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This paper describes the surface form measurement of a spherical smooth surface by using  single shot 

off-axis Fizeau interferometry. The demodulated phase map is obtained and unwrapped to remove the 2π 
ambiguity. The unwrapped phase map is converted to height and the 3D surface height of the surface 

object is reconstructed. The results extracted from the single shot off-axis geometry are compared with 

the results extracted from four-frame phase shifting in-line interferometry, and the results are in excellent 

agreement.
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I. INTRODUCTION

Surface topography measurement plays an important role 

in many applications in engineering and science. The three-

dimensional (3D) shapes of objects need to be measured 

accurately to ensure manufacturing quality. Optical methods 

have been used as metrological tools for a long time. They 

are non-contacting, nondestructive and highly accurate. In 

combination with computers and other electronic devices, 

they have become faster, more reliable, more convenient 

and more robust. Among these optical methods, interfero-

metry has received much interest for its shape measurement 

of optical and non-optical surfaces. Information about the 

surface under test can be obtained from interference fringes 

which characterize the surface. Two- beam interference 

fringes have been used to investigate the shape of optical 

and non-optical surfaces for a long time [1]. The extracted 

phase from a single closed fringe pattern is ambiguous [2]. 

This phase ambiguity can be easily removed by using the 

phase shifting technique [3]. The Fourier-transform method 

[4-6] can extract phase information very quickly, because 

it needs only a single interferogram to demodulate the 

unknown phase distribution. However, when an interferogram 

includes closed fringe patterns without a tilt i.e. without a 

carrier frequency, the Fourier transform method has difficulty 

in determining the complex fringe amplitude because the 

Fourier spectra of the interferogram cannot be separated 

completely. 

In this paper, the phase ambiguity from a single closed 

fringe pattern captured from the Fizeau interferometer was 

removed by using two algorithms. The first algorithm uses 

the off-axis geometry. In this algorithm, a single shot captured 

interferogram was processed numerically to reconstruct the 

surface object using computer programs [7-13]. The captured 

interferogram of the surface object was processed using 

Matlab codes to obtain the reconstructed object wave 

(amplitude and phase). The digital reference wave in the 

reconstruction algorithm should match as closely as possible 

the experimental reference wave. This was done in this 

paper by selecting the appropriate values for the two com-

ponents of the wave vector kx = 0.002955mm
-1

 and ky = 

0.01143mm
-1

. The reconstructed phase map of the object 

surface was unwrapped and the unwrapped phase map was 

converted to height and the 3D reconstructed surface height 

was obtained. The second algorithm used the phase shifting 

technique. In this technique, four different interferograms 

of 0, π/2, π and 3π/2 radian phase shifts, respectively, 

were captured and corrected with the flat fielding method. 
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FIG. 1. Schematic diagram of the optical setup.

(a) (b)

(c) (d)

FIG. 2. Captured interferograms and their spectra using 

2D-FFT. (a) Off-axis insensitive and sensitive fringes, (b) 

Spectra of (a), (c) In-line insensitive fringes and off-axis 

sensitive fringes, (d) Spectra of (c).

The demodulated phase map was obtained and unwrapped 

to remove the 2π ambiguity [14]. The unwrapped phase 

map was converted to height and the 3D surface height of 

the surface object was reconstructed. The reconstructed surface 

forms measured by the two algorithms were compared, 

and the results were in excellent agreement.

II. EXPERIMENTAL RESULTS OF THE 

OFF-AXIS GEOMETRY

Figure 1 shows the schematic diagram of the optical 

setup of the Fizeau interferometer. The tested smooth 

spherical surface of 25.4 mm in size was mounted as an 

object in the interferometer. A laser diode beam passes through 

a collimating lens and expands. This expansion is necessary 

to illuminate a greater area of the surface to be imaged 

and to reduce the error measurement due to the inhomo-

geneity in the Gaussian beam. The collimated beam of the 

laser light falls upon the beam splitter, which transmits 

one half and reflects the other half of the incident light. 

The reflected collimated beam is then incident on the 

interferometer, which changes the path length of the light 

inside it due to the irregularities of the surface of the 

interferometer.

When the object and the reference (λ/20 flatness) are 

mounted close and parallel, two types of circular reflection 

fringes are seen; one, called the insensitive fringes, due to 

the interference from the two interfaces of the object surfaces, 

and the second, called the sensitive fringes, due to the 

interference of the reference interfaces and the object 

interfaces,. When 2D-FFT was applied for the inteferogram 

that had the two types of fringes (insensitive and sensitive) 

as shown in Fig. 2(a), six spectra were produced as shown 

in Fig. 2(b): three spectra produced from the insensitive 

fringes and the others produced from the sensitive fringes. 

In this case, the complex fringe amplitude becomes difficult 

to determine because the Fourier spectra of the interferogram 

that contains the insensitive and the sensitive fringes are 

not separated completely. The problem of the insensitive 

fringes was solved by adjusting the object so that it 

became parallel to the reference (in-line scheme). Therefore, 

the insensitive circular reflection fringes were seen in the 

center of the field of view. These circular fringes were 

transformed to a background spectrum (DC term) when 

2D-FFT was applied. By tilting the reference (off-axis 

case) as shown in Fig. 1, the sensitive circular reflection 

fringes were displaced, and nearly curved fringes at reflection 

with higher spatial frequency were seen, as shown in Fig. 

2(c). Only three spectra were obtained as shown in Fig. 

2(d) from Fig. 2(c) when 2D-FFT was implemented.

The interferogram was captured by the CCD camera of 

1024×768 pixels with pixel size     ㎛. Assume 

that the coordinate system of the interferogram plane is the 

mn plane. When waves from both the object and reference 

of the interferometer meet to interfere, the intensity of the 

interferogram is given by:

ORnmI *),( =Ψ= (1)

 

Here, Ψ represents the intensity of the recorded inter-

ferogram, O is the object beam, R is the reference beam, 

* denotes the complex conjugate and m, n are integers. 

The reconstructed wave front is an array of complex 

numbers. An amplitude-contrast image and a phase-contrast 

image can be obtained by using the following intensity 

[Re(Ψ )
2
 + Im(Ψ )

2
] and the argument arctan {Re(Ψ )/Im(Ψ )}, 

respectively. In the reconstruction process, the intensity of 

the interferogram is multiplied by the amplitude of the 

original reference wave called a digital reference wave (RD 
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FIG. 3. Flowchart of the algorithm that was used to analyze 

the off-axis interferogram.

FIG. 4. Reconstruction steps of the conventional spatial 

filtering based phase contrast off-axis interferometry: a) 

Off-axis interferogram, b) Fourier transformed spatial 

frequency domain data, c) Spatially filtered domain data, d) – 
e) Inversely Fourier transformed data, f) Phase map of the 

digital reference wave, g) – h) Reconstructed object wave.

(a) (b)

FIG. 5. (a) 480×480 pixels unwrapped phase map for the 

wrapped phase map in Fig. 4(h).  (b) Three-dimensional view 

of the unwrapped phase map of (a).

(a) (b)

FIG. 6. (a) Three-dimensional surface height resulting from 

the unwrapped phase shown in Fig. 5(b), (b) Two-dimensional 

surface height along 480 pixels in the x-direction.

(m, n)). If we assume that a perfect plane wave is used as 

the reference for interferogram recording, the computed 

replica of the reference wave RD can be calculated as 

follows:

)])(/2(exp[),( ynkxmkiAnmR yxRD Δ+Δ= λπ (2)

where, AR is the amplitude, λ is the wavelength of the 

laser source, and kx and ky are the two components of the 

wave vector that must be adjusted such that the propagation 

direction of RD matches as closely as possible with that of 

the experimental reference wave. By using this digital reference 

wave concept, we can obtain an object wave which is recon-

structed in the central region of the observation plane. The 

captured interferogram of the surface object was processed 

using Matlab codes to obtain a reconstructed object wave 

(amplitude and phase). Figure 3 shows the flow chart of 

the algorithm that was used to analyze the off-axis 

interferogram. 

  Figure 4 shows the detail numerical reconstruction 

process of a single shot off-axis hologram of a surface 

object. As depicted in Fig. 4(a) through 4(d), 2D-FFTs were 

implemented for the spatial filtering approach. The inverse 

2D-FFT was applied after filtering out the undesired two 

terms, and the complex object wave depicted in Fig. 4(d) 

and 4(e) in the interferogram plane was extracted. After the 

spatial filtering step, the object wave in the interferogram 

plane was multiplied by the digital reference wave RD. 

The final reconstructed object wave (amplitude and phase) 

as demonstrated in Fig. 4(g) and 4(h) was recorded by 

selecting appropriate values for the two components of the 

wave vector kx = 0.002955mm
-1

 and ky = 0.01143mm
-1

.

The reconstructed phase shown in Fig. 4(h) is non 

ambiguous and shows the results wrapped onto the range  

-π to π. In order to retrieve the continuous form of the phase 

map, an unwrapping step has to be added to the phase 

retrieval process [14]. 

Figure 5(a) shows the 480×480 pixels unwrapped phase 

map for the wrapped phase map in Fig. 4(h). The 3D 

view of the unwrapped phase map is shown in Fig. 5(b). 

The phase information shown in Fig. 5(b) was converted 

to metrical 3D surface height information as shown in Fig. 

6(a). Figure 6(b) presents the measured profile curve along 

480 pixels in the x-direction and its cubic fitting. The 

peak to valley value calculated from Fig. 6(b) was of the 

order of 0.45x10
-3 

mm. 
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(a) (b)

FIG. 7. Circular fringe pattern (a) before correction with flat 

fielding, (b) After correction.

(a) (b)

(c) (d)

FIG. 8. (a) Wrapped phase map resulted from the four-frames, 

(b) Unwrapped phase information in 2D grey-scale, (c) 480 

× 370 pixels unwrapped from the middle of (b), (d) 

Three-dimensional surface height of (c).

FIG. 9. Two-dimensional surface height along 480 pixels at 

x-direction.

The smooth spherical surface has also been tested using 

four-frame phase shifting in-line interferometry. In the in-line 

case, the tested smooth spherical surface of 25.4 mm in 

size has been mounted as an object in the interferometer 

parallel to the reference as shown in Fig. 1. The interferogram 

was captured by the CCD camera of 1024×768 pixels. The 

CCD camera was calibrated by a process known as “Flat 

fielding” or “Shading correction” to remove the CCD camera 

offset and the inhomogenity of the Gaussian beam. Flat 

fielding can be illustrated by the following formula [15-16]. 

)/()]([ BFBRC IIIIMI −−= (3)

where Ic is the calibrated image; IR is the non-calibrated 

object exposure; IB is the bias or dark frame; M is the 

average pixel value of the corrected flat field frame; and  

IF is the flat field frame. 

Figure 7(a) shows the captured interferogram with the 

effect of the camera offset and the inhomogeneity of the 

collimated laser beam intensity, which were corrected using 

formula (3) in Fig. 7(b). The distance of the cavity between 

the object and the reference was changed very slightly by 

using a PZT varied by voltage. Four different interferograms 

of 0, π/2, π and 3π/2 radian phase shifts, respectively, 

were captured and corrected with the flat fielding method. 

The wrapped phase map from the corrected interferograms 

is shown in Fig. 8(a). The wrapped phase map is then 

unwrapped to remove the 2π ambiguity and the unwrapped 

phase map is shown in Fig. 8(b). Figure 8(c) shows 480 × 

370 pixels unwrapped phase map at the middle of Fig. 

8(b). The phase information shown in Fig. 8(c) was converted 

to metrical 3D surface height information as shown in Fig. 

8(d).

Figure 9 presents the measured profile curve along 480 

pixels in the x-direction and its cubic fitting. The peak to 

valley value calculated from Fig. 9 was of the order of 

0.47x10
-3 

mm. 

As shown from the results and the cubic fitting equations, 

the measured value measured with off-axis geometry is 

very close to the value measured with the four-frame phase 

shifting technique, and the little deviation may be due to 

the vibration because the phase shifting algorithm is more 

sensitive to vibration than single shot off-axis geometry.

III. UNCERTAINTY ANALYSIS

In interferometry, the path of the light has to be determined 

with high accuracy. The paths of the light rays can be 

determined accurately with elementary geometry and by 

successive applications of the law of refraction (or reflection); 

this method is known as ray tracing and is the most 

important current simulation method for macroscopic optical 

systems. The principle of ray tracing through refractive 

and reflective optical elements is well known [17-19]. The 

optical path length of a ray is calculated from the point of 

intersection of the ray with the surface of the plane of 

localization, where the rays meet to interfere. A ray tracing 

simulation program, which is written in the software 

“IDL”, traces the rays until they interfere and are detected. 

The program is written by applying the physical laws of 

reflection and transmission. The surface under test is 

characterized here in one dimension and is a straight line 

with a non zero inclination angle (Fizeau case). The intensities 
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FIG. 10. A flowchart of the interference fringes simulation 

technique at reflection with IDL software.

FIG. 11. One-dimensional simulation surfaces along 480 

pixels.

FIG. 12. Normalized intensity versus the distance (mm). (1) 

Experimental fringes. (2) Simulated fringes with IDL (2).

of the incident rays at transmission and at reflection are 

calculated using Fresnel coefficients. The amplitudes of the 

electric field that interfere at the first surface (in case of 

reflection) are squared to obtain the actual intensities, 

which constitute the fringes. When the rays are incident on 

the surfaces of the interferometer, some of the rays’ 

intensity is transmitted and the remaining intensity is 

reflected. The total intensity of the reflected or transmitted 

rays is calculated by using the normal equation of Fizeau 

fringes

2

∑= nAI (4)

where An represents the amplitude vector of the n-th beam 

impinging on each pixel after 2n times of reflections. 

The value of the path difference changes directly with 

the slope of the surface. The path difference equals zero 

when the intensity is constant for highly parallel plate 

surfaces, but has a non-zero value if there is a small angle 

between the surfaces. The flowchart of the simulated inter-

ference fringes in reflection, produced with the ray tracing 

technique, is shown in Fig. 10. One-dimensional simulations 

of the surfaces (the reference and the object) are presented. 

Each simulated surface consists of two interfaces. The first 

two interfaces are for the reference that faces the incoming 

rays. The other two interfaces are for the object surface. 

Fig. 11 shows the simulation of the surfaces used that 

match the particular surfaces. The cavity distance was 

nearly 2 mm. This simulated cavity distance is very close 

to the experimental cavity distance. 

Figure 11 shows the in-line simulation fringes along 480 

pixels. The reference and the object were 6 mm in size 

and the gap size was 2 mm. The conditions were taken in 

the simulation to match the practical conditions as well. 

The simulation fringes are cited here to estimate the uncertainty 

in measurement from the deviation of the simulation fringes 

and experimental fringes for this in-line case. Some sources 

of uncertainty in measurement were taken into consideration. 

Two important sources of error are vibration and air turbulence. 

These two sources can be estimated numerically from the 

deviation of the simulation fringes and experimental fringes 

as shown in Fig. 12. The deviation was estimated to be in 

the range of 5.0x10
-5

 mm. The third source of uncertainty 

may be due to the nonlinearity of the voltage used in the 

experiment [20-21]. The standard deviation of the voltage 

from the mean was 0.025 V; this corresponds to a height 

of 1.0x10
-5

 mm. Another source of uncertainity may be 

due to the incomplete parallelism of the incident beam and 

the uncertainty due to the incomplete parallelism was estimated 

to be in the range of 1.8x10
-12

 mm. In the in-line phase 

shifting scheme, the uncertainty budget [22] due to the 

factors considered was estimated to be of the order of 

6.0x10
-5

 mm. 

For the single shot based off-axis interferometry, we can 

say that the main error sources would not be vibration and 

air turbulence but inevitable signal processing errors due to 
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the FFT based spatial filtering process. As well known, an 

energy leakage problem due to FFT process is inevitable 

in most applications. As a solution for this, the image 

processing technique called “apodization” can be used to 

reduce the fluctuation error due to the energy leakage problem 

[23]. And also, the spatial filtering process can increase 

the calculation error of the off-axis scheme since we can 

not filter only what we want from the spatial frequency domain 

data. According to what we estimated in the simulation 

code, the uncertainty of the off-axis scheme can be as small 

as around 1.0x10
-6

 mm for a perfectly flat mirror surface 

in case that we apply the apodization filter for the off-axis 

interferogram. In this study, however, we have not applied 

this kind of technique. In that reason, the current uncertainty 

of the off-axis scheme can be estimated to be around 

4.0x10
-5

 mm.  

 

IV. CONCLUSION

Fizeau interferometer based on single shot off-axis geometry 

was used for measurement of a spherical smooth surface 

form. The results extracted from the single shot off-axis 

geometry were compared with the results extracted from 

the four-frame phase shifting in-line interferometry, and 

the results were in excellent agreement. The single shot 

algorithm is suitable for analyzing objects accurately and 

very rapidly. And also, the single shot algorithm is less 

sensitive to vibration and turbulence than is the phase 

shifting technique. Simulation has been conducted to estimate 

the uncertainty of the in-line and the off-axis scheme. 
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