the note after
Eqn (8).

Let us first determine the stopping power due to the interaction
with the induced bulk charges:

SB ¼
i

2p2
Z0eð Þ2
v

Z

R
3
dq

Z 1

�1
do o

1

q2
eit q�v�oð Þd o� q � vð Þ

� Y dð Þ
Ea q;oð Þ þ

Y �dð Þ
Eb q;oð Þ � 1


 �
: (44)

Assuming that E(q, o) = E(q, o), which is typically the case in
practice, the integral over the azimuthal angle of q can be trivially
carried out to yield 2p. The delta function can be used to carry
out the integral over the cosine of the polar angle, x. A factor
1/qv appears from the change of variables in the argument of the
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delta function and, since � 1≤ x ≤1, the values of o range from
� qv to qv. Finally, using the property E(q, o) = E*(�q,�o), we
obtain

SB ¼ � 2

p

Z0eð Þ2
v2

Z 1

0
dq

1

q

Z qv

0
do o Im

Y dð Þ
Ea q;oð Þ þ

Y �dð Þ
Eb q;oð Þ


 �
:

(45)

In an infinite medium, we would have only one of the dielectric-
function terms, and we would retrieve the well-known expression
for the stopping power in a bulk medium, see e.g. Eqn (1) of Ref. [15]

Similarly, for the stopping power due to the interaction with
the induced surface charge, we have

SS ¼
i

2p2
Z0eð Þ2 vzj j

v

Z

R
3
dq

1

q2

Z 1

�1
do o eit q�v�oð Þ

�
f ðqk;oÞ

q2kv
2
z þ ðo� qk�vkÞ2

Y dð Þ
Ea q;oð Þ �

Y �dð Þ
Eb q;oð Þ


 �
:

(46)

Using the property E(q, o) = E*(�q,�o), we can recast this
expression as

SS ¼ � 1

p2
Z0eð Þ2 vzj j

v

Z

R
3
dq

1

q2

Z 1

0
do

o

q2kv
2
z þ o� qk�vk

� 	2

� Im eit q�v�oð Þf qk;o
� 	

Y dð Þ
Ea q;oð Þ �

Y �dð Þ
Eb q;oð Þ


 �� �
:

(47)

For times t< 0, we can carry out the contour integration overo as
described in the previous section. We define eo ¼ o� qk � vk and
recast Eqn (46) as

SS ¼
i

2p2
Z0eð Þ2 vzj j

v

Z

R
3
dq

1

q2

Z 1

�1
deo

eoþ qk � vk
q2kv

2
z þ eo2 eiqzde�ieot

� f qk; eoþ qk � vk
� 	

Y dð Þ
Ea q; eoþ qk � vk
� 	� Y �dð Þ

Eb q; eoþ qk � vk
� 	

2
4

3
5:

(48)

We close the integration contour through the upper half-plane in
eo and obtain

SS ¼
i

2p
Z0eð Þ2 1

v

Z

R
3
dq

1

q2
iqk vzj j þ qk � vk

qk
eiqzde�qk dj j

� f qk; iqk vzj jþqk � vk
� 	

Y dð Þ
Ea q; iqk vzj jþ qk � vk
� 	� Y �dð Þ

Eb q; iqk vzj jþ qk � vk
� 	

2
4

3
5:

(49)

Using property 3, we obtain the final expression for the stopping
power due to the interaction of the charged projectile with the
induced surface charge:

SS ¼ � 1

p
Z0eð Þ2 1

v

Z 1

0
dq

1

q

Z p

0
d# e�qk dj j

Z p=2

�p=2
d’

� Im

(
eiqzdðiqk vzj j þ qk�vk

�
f
�
qk; iqk vzj j þ qk�vk

�

�
"

Y dð Þ
Eaðq; iqk vzj j þ qk�vkÞ

� Y �dð Þ
Ebðq; iqk vzj j þ qk�vkÞ

#)
:

(50)

for t< 0. For t> 0, we use Eqn (47).
Figure 6 displays the sum of the stopping power due to the

interaction with the induced bulk and surface charges, Eqns (45),
(47), and (50), for an electron traveling near the vacuum–Al inter-
face as a function of the distance to the interface. We consider a
normal trajectory (left-hand panels) and an oblique trajectory
(right-hand panels). In both cases, we consider the incoming and
the outgoing trajectories. The stopping power for the incoming
(outgoing) trajectory is displayed by the solid (dashed) lines. As
we noted when discussing the induced surface charge, oscillatory
behaviors appear when the electron has left the interface behind
(both for incoming and for outgoing trajectories). Thus, as is well-
known, there is an asymmetry in the stopping power between
the incoming and the outgoing trajectories: these differences
become more important for trajectories crossing the surface with
a direction close to the surface normal.

The negative oscillation found in the stopping power for the
outgoing trajectory in the vacuum side of the interface would
strictly imply that the projectile gains energy in a certain range
of distances at the vacuum side of the sample. However, the
stopping power integrated over all positive distances{ is positive
and, thus, we can assume that the projectile always loses energy,
thereby introducing only minor errors. In the medium side of the
interface, the stopping power is always positive, and, therefore,
the projectile is always slowed down in the medium.

The magnitude of the stopping power at the vacuum side of
the surface is generally smaller for the incoming trajectory than
for the outgoing trajectory. A plausible explanation for this fact
in connection with the conclusions of the previous section is
the following. We recall that at the vacuum side of the incoming
trajectory, the electron is accelerated towards the sample. Thus,
the incoming electron spends less time in the vacuum side,
and, therefore, less energy is lost in the incoming trajectory than
in the outgoing trajectory.

Semiclassical approximation

In the previous section, the stopping of the charged projectile
has been attributed to the interaction with the induced electric
field, and therefore considered as a continuous energy-loss process.
In reality, however, the stopping of the charged projectile occurs
in the course of consecutive discrete inelastic interactions with
the loosely bound electrons of the medium. The link between the
classical and the quantized descriptions is made by means of the
so-called semiclassical approximation, which consists in identifying
the Fourier variables q and o with a discrete momentum transfer
ℏq and an energy loss ℏo, respectively, in the course of an inelastic
interaction. It is now convenient to use the system of atomic units;
ℏ= e=me=1, whereme is the mass of the electron. Since in atomic

{Note that this integration is only meaningful for very fast projectiles.
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units, the energy loss ℏo reduces to o, we use the same symbol o
for the Fourier frequency and for the energy loss.

The integration domains of q and o are now determined by
the kinematics of inelastic collisions. Let the kinetic energy of
the projectile be E before the collision and E�o after the

collision. Let p and p
0
, respectively, denote the wavevector of the

charged projectile before and after the collision. The momentum
transfer q is defined as

q ¼ p� p0 : (51)

Taking the square at each side of this expression, we obtain

q2 ¼ p2 þ p0 2 � 2pp0cos θ; (52)

where θ is the polar scattering angle. In the non-relativistic
case, energy and momentum are related by E=p2/(2m), namely

p ¼
ffiffiffiffiffiffiffiffiffi
2mE

p
, where m is the mass of the projectile. Thus, we can re-

cast Eqn (52) as

q2 ¼ 2mE þ 2m E �Wð Þ � 4m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E E � oð Þ

p
cosθ: (53)

If the projectile is an electron, we have (m= 1):

q2 ¼ 2E þ 2 E �Wð Þ � 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E E �Wð Þ

p
cosθ: (54)

The maximum and minimum momentum transfer, q+ and q�,
given by

q� ¼
ffiffiffiffiffi
2E

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 E �Wð Þ

p
; (55)

are achieved for θ=p and θ=0, respectively. Thus, the integration
domain of q will be restricted to [q�,q+]. This domain is valid for an
electron both in an infinite and in a finite geometry: to derive it, we
have merely used the definition of q and of the polar scattering
angle. However, this does not imply that the azimuthal scattering
angle is in general homogeneously distributed. Finally, the range of
integration of the energy losses o must be restricted to [0, E].

Thus, in the semiclassical approximation, the stopping power due
to the interaction with the charges induced in the bulk is given by

SB ¼ � 2

p

Z2
0

v2

Z E

0
do o

Z qþ

q�

dq
1

q
Im

Y dð Þ
Ea q;oð Þ þ

p2Y �dð Þ
Eb q;oð Þ


 �
(56)

and the stopping power due to the interaction with the induced
surface charge is given by

SS ¼ � 1

p2
Z2
0

vzj j
v

Z E

0
do o

Z qþ

q�

dq

Z p

0
d# sin#

�
Z 2p

0
d’

1

q2kv
2
z þ o� qk�vk

� 	2

� Im eit q�v�oð Þf qk;o
� 	

Y dð Þ
Ea q;oð Þ �

Y �dð Þ
Eb q;oð Þ


 �� �
:

(57)

Figure 6. Sum of the classical stopping power due to the interaction with the induced bulk and surface charges (no image charges) for an electron near
the vacuum–Al interface as a function of the distance to the interface, Eqns (45), (47), and (50). Here, d< 0 implies the Al side of the interface, whereas
d> 0 implies the vacuum side.
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The Fourier phase might oscillate wildly and is therefore suscep-
tible of posing numerical stability problems. In order to get rid of
this problem, at least partially, we use lemma (B1) to recast SS as

SS ¼ � 1

p2
Z2
0

vzj j
v

Z E

0
do o

Z qþ

q�

dq

Z p

0
d# sin#

�
Z 2p

0
d’

1

q2kv
2
z þ o� qk � vk

� 	2

� Y �tð Þe�qk dj j þY tð Þ 2cos t o� qk � vk
� 	h i

� e�qk dj j
� 	h i

� Im eiqzdf qk;o
� 	

Y dð Þ
Ea q;oð Þ �

Y �dð Þ
Eb q;oð Þ


 �� �
:

(58)

DIIMFP

In a quantum-mechanical calculation, one would derive a differ-
ential interaction cross section for the inelastic scattering of the
charged projectile with the electrons of the medium, dsi/dodq.
The quantity (dsi/dodq)dodq is proportional to the probability
that the charged projectile undergoes an inelastic interaction
with an energy loss between o and o+do and a momentum
transfer within dq of q. The double differential inverse mean free
path (DDIIMFP) is defined as

dm

dodq
¼ 1

N
dsi

dodq
; (59)

where N is the average density of electrons in the medium. The
quantity (dm/dodq)dodq is proportional to the probability that
the charged projectile undergoes an inelastic interaction with
an energy loss between o and o+do and a momentum transfer
within dq of q per unit path length.
The electronic stopping power S is defined as the average

energy loss per unit path length. To calculate it from the
DDIIMFP, we would proceed as follows:

S ¼
Z E

0
do o

Z qþ

q�

dq

Z p

0
d# sin#

Z 2p

0
d’

dm

dodq
; (60)

where the angles # and’ are the polar and azimuthal angles of the
momentum transfer in the Cartesian system of reference given in
Fig. 1. Comparison of Eqn (60) with Eqns (56) and (58) allows us
to identify

dm

dodq B

¼ � 1

2p2
Z2
0

v2
1

q
Im

Y dð Þ
Ea q;oð Þ þ

Y �dð Þ
Eb q;oð Þ


 ����� (61)

and

dm

dodq

�����
S

¼ � 1

p2
Z2
0

vzj j
v

1

q2kv
2
z þ o� qk�vk

� 	2

� Im eiqzdf qk;o
� 	

Y dð Þ
Ea q;oð Þ �

Y �dð Þ
Eb q;oð Þ


 �� �

� Y �tð Þe�qk dj j þY tð Þ 2cos t o� qk�vk
� 	h i

� e�qk dj j
� 	h i

:

(62)

These are the contributions to the DDIIMFP due to the interaction
of the charged projectile with the induced charges in the bulk
and at the surface, respectively.

According to Eqn (53), the value of q is completely determined
once a value for the energy loss o and the polar scattering angle
θ is fixed. Hence, for a fixed primary energy, the DDIIMFP is a
function of the energy loss and of the polar and the azimuthal
scattering angles (the kinetic energy E, the depth d, and polar
angle � are parameters). The Cartesian components of the
momentum transfer as a function of E, o, �, and of the polar
and azimuthal scattering angles θ and f are given by:[37]

q ¼

�
ffiffiffiffiffi
2E

p
sin � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 E � oð Þ

p
cos � sin θ cos’þ sin � cos θ½ �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 E � oð Þ

p
sin θ sin’

ffiffiffiffiffi
2E

p
cos � þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 E � oð Þ

p
sin � sin θ cos ’� cos � cos θ½ �

0
BBB@

1
CCCA;

(63)

where the upper (lower) signs must be taken if �< 90∘ (� > 90∘).
Figure 7 displays the contribution to the DDIIMFP due to the

interaction with the induced surface charge [Eqns (62) using third
component in Eqn (63)] as a function of the polar and the
azimuthal scattering angles θ and f for the following scenario:
a 500 eV electron at a distance d=� 1 Å at the Al side of the
vacuum–Al interface moving with an off-normal angle � =60∘

(panel a1) and � = 120∘ (panel b1). We consider a fixed energy
loss o=10.6 eV, corresponding to the excitation of a surface
plasmon in Al. In this scenario, the DDIIMFP is significantly different
from zero only for polar scattering angles which are less than� 2∘.
For higher energies, the DDIIMFP peaks at even smaller polar
scattering angles. Hence, deflections in individual inelastic interac-
tions can be neglected to a first approximation for E=500 eV.
Furthermore, notice that the azimuthal scattering angle is not dis-
tributed uniformly, as opposed to the case of an unlimitedmedium.

In panels a2 and b2, we plot the absolute value of the
momentum transfer in a direction perpendicular to the surface,
|qz|, as a function of the polar and azimuthal scattering angles.
There is a strong anticorrelation between the magnitude of |qz|
and the intensity of the DDIIMFP: momentum transfers along
the surface (scattering angles such that |qz|� 0) are strongly
enhanced. Similar behaviors are found for other distances d at
both sides of the interface, for other off-normal angles �, and
for other materials.

Integration of the DDIIMFP over the kinematically allowed
momentum transfers q gives a quantity that is proportional to
the total distribution of energy losses in an inelastic interaction
per unit path length. We will refer to this quantity as the DIIMFP
and will use the symbol dm/do to refer to it. The area under the
DIIMFP curve gives a quantity with units of inverse length, known
as the inverse inelastic mean free path (IIMFP),li�1. Its inverse, the
inelastic mean free path (IMFP), li, gives the average distance to
the next inelastic interaction.

From Eqn (61), we have that the contribution to the DIIMFP
due to the interaction of the charged projectile with the induced
bulk charges is given by

dmB oð Þ
do

¼ � 2

p

Z2
0

v2

Z qþ

q�

dq
1

q
Im

Y dð Þ
Ea q;oð Þ þ p2

Y �dð Þ
Eb q;oð Þ


 �
: (64)

Similarly, from Eqn (62) we have that the contribution to the
DIIMFP due to the interaction of the charged projectile with the
induced surface charges is given by
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dmS oð Þ
do

¼ � 1
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Z2
0

vzj j
v

Z qþ

q�

dq

Z p

0
d# sin#

Z 2p

0
d’

1

q2kv
2
z þ o� qk�vk

� 	2

� Y �tð Þe�qk dj j þY tð Þ 2cos o� qk � vk
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t
h i
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� Im eiqzdf qk;o
� 	

Y dð Þ
Ea q;oð Þ �

Y �dð Þ
Eb q;oð Þ


 �� �
:

(65)

Thus, we have expressed the DIIMFP of a charged projectile
moving close to a planar interface in terms of the dielectric
functions of the media at each side of the surface, of the velocity
v of the projectile, of the distance to the interface, d, and of the
polar angle of the surface-crossing direction, �.

All expressions derived in the present work require the bulk
dielectric function of the medium as input information. The user
can naturally select whichever dielectric-function model is more
appropriate for his problem. In the results below, we have used
a classical-oscillator-model dielectric function, using two different
parametrizations. In the case of Al, we have used

1

E q;oð Þ ¼ 1�
Ω

2
p

Z1

Xn

j¼1

fj

o2
j þ q4=4� o2 � igjo

; (66)

where Z1 is the atomic number of the target material, fj are the
oscillator amplitudes (dimensionless), oj are the oscillator
frequencies (in eV), and gj are the damping coefficients (in eV).

The quantity Ω
2
p is the squared plasma resonance frequency of

the material. In the case of Al, we have used a single-oscillator
model with a resonance at o1=15.01 eV, amplitude f1=3, and
damping coefficient g1=0.5 eV. For the 17 elemental metals listed
in Ref.,[38] we have used the dielectric-function model described
therein with the supplied parameter values. It should be noted that
the fit parameter values given in this reference are those which give
the best agreement between the computed DIIMFP and the DIIMFP
retrieved from a deconvolution procedure frompairs of REELS spec-
tra: a good agreement should be obtained between simulated and
experimental REELS spectra, at least regarding the bulk losses.
Finally, notice that other dielectric-functionmodels can prove more
realistic in practice, such as the Mermin dielectric function.[39] The
reader is referred to Ref.[40] for a discussion of the effect of
different dielectric-function models on the calculation of bulk
energy-loss functions.

Results

Figure 8a displays the variation of the DIIMFP with d for a 500 eV
electron moving perpendicularly from Al to vacuum (outgoing
trajectory with � = 0∘), Eqns (64) and (65). When the electron is
deep inside the Al side of the interface (solid black curve), the
DIIMFP exhibits a peak at 15 eV, the excitation energy of a bulk
plasmon in Al. As the electron approaches the interface (solid
red to solid blue curves), the bulk-plasmon peak is progressively
suppressed while a peak is enhanced at 10.6 eV, the excitation
energy of a surface plasmon in Al. Thus, the effect of a planar
interface is twofold: (i) it makes additional energy-loss modes
available and (ii) it moves intensity from the bulk to the surface

a1) a2)

b1) b2)

Figure 7. (a1 and b1) Contribution to the DDIIMFP due to the interaction with the induced surface charge [Eqn (62) using third component in Eqn (63)]
for a 500 eV electron at a distance d=� 1 Å below the vacuum–Al interface for an energy loss o=10.6 eV as a function of the polar and azimuthal
scattering angles, θ and ’, for off-normal polar angles � =60∘ (a1) and � =120∘ (b1). (a2 and b2) Absolute value of the momentum transfer perpendicular
to the surface as a function of θ and ’ for the scenarios corresponding to panels a1 and b1, respectively.
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energy-loss features. The latter effect is known in the literature as
the Begrenzung effect (German for delimitation). In a future work,
the separation of the surface DIIMFP into a Begrenzung term and
a clean surface term for the presentedmodel will be studied inmore
detail. When the electron crosses the interface into the vacuum side
(dashed curves in Fig. 8a), the bulk-plasmon peak is strongly sup-
pressed, whereas the surface-loss peak prevails. This peak is in turn
progressively suppressed as the electron moves further away from
the interface (dashed blue through dashed black curves). The effect
of the surface on the DIIMFP is noticeable in a region of about 10Å
at either side of the interface. In Fig. 8b, the contents of Fig. 8a for
the incoming trajectory (� =180∘) are reproduced. We see again
that energy losses are possible at the vacuum side and that as the
projectile moves deeper into the medium, surface-loss features
are progressively suppressed to finally obtain bulk loss features.
Let us consider the DIIMFP for the case d= 2 Å (dashed purple

curve), both in Fig. 8a (outgoing trajectory, interface already left
behind) and 8b (incoming trajectory, interface not crossed yet).
The DIIMFP is larger in the case of the outgoing trajectory, for

which the electron has already left the interface behind. This is
also the case for other values of d at either side of the interface
and conclude that the probability of undergoing a surface loss
(which will be precisely defined below) is enhanced once the
projectile has left the interface behind (at either side).

Figure 8c and 8d illustrates the dependency on the polar angle
of the trajectory, �. We consider a 100 eV electron at d=� 1 Å
(in Al) and d=1 Å (in vacuum), respectively. The dependency
on � is not negligible: it is responsible for differences of up to
100%, and it modifies the relative height of the bulk and surface
peaks. The surface-loss peaks are indeed enhanced for those
values of � corresponding to trajectories which have already
crossed the interface: �> 90∘ for d=� 1 Å and �< 90∘ for d=1 Å.

Finally, Figs. 8e and 8f exhibits the dependency of the DIIMFP
on E for � = 0∘ and d=� 1 Å (Al side) and d= 1 Å (vacuum side),
respectively. In the Al side, the relative height of surface and bulk
peaks varies significantly with E. In the vacuum side, we clearly
see that the surface losses are enhanced for low kinetic energies.
We can attribute this to the naive observation that for low

a) b)

c) d)

e) f)

Figure 8. DIIMFP for an electron near the Al–vacuum interface, sumof Eqns (64) and (65). Examples for different kinetic energies E, depths d, and polar angles �.
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energies, the projectile spends more time crossing the surface-
scattering region. Figure 9 displays a similar overview plot for the
DIIMFP of an electron moving close to the vacuum–Au interface.
The same conclusions apply.

Comparison with literature models

In Ref.,[17] a similar calculation was carried out to describe energy
losses of charged projectiles near a planar interface (we point out
that the approachwas rather different, in that a trajectory-dependent
effective cross section was derived). The following simplification
was made:

‘To obtain the last expression, it has been assumed that [. . .]

E(q,o) = E(qk,o) [. . .]. Although the validity of this approximation

is not clear, it is needed to obtain an analytical expression.’

This approximation (substitution of q by qk in the denominator of
the expression for the induced surface charge density, Eqn (21))

will hereafter be called the Yubero et al. approximation. It was
originally introduced for practical reasons in order to obtain tracta-
ble expressions which could allow for an easy calculation of
electron energy-loss properties near surfaces. To the best of our
knowledge, no detailed discussion of the implications or the effect
of this approximation exists in the literature. Moreover, several later
models[21,23,41] use this approximation with the sole justification of
a reference to the aforementioned work or to works which in turn
make a reference to it. Another approximation that ismade in some
works (sometimes tacitly) consists in replacing q by qk in the
last bracket in Eqn (65). We shall refer to this approximation as
the q!qk approximation.

Figure 10 shows the DIIMFP of a 500 eV electron moving
perpendicularly from Al (d< 0) to vacuum (d> 0) for different
distances d to the interface. The solid red curves are calculated
using Eqn (65), whereas the dashed blue lines were calculated
using the Yubero et al. approximation in the evaluation of the
denominator of f(qk, o), and the thin solid black curves were
calculated using both the Yubero et al. approximation and the

a) b)

c) d)

e) f)

Figure 9. Same as Fig. 8 for Au and E=500 eV in the two upper rows.
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q!qk approximation. The values of d were chosen so that the
thin black curves can be compared with Fig. 2 of Ref.[16]

The effect of the Yubero et al. approximation is threefold: (i) it shifts
the surface-loss peak to slightly smaller energy losses,� 0.6 eV in the
considered case; (ii) it enhances the surface and the bulk losses by as
much as 50% and 75%, respectively; (iii) it reduces the variance and
the skewness of the surface-loss peak. The effect of the q!qk
approximation is significant only for very close distances to the inter-
face at the medium side. It enhances the surface losses (up to
� 20%) and suppresses the bulk losses (up to � 50%). Finally, in
the vacuum side, the q!qk approximation has no effect, since
E(q, o) = 1 for any q. Notice that, in essence, both the Yubero et al.
approximation and the q!qk approximation imply replacing q by
qk. We recall that, as we saw in the previous section, the momentum
transfer in an inelastic collision takes place predominantly in
directions along the surface. Thus, we conclude that both the Yubero
et al. and the q!qk approximations amount to an artificial
enhancement of the surface-loss features. Finally, the difference
between the DIIMFPs calculated with Eqn (65) and those calculated
using the aforementioned approximations can be of the order of
100% in the worst cases, e.g. the lower panels of Fig. 10. Notice that
the differences in the position, shape, and width of the peaks in the
DIIMFP will ultimately affect the quality of the agreement between
simulated and experimental REELS spectra. The number of surface
or bulk excitations, however, will depend only on the area under
the peaks, which does vary (but not drastically) when using each of
the examined approximations.

In what follows, it will be shown how to derive the results of, e.g.
Ref.[16] from the general expressions given above. The contribution
to the stopping power due to the interaction with the induced
surface charge, SS, will be compared with Eqns (10) and (11) in
Ref.[16] We consider Eqn (58) without restricting the integral to the
kinematically allowed region:

SS ¼ � 1

p2
Z0eð Þ2 vzj j

v

Z 1

0
do o

Z

R
3
dq

1

q2
1

q2kv
2
z þ o� qk � vk

� 	2

� Y �tð Þe�qk dj j þY tð Þ 2cos ot½ � � e�qk dj j� �� 

� Im eiqzdf qk;o
� 	

Y dð Þ
Ea q;oð Þ �

Y �dð Þ
Eb q;oð Þ


 �� �
:

(67)

Introducing the notation changes given in Appendix C, Eqn (67)
becomes Eqn (C3), which can be recast more conveniently as

SS ¼
1

p2
Z0eð Þ2 1

v

Z 1

0
do

Z

R
2
dQ

o vzj j
eo2 þ Q2v2z



Y �tð Þe�Q zj j

þY tð Þ 2cos eot½ � � e�Q zj j� ��

�Im
�E Q;oð Þ
E eq;oð Þ

1� E eq;oð Þ
1þ �E Q;oð Þ �e�Q zj j

Y zð Þ þ Y �zð Þ
�E z;Q;oð Þ


 �� �
:

(68)

Figure 10. DIIMFP of an outgoing 500 eV electron moving perpendicularly through the Al–vacuum interface evaluated at different depths d. The red
curves have been calculated with the model described in this work, Eqns (64) and (65). The blue curves employ the Yubero et al. approximation. The red
curves, additionally, use the q!qk approximation. The values of d are selected so that the thin black curve (Yubero et al. and q!qk approximations)
can be compared with Fig. 2 of Ref.[16]
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At this point, in order to reproduce Eqns (10) and (11) of Ref.[16]

wemust assume that sign(t) = sign(z). This only holds for projectiles
moving towards more positive values of z. Thus, we have

SS ¼
1

p2
Z0eð Þ2 1

v

Z 1

0
do

Z

R
2
dQ

o vzj j
eo2 þ Q2v2z

e�Q zj j

� Im

("
Y �zð Þ 1

�E z;Q;oð Þ �Y zð Þð2cos eot½ � � e�Q zj jÞ
#

��E Q;oð Þ
E eq;oð Þ

1� E eq;oð Þ
1þ �E Q;oð Þ

)
:

(69)

This expression matches Eqns (10) and (11) of Ref.[16]

Thus, the model in Ref.[16] has the following restrictions:

• As pointed out by its authors, it is valid for outgoing projec-
tiles, since we have had to impose sign(t) = sign(z). In recent
works[21,23] a distinction is made between trajectories which
move from the solid to the vacuum (labeled s! v) and from
the vacuum to the solid (labeled v! s).

• The integral over qz is carried out from �1 to +1. This
disregards the fact that there is a minimum and a maximum
momentum transfer which are kinematically allowed in an
inelastic interaction. As a result, arbitrarily large momentum
transfers are included in the integral. Conservation of energy
and momentum is therefore not completely satisfied.

• In Fig. 10, in order to reproduce the figures in Ref.,[16] both the
Yubero et al. approximation and the q!qk approximation
have had to be employed.

Although this model is not the current state of the art, it is still
occasionally used in recent works,[42] and it is simple enough so that
it can be derived and examined within the present calculation in a
straightforward way. More detailedmodels exist, such as themodel
presented by Li et al. in Ref.,[23]whichmakes use of both the Yubero
et al. and the q!qk approximation and, moreover, it allows for a
convenient separation of the surface contribution to the DIIMFP
in a begrenzung term (suppression of bulk excitation modes) and
a true surface-excitation term. A comparison between the model
of Ref.[23] and the model presented here is not straightforward
and has been omitted for the sake of brevity: this comparison will
be addressed in the forthcoming second part of this work. The
performance of Li’s model has been assessed by Novák,[43,44]

obtaining a remarkably good agreement between simulated and
experimental REELS spectra.

It should be emphasized again that the presented model
comprises several models of the literature. By choosing appropriate
values for (p1, p2, p3), e.g. (0,1,0) for the Chen and Kwei model, and
introducing further approximations as required, it is in principle
possible to reproduce most of the subset of semiclassical models
for surface excitations found in the literature.[21,23,41] As pointed
above, the model of Yubero and Tougaard[17] is not suited for
comparison within the presented framework, for it takes a different
approach. We do, however, point out that the Yubero and
Tougaard model does account for the so-called interference effect
between the outgoing electron and the field it set up upon
entering the solid,[22] whereas the model presented here does
not. However, as shown by Vicanek,[22] the interference effect
might be significant for individual trajectories, but for a statistical
ensemble of trajectories, for which the path-length distribution is
usually much broader than the characteristic length for which

interference effects play a role, the impact of these effects on the
cumulative spectra is negligible. Last but by no means least, the
agreement between the presented model and the Tung model[15]

shall be investigated in the upcoming second part of this work. This
model, albeit simple in that it is not position dependent, is neverthe-
less of great use for practical applications in spectrum analysis.

We point out that another class of models for the energy loss of
charged projectiles near planar surfaces have been developed
within a quantum many-body calculation such as those of
Ding.[19,20] Their agreement with experimental data has been
assessed,[45] and their outcomes have been compared with
those from models derived within the semiclassical dielectric
formalism[46] such as the Li model[23] exhibiting a very good
agreement except at surface-crossing angles larger than 89∘, implying
that for most practical purposes, the semiclassical and the quantum
computation are equivalent. These models have not been consid-
ered in the present discussion, where we have concerned ourselves
with derivations within the semiclassical dielectric formalism.

Monte Carlo algorithm for the simulation of
REELS spectra

In this section, we describe a Monte Carlo algorithm for the
simulation of the transport of charged projectiles in a semi-infinite
geometry. See, e.g. Ref.[37,47] for the sampling algorithm in the
absence of surface excitations. In the present case, the procedure
is very similar to the method described by Ding and Shimizu[45]

and is based on the sampling algorithm of Coleman.[48] It is
assumed that a database of DIIMFPs for different materials, primary
energies E, polar angles �, and depths d has been calculated on a
grid of points of E, �, and d dense enough so that for a given mate-
rial, a trilinear interpolation on E, �, and d is sufficient to interpolate
values of the IMFP and the DIIMFP. Moreover, the differential cross
section for elastic scattering (DCES), dse/dΩ, is assumed to be
calculated for a grid of energies Ewhich covers the range of interest
for the simulation and which is dense enough so that linear (lin-lin
or lin-log) interpolation suffices. The IMFP li(E,d,�) and the elastic
mean free paths le(E) are tabulated beforehand.

The core of the algorithm reads

1. Find theminimummean free path among all processes (elastic
scattering for all E, inelastic scattering for all E, d, �), lmin.

2. Initialize the trajectory (position and direction). In the case of
(R)EELS, the primary electron is initialized at the highest posi-
tion above the sample for which there are database entries.
For XPS or AES, the electron is initialized at the corresponding
emission depth. Notice that in the case of XPS, intrinsic losses
due to the interaction of the photoelectron with the core-
hole left behind are not accounted for by the present model.

3. If the electron is in the surface-scattering region (between the
minimum and the maximum d for which there are database
entries):

(a) Take a step s � 1=lminð Þe�s=lmin along the current direction.
(b) Interpolate li and le at the current kinetic energy, position,

and direction of flight (le=0 at the vacuum side).
(c) Sample an event of the type:

• null with probability l�1
min= l�1

min þ l�1
e þ l�1

i

� �
.

• elastic interaction with probability l�1
e = l�1

min þ l�1
e þ l�1

i

� �
.

i. Let Ei≤E< Ei+1. Sample a deflection from dse Eið Þ=dΩ
or dse Eiþ1ð Þ=dΩ with probabilities
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pi ¼
ln Eiþ1=Eð Þ
ln Eiþ1=Eið Þ (70)

and

piþ1 ¼
ln E=Eið Þ

ln Eiþ1=Eið Þ (71)

respectively.[47]

ii. Update the direction of flight of the electron.

• inelastic interaction with probability l�1
i = l�1

min þ l�1
e þ

�

l�1
i Þ . We now need to sample an energy loss from
the database for the current E, �, and d. Let Ei ≤ E< Ei+ 1,
�j ≤ � <�j+ 1 and dk ≤ d< dk+ 1. Let X denote E, �, or d and
let the subscript a denote the corresponding subscript
i, j, or k, as needed. We take X= Xa or X= Xa+1 with
probabilities

xa ¼
Xaþ1 � X

Xaþ1 � Xa
(72)

and

xaþ1 ¼
X � Xa

Xaþ1 � Xa
; (73)

respectively. Let ai, aj, and ak denote the chosen value for
the subscripts i, j, and k, respectively. Once the active sub-
scripts ai, aj, and ak are determined, we sample an energy
loss from m o; Eai ; �aj ; dak

� 	
and update the energy of the

projectile.

Else, if the projectile is outside of the surface-scattering
region:

(a) Interpolate li and le at the current energy. Calculate the
total mean free path l�1

t ¼ l�1
e þ l�1

i .
(b) Take a step s � 1=ltð Þe�s=lt along the current direction.
(c) Sample an event of the type:

• elastic interaction with probability l�1
e = l�1

e þ l�1
i

� �
.

i. Let Ei ≤ E< Ei+1. Sample a deflection from dse Eið Þ=dΩ or
dse Eiþ1ð Þ=dΩ with probabilities pi and pi+ 1 defined
above, respectively.

ii. Update the direction of flight of the electron.

• inelastic interaction with probability l�1
i = l�1

e þ l�1
i

� �
.

i. Let Ei≤ E< Ei+1. Sample an energy loss from m(Ei) or m(Ei+1)
with probabilities pi and pi+1 defined above, respectively.

ii. Update the energy of the electron.

4. If the electron leaves the sample (surface-scattering region)
without entering the analyzer or if the electron leaves the
energy window of interest, disregard the trajectory and
sample the next one. Otherwise, sample the current trajec-
tory further by going back to step 3. If the electron leaves
the sample in a direction within the solid angle of detection
around the detector direction, update the corresponding
histograms.

Comparison with experimental REELS spectra

The algorithm outlined in the previous section has been used
to simulate a database of experimental REELS spectra[49–51] for
24 elemental solids measured on a VG Microlab UHV system
equipped with a hemispherical analyzer, used with a constant
resolution mode with a pass energy of 20 eV. The beam of

incident electrons impinged normally on the sample and the
analyzer formed a polar angle of 60∘ with the surface normal.
The pressure during the measurements was in the 10� 9 mbar
range. See Refs[49–51] for more details. The experimental spectra
were converted to absolute units of 1/eV through a division by
the area under the elastic peak and by the bin width.

The database of DIIMFPs and DCESs required for the simulation
has been generated as follows. The optical data provided in
Ref.[38] has been used to generate the required database of
E-, � -, and d-dependent DIIMFPs, using Eqns (64) and (65). We
have used the following grid: E= {100,500,1000,5000} eV,
� = {0∘,60∘,120∘,180∘}, d= {�15,� 5,� 2,� 1,� 0.5,� 0.1} Å. Addi-
tionally, a database of 50 bulk DIIMFPs has been generated for
energies equally spaced on a logarithmic grid from E=100 eV to
E=10 keV. DCESs for 150 energies equally spaced on a logarithmic
scale from E = 100 eV to E= 10 keV have been generated with the
ELSEPA code,[52] using a muffin-tin model potential obtained
from the Dirac-Fock electron density, with exchange effects
accounted for by means of the Furness-McCarthy exchange
potential. Correlation-polarization and inelastic-absorption cor-
rections have not been considered.

The simulation of the aforementioned database of experimental
REELS spectra (as well as the calculation of the DIIMFP database)
was carried out at the Vienna Scientific Cluster, using Intel Xeon
X5550 (Nehalem) processors with a 2.97GHz clockspeed. The
sampling algorithm attained an average speed of 5� 104 up to
105 simulated trajectories per second; 109 trajectories were
sampled for each REELS spectrum with a resolution of 0.1 eV. In
Fig. 11, we compare six of the simulated REELS spectra with their
experimental counterparts, with primary energies from 700 eV to
1200 eV and metals ranging from Ti (Z=22) to Bi (Z=83). The solid
curves are the simulated spectra, whereas the dashed curves are
the measured spectra. Notice that the comparison is in absolute
units of reciprocal eV: the experimental spectra have been divided
by the area of the elastic peak (which was subsequently subtracted)
and by the bin width; the simulated spectra have been divided by
the number of elastically detected electrons and by the bin width.
The simulated spectra are in good agreement with the experimen-
tal spectra, the discrepancies being between 5% and 10% in the
considered energy-loss range. The agreement is strongly depen-
dent on the quality of the used optical data, to a much higher
degree than in the simulation of bulk losses only. Finally, we point
out that the intensity scale of the normalized experimental spectra
might be off by � 5% due to the uncertainty in the determination
of the area under the elastic peak. We point out that, although
the primary energies in Fig. 11 vary between 700 eV and 1200eV,
a similarly good agreement was found for other energies.

As outlined above, the algorithm requires considerable
computational effort. If only bulk losses are considered, the
trajectory reversal algorithm[53] can be employed to drastically
decrease the simulation time. However, this algorithm relies on
the symmetry of the loss characteristics between the incoming
and the outgoing trajectory. This symmetry is lost in the
surface-excitation model described here. The trajectory-reversal
algorithm can therefore not be employed to accelerate the
simulation. In a future work, it will be discussed to what extent
the present model can be used to derive a cumulative surface-
loss distribution (the so-called differential surface excitation
probability (DSEP)), an approach similar to that of Ref.[15]DSEP-type
loss distributions can be easily embedded in the partial-intensity
approach[54] for a simplified and yet accurate description of surface
excitations in electron spectroscopy.
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Finally, in Fig. 12, the effect of the Yubero et al. and the
q!qk approximation on simulated REELS spectra is exposed. We
consider the REELS spectrum of 500 eV electrons impinging
perpendicularly on an Al surface with a ring detector accepting
outgoing trajectories with off-normal polar angles between
58∘ and 62∘. The solid curve was calculated using the model
described in this work, whereas the dashed curve was calculated
using the model presented in Ref.[16] (the model presented
here was used with the approximations addressed above to match
the model in Ref.[16] The database of calculated DIIMFPs comprised
the following parameter values: E= {450,500}, � = {0,60,120,180},
d= {�15,� 5,� 2,� 1,� 0.5,� 0.1}. The differences we observed
in the DIIMFPs between the two models are naturally translated
into the REELS spectrum: surface features are accentuated and
shifted towards smaller energy losses, and the relative intensity of
bulk and surface losses is modified. An experimental REELS spec-
trum of 500 eV impinging normally on Al and being detected along
a polar angle of 60� 12∘ is shown. The relative bulk/surface height
and the asymmetry and width of the surface-loss peaks are well
described by the present model. Regarding the intensity scale
and the overall sharpness of the simulation results, it must be

pointed out that the simulation of REELS for Al is typically problem-
atic with the employed dielectric-function model: the DIIMFPs
derived from optical data usually give too narrow loss features in
comparison with the experimental loss features. Similar difficulties
are found for other nearly free-electronmetals such as Si. Neverthe-
less, they are ideal candidates for a benchmark of model calcula-
tions due to their sharp loss features, both in the bulk and in the
surface. A convolution with a normalized Gaussian peak of the
estimated experimental energy resolution might lead to a change
in the relative intensity of surface and bulk peaks. We note that
the employed dielectric-function model does not properly include
electron-hole pair generation. The use of other dielectric-function
models which account for electron-hole pair generation such as
the Mermin dielectric function[39,40] should lead to a better agree-
ment between simulated and experimental REELS spectra for
nearly free-electron materials such as Al and Si.

Conclusions

A comprehensive and self-contained description of the dynamics
of non-relativistic charged projectiles in the vicinity of a planar

a) b)

c) d)

e) f)

Figure 11. Simulated REELS (solid curve) compared with experimental REELS (dashed curve). Note that the comparison is in absolute units (homogeneous
renormalization by the number of elastically detected electrons). Optical data taken from Ref.[38]
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interface is provided within the dielectric formalism, considering
only the longitudinal part of the force induced on the projectile.
The presented framework allows one to derive a differential IIMFP
(DIIMFP) of a charged projectile as a function of its speed, of its
direction of motion, and of its distance to the interface. The deriva-
tion has been carried out in such a way that (i) it encompasses a
number of models in the literature and (ii) unnecessary simplifica-
tions are avoided. The effect of the assumptions and simplifications
made in literature models has been investigated, revealing differ-
ences of up to 100% (in the worst cases) in the intensity of the
DIIMFP, as well as appreciable differences in its shape. DIIMFPs
calculated with the model described here have been used as input
for a Monte Carlo algorithm for the simulation of REELS spectra,
obtaining good agreement between simulated and experimental
spectra in absolute units. We therefore conclude that the presented
model can be applied in a detailed simulation of energy-loss
processes of charged projectiles near planar interfaces.
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Appendix A: Fourier transform

We shall use the following definition of the direct and inverse
Fourier transform and its inverse, using symmetrical factors of

1=
ffiffiffiffiffiffi
2p

p
for each of the four integration variables:

f q;oð Þ ¼ 1

2pð Þ2
Z

R
3
dr

Z 1

�1
dt e�i q�r�otð Þf r; tð Þ (A1)

f r; tð Þ ¼ 1

2pð Þ2
Z

R
3
dq

Z 1

�1
do ei q�r�otð Þf q;oð Þ: (A2)

As an example, consider the Fourier transform of a charge
distribution r(r,t) = Z0ed(r� vt):

r q;oð Þ ¼ Z0e

2pð Þ2
Z

R
3
dr

Z 1

�1
dt e�i q�r�otð Þd r� vtð Þ

¼ Z0e

2pð Þ2
Z 1

�1
dt e�it q�v�oð Þ

¼ Z0e

2p
d q�v� oð Þ;

(A3)

where we have used a familiar representation of the delta
distribution.

Appendix B: Mathematical tools

To evaluate integrals which contain a phase susceptible of
oscillating wildly, we propose the following pre-conditioning
process.

Lemma 1
If f(o) is a function of o with no poles in the upper complex half-
plane, then

Z 1

�1
do e�ito f oð Þ

a2 þ o2
¼

Z 1

�1
do e� tj ja f oð Þ

a2 þ o2
; for t ≤ 0;

Z 1

�1
do 2cos otð Þ � e� tj ja�  f oð Þ

a2 þ o2
; for t > 0:

8
>>>><
>>>>:

(B1)

For t≤0, the lemma follows from direct integration by residues of the
integrands at both sides of the equality along a semi-circular path
on the upper half-plane, picking up the pole at o= ia. For t> 0,
we can use the trivial identity

e�ito ¼ 2cos toð Þ � eito (B2)

and close the integration contour again along a semicircle on the
upper half-plane.

1. Properties of the dielectric function for complex arguments

When carrying out contour integrals over o, it becomes necessary
to evaluate E(q,o) and f(qk,o) for complex values of o. The proper-
ties of these functions for complex o will now be examined.
Since in all practical cases, we consider E(q,o) = E(q,o), we shall
restrict ourselves to a classical-oscillator dielectric-function model
of the form of Eqn (66).

Property 1
For a complex frequency of the form o= iqk|vz| +qkvk, we have

1

E q;qkvk þ iqkjvzj
� 	 ¼ 1

E	 q;�qkvk þ iqkjvzj
� 	 : (B3)

Proof: For o=qkvk+ iqk|vz|, we have

1

E q;qkvk þ iqkjvzj
� 	 ¼ 1

�
Ω

2
p

Z1

X

j

fj

o2
j þ q4=4� qkvk

� 	2
� q2kv

2
z

� �
� igjqkvk þ gjqkjvzj:

(B4)

If we change qk by �qk, we have

1

E q;�qkvk þ iqk vzj j
� 	 ¼ 1

�
Ω

2
p

Z1

X

j

fj

o2
j þ q4=4� qkvk

� 	2
� q2kv

2
z

� �
þ igjqkvk þ gjqk vzj j:

¼ 1

E	 q;qkvk þ iqk vzj j
� 	

(B5)

Property 2

f qk; iqkjvz j þ qkvk
� 	

¼
p2þp3

Eb 0;iqkjvz jþqkvkð Þ �
1þp1

Ea 0;iqkjvz jþqkvkð ÞZ 1

�1
dkz 1

q2kþk2z

1
Ea qk ;kz ;iqkjvz jþqkvkð ÞÞ þ

1
Eb qk ;kz ;iqkjvz jþqkvkð ÞÞ


 � : (B6)

□
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Proof: From the definition of f (qk,o), we have that

kz ¼
o� qkvk

vz
: (B7)

For o= iqk|vz| +qkvk, we have that kz= iqksign(vz). Therefore,
q2 ¼ q2k þ k2z ¼ 0.

Property 3
For a complex frequency of the form o= iqk|vz| +qkvk, we have

f qk;qkvk þ iqk vzj j
� 	

¼ f 	 �qk;�qkvk þ iqk vzj j
� 	

; (B8)

provided that E(q,o) = E(q,o).

Proof: It follows directly from Eqn (B3) and the definition of f(qk,o).

Appendix C: Notation changes in the literature

We introduce the following notation changes in order to comply
with Ref.: [16]

p2 ¼ 1; p1 ¼ p3 ¼ 0; Ea q;oð Þ ¼ 1; Eb q;oð Þ 
 E q;oð Þ;
Q 
 qk; eo ¼ o� qkvk; d 
 z;

E eq;oð Þ 
 E qk;
o� qkvk

vz
;o

� �
;

1
�E Q;oð Þ 


qk
p

Z 1

�1
dqz

1

q2
1

E q;oð Þ ;

1
�E z;Q;oð Þ 


qk
p

Z 1

�1
dqz eiqzd

1

q2
1

E q;oð Þ:

(C1)

With this new notation, we have

f qk;o
� 	

¼
1

E eq;o
� �� 1

p
Q

1
�E Q;oð Þ þ 1
h i ¼ Q

p

�E Q;oð Þ
E eq;oð Þ

1� E eq;oð Þ
1þ �E Q;oð Þ : (C2)

Thus,

□

□

SS ¼ � 1

p2
Z0eð Þ21

v

Z 1

0
do

Z

R
2
dQ

o vzj j
eo2 þ Q2v2z

Y �tð Þe�Q zj j þY tð Þ 2cos eot½ � � e�Q zj j� �� 

�Q

p
Im

�E Q;oð Þ
E eq;oð Þ

1� E eq;oð Þ
1þ �E Q;oð Þ :

Z 1

�1
dqz

eiqzz

q2
Y zð Þ � Y �zð Þ

E q;oð Þ


 �� �
:

(C3)
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