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ABSTRACT

Context. In the presence of strong density stratification, turbulence can lead to the large-scale instability of a horizontal magnetic
field if its strength is in a suitable range (around a few percent of the turbulent equipartition value). This instability is related to a
suppression of the turbulent pressure so that the turbulent contribution to the mean magnetic pressure becomes negative. This results
in the excitation of a negative effective magnetic pressure instability (NEMPI). This instability has so far only been studied for an
imposed magnetic field.
Aims. We want to know how NEMPI works when the mean magnetic field is generated self-consistently by an α2 dynamo, whether
it is affected by global spherical geometry, and whether it can influence the properties of the dynamo itself.
Methods. We adopt the mean-field approach, which has previously been shown to provide a realistic description of NEMPI in direct
numerical simulations. We assume axisymmetry and solve the mean-field equations with the Pencil Code for an adiabatic stratification
at a total density contrast in the radial direction of ≈4 orders of magnitude.
Results. NEMPI is found to work when the dynamo-generated field is about 4% of the equipartition value, which is achieved through
strong α quenching. This instability is excited in the top 5% of the outer radius, provided the density contrast across this top layer is
at least 10. NEMPI is found to occur at lower latitudes when the mean magnetic field is stronger. For weaker fields, NEMPI can make
the dynamo oscillatory with poleward migration.
Conclusions. NEMPI is a viable mechanism for producing magnetic flux concentrations in a strongly stratified spherical shell in
which a magnetic field is generated by a strongly quenched α effect dynamo.
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1. Introduction

The magnetic field of stars with outer convection zones, in-
cluding that of the Sun, is believed to be generated by dif-
ferential rotation and cyclonic convection (see, e.g., Moffatt
1978; Parker 1979; Zeldovich et al. 1983; Brandenburg &
Subramanian 2005). The latter leads to an α effect, which refers
to an important new term in the averaged (mean-field) induc-
tion equation, quantifying the component of the mean electro-
motive force that is aligned with the mean magnetic field (see,
e.g., Steenbeck et al. 1966; Krause & Rädler 1980; Brandenburg
et al. 2013). However, what is actually observed are sunspots
and active regions, and the description of these phenomena is not
part of conventional mean-field dynamo theory (see, e.g., Priest
1982; Stix 1989; Ossendrijver 2003; Cally et al. 2003; Stenflo &
Kosovichev 2012).

Flux tube models (Parker 1955, 1982, 1984; Spiegel &
Weiss 1980; Spruit 1981; Schüssler et al. 1994; Dikpati &
Charbonneau 1999) have been used to explain the formation
of active regions and sunspots in an ad hoc manner. It is then
simply assumed that a sunspot emerges when the magnetic field
of the dynamo exceeds a certain threshold just above the bot-
tom of the convection zone for the duration of about a month
(Chatterjee et al. 2004). Such models assume the existence of
strong magnetic flux tubes at the base of the convection zone.

They require magnetic fields with a strength of about 105 Gauss
(D’Silva & Choudhuri 1993). However, such strong magnetic
fields are highly unstable (Arlt et al. 2005) and are also difficult
to produce by dynamo action in turbulent convection (Guerrero
& Käpylä 2011).

Another possible mechanism for producing magnetic flux
concentrations is the negative effective magnetic pressure insta-
bility (NEMPI), which can occur in the presence of strong den-
sity stratification, i.e., usually near the stellar surface, on scales
encompassing those of many turbulent eddies. NEMPI is caused
by the suppression of turbulent magnetohydrodynamic pressure
(the isotropic part of combined Reynolds and Maxwell stresses)
by the mean magnetic field. At large Reynolds numbers, the neg-
ative turbulent contribution can become so large that the effec-
tive mean magnetic pressure (the sum of turbulent and nontur-
bulent contributions) is negative. This results in the excitation
of NEMPI that causes formation of large-scale inhomogeneous
magnetic structures. The instability mechanism is as follows. A
rising magnetic flux tube expands, the field becomes weaker, but
because of negative magnetic pressure, its magnetic pressure in-
creases, so the density decreases, and it becomes lighter still and
rises further. Conversely, a sinking tube contracts, the magnetic
field increases, but the magnetic pressure decreases, so the den-
sity increases, and it becomes heavier and sinks further. The en-
ergy for this instability is supplied by the small-scale turbulence.
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By contrast, the free energy in Parker’s magnetic buoyancy insta-
bility or in the interchange instability in plasma, is drawn from
the gravitational field (Newcomb 1961; Parker 1966).

Direct numerical simulations (DNS; see Brandenburg et al.
2011; Kemel et al. 2012a), mean-field simulations (MFS; see
Brandenburg et al. 2010, 2012; Kemel et al. 2012b; Käpylä et al.
2012), and earlier analytic studies (Kleeorin et al. 1989, 1990,
1996; Kleeorin & Rogachevskii 1994; Rogachevskii & Kleeorin
2007) now provide conclusive evidence for the physical reality
of NEMPI. However, open questions still need to be answered
before it can be applied to detailed models of active regions and
sunspot formation.

In the present paper we take a first step toward combining
NEMPI, which is described well using mean-field theory, with
the α effect in mean-field dynamos. To study the dependence
of NEMPI on the magnetic field strength, we assume that α is
quenched. This allows us to change the magnetic field strength
by changing the quenching parameter. We employ spherical co-
ordinates (r, θ, φ), with radius r, colatitude θ, and azimuthal an-
gle φ. We assume axisymmetry, i.e., ∂/∂φ = 0. Furthermore,
α is a pseudo-scalar that changes sign at the equator, so we as-
sume that α is proportional to cos θ, where θ is the colatitude
(Roberts 1972). We arrange the quenching of α such that the
resulting mean magnetic field is in the appropriate interval to al-
low NEMPI to work. This means that the effective (mean-field)
magnetic pressure locally has a negative derivative with respect
to increasing normalized field strength (Kemel et al. 2012b), so
the mean toroidal magnetic field must be less than about 20% of
the equipartition field strength.

The choice of using spherical geometry is taken because the
dynamo-generated magnetic field depends critically on the ge-
ometry. Therefore, to have a more realistic field structure, we felt
it profitable to carry out our investigations in spherical geome-
try. Guided by the insights obtained from such studies, it will in
future be easier to design simpler Cartesian models to address
specific questions regarding the interaction between NEMPI and
the dynamo instability.

In the calculations presented below we use the Pencil Code1,
which has been used in DNS of magneto-hydrodynamics in
spherical coordinates (Mitra et al. 2009) and also in earlier DNS
and MFS of NEMPI. Unlike most of the earlier calculations, we
adopt an adiabatic equation of state. This results in a stratifica-
tion such that the temperature declines approximately linearly
toward the surface, so the scale height becomes shorter and the
stratification stronger toward the top layers. This is done to have
a clear segregation between the dynamo in the bulk and NEMPI
near the surface, where the stratification is strong enough for
NEMPI to operate. The gravitational potential is that of a point
mass. This is justified because the mass in the convection zone
is negligible compared to the one below. The goal of the present
work is to produce reference cases in spherical geometry and to
look for new effects of spherical geometry. We begin by describ-
ing the basic model.

2. The model

The evolution equations for mean vector potential A, mean ve-

locity U, and mean density ρ, are

∂A

∂t
= U × B + αB − ηT J , (1)

1 http://pencil-code.googlecode.com

DU

Dt
=

1

ρ

[

J × B + ∇(qpB
2/2µ0)

]

− νTQ − ∇H, (2)

Dρ

Dt
= −ρ∇ · U, (3)

where D/Dt = ∂/∂t + U · ∇ is the advective derivative, ρ is the

mean density, H = h + Φ is the mean reduced enthalpy with

h = cpT the mean enthalpy, T ∝ ργ−1
the mean temperature,

γ = cp/cv is the ratio of specific heats at constant pressure and
constant density, respectively, Φ is the gravitational potential,
ηT = ηt + η and νT = νt + ν are the sums of turbulent and micro-
physical values of magnetic diffusivity and kinematic viscosities,
respectively, α is the aforementioned coefficient in the α effect,

J = ∇ × B/µ0 is the mean current density, µ0 is the vacuum
permeability,

−Q = ∇2
U + 1

3
∇∇ · U + 2S∇ ln ρ (4)

is a term appearing in the viscous force, where S is the trace-
less rate of strain tensor of the mean flow with components

Si j =
1
2
(U i, j + U j,i) − 1

3
δi j∇ · U, and finally ∇(qpB2/2µ0) de-

termines the turbulent contribution to the mean Lorentz force.
Here, qp depends on the local field strength (see below). This
term enters with a plus sign, so positive values of qp correspond
to a suppression of the total turbulent pressure. The net effect
of the mean field leads to an effective mean magnetic pressure

peff = (1 − qp)B2/2µ0, which becomes negative for qp > 1,
which can indeed be the case for magnetic Reynolds numbers
well above unity (Brandenburg et al. 2012).

Following Kemel et al. (2012c), the function qp(β) is approx-
imated by

qp(β) =
qp0

1 + β2/β2
p

=
β2
⋆

β2
p + β

2
, (5)

where qp0, βp, and β⋆ = βpq
1/2

p0
are constants, β = |B|/Beq is

the modulus of the normalized mean magnetic field, and Beq =√
µ0ρ urms is the equipartition field strength.

NEMPI can occur at a depth where the derivative, dpeff/dβ
2,

is negative. Since the spatial variation of β is caused mainly by
the increase in density with depth, the value of the mean hori-
zontal magnetic field essentially determines the location where
NEMPI can occur. Therefore, the field strength has to be in a
suitable range such that NEMPI occurs within the computational
domain. Unlike the Cartesian cases investigated in earlier work
(Brandenburg et al. 2010, 2012; Kemel et al. 2012c), where it
is straightforward to impose a magnetic field, in a sphere it is
easier to generate a magnetic field by a mean-field dynamo. This

is why we include a term of the form αB in the expression for
the mean electromotive force (second term on the righthand side
of Eq. (1)). When the mean magnetic field is generated by a
dynamo, the resulting magnetic field strength depends on the
nonlinear suppression of the dynamo. We assume here a simple
quenching function for the α effect, i.e.,

α(θ, β) =
α0 cos θ

1 + Qαβ2
, (6)

where Qα is a quenching parameter that determines the typical

field strength, which is expected to be on the order of Q
−1/2
α Beq.

The value of Qα must be chosen large enough so that the non-
linear equilibration of the dynamo process results in a situation

such that dpeff/dB is indeed negative within the computational
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Table 1. Dependence of the density contrast on the value of r⋆.

r⋆/R Hp(top)/R Hp0/R ρmax/ρmin

1.100 3.6 × 10−2 0.052 1.4 × 101

1.010 4.0 × 10−3 0.023 2.9 × 102

1.001 4.0 × 10−4 0.019 8.9 × 103

domain. In analogy with the βp parameter in Eq. (5), we can de-

fine a parameter βα = Q
−1/2
α , which will be quoted occasionally.

The strength of the dynamo is also determined by the dy-
namo number,

Cα = α0R/ηT. (7)

For our geometry with 0.7 ≤ r/R ≤ 1, the critical value of Cα
for the onset of dynamo action is around 18. The excitation con-
ditions for dipolar and quadrupolar parities are fairly close to-
gether. This is because the magnetic field is strongest at high
latitudes, so the hemispheric coupling is weak. In the following
we restrict ourselves to solutions with dipolar parity. We adopt
the value Cα = 30, so the dynamo is nearly twice supercritical.

As mentioned before, our gravitational potential Φ is that of
a point mass. We define Φ such that it vanishes at a radius r⋆,
i.e.

Φ(r) = −GM

(

1

r
−

1

r⋆

)

, (8)

where G is Newton’s constant and M is the mass of the sphere.
The radial component of the gravitational acceleration is then
g = −GM/r2. We adopt an initially adiabatic stratification with

cpT = −Φ(r), so T vanishes at r = r⋆. To avoid singularities,
the value of r⋆ has to be chosen some distance above r = R.
The radius r⋆ is used to set the density contrast. Table 1 gives
the density contrast for different values of r⋆. We vary r⋆ be-
tween 1.001 R, which corresponds to our reference model with
a density contrast of 8900, and 1.1 R, where the density contrast
is 14. The pressure scale height is given by

Hp(r) =
r(1 − r/r⋆)

n + 1
, (9)

where n = 1/(γ−1) = 3/2 is the polytropic index for an adiabatic
stratification with γ = 5/3. The density scale height is Hρ =
r(1 − r/r⋆)/n. The initial density profile is given by

ρ/ρ0 = (−Φ/nc2
s0)n. (10)

Radial profiles of ρ/ρ0 and the inverse pressure scale height
Hp0/Hp(r), are shown in Fig. 1 for r⋆/R varying between 1.1
and 1.001. Here, Hp0 = Hp(rref) is the pressure scale height
at the reference radius rref = 0.95 R, corresponding to a depth
of 35 Mm in the Sun.

The analytic estimate of the growth rate of NEMPI, λ, based
on an isothermal layer with Hp = Hρ = const. is given by (Kemel
et al. 2012b)

λ ≈ β⋆
urms

Hp

− ηtk
2. (11)

Assume that this equation also applies to the current case where
Hp depends on r, and setting k = H−1

p0
, the normalized growth

rate is

λHp0

β⋆urms

=
Hp0

Hp

− ηt

β⋆urmsHp0

· (12)

Fig. 1. Initial stratification of density and inverse scale height for
r⋆/R = 1.001 (strongest stratification), 1.01, 1.05, and 1.1. The dashed
lines mark the position of the reference radius rref = 0.95 R, where
ρ/ρ0 ≈ 0.0068 for r⋆/R = 1.001 and Hp(r) = Hp0 by definition. The
dotted line marks the value of ηt/β⋆urmsHp0.

In Fig. 1 we compare therefore Hp0/Hp with ηt/β⋆urmsHp0 and
see that the former exceeds the latter in our reference model with
r⋆/R = 1.001. This suggests that NEMPI should be excited in
the outer layers.

As nondimensional measures of ηt and urms, we define

η̃t = ηt/
√

GMR, ũrms = urms/
√

GM/R, (13)

for which we take the values η̃t = 2 × 10−4 and ũrms = 0.07,
respectively. Using the estimate ηt = urms/3kf (Sur et al. 2008),
our choice of ηt implies that the normalized wavenumber of the
energy-carrying eddies is kfR = ũrms/3η̃t ≈ 120 and that kfHp0

varies between 6.2 (for r⋆/R = 1.1) and 2.3 (for r⋆/R = 1.001).
For the magnetic field, we adopt perfect conductor bound-

ary conditions on the inner and outer radii, r0 = 0.7 R and R,
respectively, i.e.,

∂Ar

∂r
= Aθ = Aφ = 0, on r = r0,R. (14)

On the pole and the equator, we assume

∂Ar

∂θ
= Aθ =

∂Aφ

∂θ
= 0, on θ = 0◦ and 90◦. (15)

Since our simulations are axisymmetric, the magnetic field is

conveniently represented via Bφ and Aφ. In particular, contours

of r sin θAφ give the magnetic field lines of the poloidal magnetic

field, Bpol = ∇ × (Aφφ̂).
In all cases presented in this paper, we adopt a numerical

resolution of 256 × 1024 mesh points in the r and θ directions.
This is significantly higher than what has been used previously,
even in mean field calculations with stratification and hydrody-
namical feedback included; see Brandenburg et al. (1992), where
a resolution of just 41 × 81 meshpoints was used routinely. In
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Fig. 2. Dependence of Brms (dashed lines) and U rms (solid lines) on time
in units of ηT/R

2 for qp0 = 0 (black); 5 (blue); 10 (red); 20 (orange);

40 (yellow); and 100 (upper black line for Brms). The results for U rms

depend only slightly on qp0, and this only when the dynamo is saturated.

principle, lower resolutions are possible, but in some cases we
found certain properties of the solutions to be sensitive to the
resolution.

3. Results

In our model, the dynamo growth rate is about 170 ηT/R
2.

Although both dynamo and NEMPI are linear instabilities, this
is no longer the case in our coupled system, because NEMPI de-
pends on the magnetic field strength, and only in the nonlinear
regime of the dynamo does the field reach values high enough for
NEMPI to overcome turbulent magnetic diffusion. This is shown
in Fig. 2 where we plot the growth of the magnetic field and com-
pare with runs with different values of qp0. For qp0 = 100 we

find a growth rate of about 270 ηT/R
2. This value is significantly

more than the dynamo growth rate, and the growth occurs at the
time when structures form, so we associate this higher growth
rate with that of NEMPI.

We now discuss the resulting magnetic field structure. We
begin by discussing the effects of varying the stratification. To
see the effect of NEMPI more clearly, we consider a some-
what optimistic set of parameters describing NEMPI, namely
qp0 = 100 and βp = 0.05, which yields β⋆ = 0.5; see Eq. (5).
This is higher than the values 0.23 and 0.33 found from numer-
ical simulations with and without small-scale dynamo action,
respectively (Brandenburg et al. 2012). The effect of lowering
the value of qp0 can be seen in Fig. 2 and is also discussed be-
low. We choose Qα = 1000 for the α quenching parameter so

that the local value of Bφ/Beq near the surface is between 10
and 20 percent, which is suitable for exciting NEMPI (Kemel

et al. 2012b). Meridional cross-sections of Bφ/Beq0 together with

magnetic field lines of Bpol are shown in Fig. 3. Note that a mag-
netic flux concentration develops near the surface at latitudes
between 70◦ and 76◦ for weak and strong stratification, respec-
tively. Structure formation from NEMPI occurs in the top 5%
by radius, and the flux concentration is most pronounced when
r⋆ ≤ 1.01.

Next, if we increase the magnetic field strength by mak-
ing Qα smaller, we see that the magnetic flux concentrations
move toward lower latitudes down to about 49◦ for Qα = 100;
see Fig. 4. However, while this is potentially interesting for the

Fig. 3. Meridional cross-sections of Bφ/Beq (color coded) together with

magnetic field lines of Bpol for different stratification parameters r⋆ and
Qα = 103. The dashed lines indicate the latitudes 70.3◦, 73.4◦, 75.6◦,
and 76.4◦.

Sun, where sunspots are known to occur primarily at low lati-
tudes, the magnetic flux concentrations also become weaker at
the same time, making this feature less interesting from an as-
trophysical point of view. For comparison with the parameter

βp = 0.05 in Eq. (5) we note that βα = Q
−1/2
α takes the values 0.1,

0.07, 0.04, and 0.03 for Qα = 100, 200, 500, and 1000, respec-
tively. Thus, for these models the quenchings of the nondiffusive
turbulence effects in the momentum and induction equations are
similar.

Also, if we decrease qp0 to more realistic values, we expect
the magnetic flux concentrations to become weaker. This is in-
deed borne out by the simulations; see Fig. 5, where we show
meridional cross-sections for qp0 in the range 40 ≤ qp0 ≤ 100

for Qα = 103. This corresponds to the range 0.32 ≤ β⋆ ≤ 0.5.

A106, page 4 of 7

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321353&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321353&pdf_id=3


S. Jabbari et al.: Surface flux concentrations in a spherical α2 dynamo

Fig. 4. Meridional cross-sections for different values of Qα, for r⋆ =
1.001. The dashed lines indicate the latitudes 49◦, 61.5◦, 75.6◦,
and 76.4◦.

For weaker magnetic fields, i.e., for higher values of the
quenching parameter Qα, we find that NEMPI has a modifying
effect on the dynamo in that it can now become oscillatory. A

butterfly diagram of Br and Bφ is shown in Fig. 6. Meridional
cross-sections of the magnetic field at different times covering
half a magnetic cycle are shown in Fig. 7. It turns out that, at
sufficiently weak magnetic field strengths, NEMPI produces os-
cillatory solutions with poleward-migrating flux belts. The rea-
son for this is not understood very well, but it is reminiscent of
the poleward migration observed in the presence of weak rota-
tion (Losada et al. 2012). Had this migration been equatorward,
it might have been tempting to associate it with the equatorward
migration of the sunspot belts in the Sun.

Finally, we discuss the change of kinetic, magnetic, and cur-
rent helicities due to NEMPI. We do this by using a model that is

Fig. 5. Meridional cross-sections for different values of the parameter
qp0 in the range 40 ≤ qp0 ≤ 100 for Qα = 103. The dashed lines indicate
the latitudes 68◦, 72.5◦, 75.7◦, and 76.3◦.

close to our reference model with r⋆/R = 1.001 and Qα = 1000,
except that qp0 = 0 in the beginning, and then at time t0 we
change it to qp0 = 100. The two inverse length scales based on
magnetic and current helicities,

kM =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∫

V
A · B dV
∫

V
B2 dV

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

−1

and kC = µ0

∫

V
J · B dV
∫

V
B2 dV

, (16)

increase by 25%, while the inverse length scale based on the
kinetic helicity,

kK =

∫

V
W · U dV
∫

V
U2 dV

, (17)

drops to very low values after introducing NEMPI, see e.g.

Fig. 8. Here, W = ∇ × U is the mean vorticity. This behavior
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Fig. 6. Butterfly diagram of Br (upper panel) and Bφ (lower panel) for
Qα = 104, r⋆ = 1.001, ω = 11.3 ηt/R

2.

of kK is surprising, but it seems to be associated with an increase
in kinetic energy. The reason for the increase in the two inverse
magnetic length scales, on the other hand, might be understand-
able as the consequence of increasing gradients associated with
the resulting flux concentrations.

4. Conclusions

The present investigations have shown that NEMPI can occur
in conjunction with the dynamo; that is, both instabilities can
work at the same time and can even modify each other. It was
already clear from earlier work that NEMPI can only work in a
limited range of magnetic field strengths. We therefore adopted
a simple α quenching prescription to arrange the field strength to
be in the desired range. Furthermore, unlike much of the earlier
work on NEMPI, we used an adiabatic stratification here instead
of an isothermal one; see Brandenburg et al. (2010) and Käpylä
et al. (2012) for earlier examples with adiabatic stratification in
Cartesian geometry. An adiabatic stratification implies that the
pressure scale height is no longer constant and now much shorter
in the upper layers than in the bulk of the domain. This favors the
appearance of NEMPI in the upper layers, because the growth
rate is inversely proportional to the pressure scale height.

There are two lines of future extensions of the present model.
On the one hand, it is important to study the interplay between
NEMPI and the dynamo instability in more detail. This is best
done in the framework of a local Cartesian model, which is more
easily amenable to analytic treatment. Another important exten-
sion would be to include differential rotation. At the level of a
dynamically self-consistent model, where the flow speed is a so-
lution of the momentum equation, differential rotation is best im-
plemented by including the Λ effect (Rüdiger 1980, 1989). This
is a parameterization of the Reynolds stress that is in some ways
analogous to the parameterization of the electromotive force via
the α effect.

Mean-field models with both α and Λ effects have been
considered before (Brandenburg et al. 1992; Rempel 2006), so
the main difference would be the additional parameterization of
magnetic effects in the Reynolds stress that gives rise to NEMPI.
In both cases, our models would be amenable to verification us-
ing DNS by driving turbulence through a helical forcing func-
tion. In the case of a spherical shell, this can easily be done in

Fig. 7. Meridional cross-sections of B/Beq0 at different times, for
Qα = 104, r⋆ = 1.001. The cycle frequency here is ω = 11.3ηt/R

2.
Furthermore, the toroidal field is normalized by the local equipartition

value, i.e., the colors indicate Bφ/Beq(r).

wedge geometry where the polar regions are excluded. In that
case the mean-field dynamo solutions are oscillatory with equa-
torward migration (Mitra et al. 2010). At an earlier phase of
the present investigations we studied NEMPI in the correspond-
ing mean-field models and found that NEMPI can reverse the
propagation of the dynamo wave from equatorward to poleward.
However, owing to time dependence, the effects of NEMPI are
then harder to study, which is why we have refrained from study-
ing such models in further detail.

In the case of a Cartesian domain, helically forced DNS
with an open upper layer have been considered by Warnecke
& Brandenburg (2010). In this model, plasmoid ejections can
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Fig. 8. The three inverse length scales kC, kM, and kK as a function of
time. At time t0, the value of qp0 has been changed from 0 to 100.

occur and provide a more natural boundary. A more physical
alternative is to use only nonhelical forcing, but to include ro-
tation to produce helicity in conjunction with the stratification.
Such models have recently been considered by Losada et al.
(2013), who found that NEMPI begins to be suppressed by ro-
tation at Coriolis numbers somewhat below those where α2-type
dynamo action sets in. Furthermore, there is now evidence that
the combined action of NEMPI and the dynamo instability has
a lower threshold than the dynamo alone. Those models provide
an ideal setup for future studies of the interaction between both
instabilities.
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