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Abstract

Surface gradients are useful to surface reconstruction in

single view modeling, shape-from-shading, and photomet-

ric stereo. Previous algorithms minimize a complex, non-

linear energy functional, or require dense surface gradients

to perform integration to generate 3D locations, or require

user-input heights to constrain the solution space, or pro-

duce severe distortion and smooth out surface details. Most

single-view algorithms output a Monge patch (height-field),

which may introduce further surface distortion along ob-

ject silhouettes and surface orientation discontinuities. Our

proposed algorithm operates on a single view of complete

or incomplete data. The data can be gradients without 3D

locations, or 3D locations without gradients. The output

surface, which is not necessarily a height-field, preserves

salient depth and orientation discontinuities. Experimental

comparisons on both simple and complex data show that

our method produces better surfaces with significantly less

distortion and more details preserved. The implementation

of our closed-form solution is very straightforward.

1. Introduction

Single view modeling [25, 15], photometric stereo [7,

6, 10, 4, 22] and geometric stereo [18, 17] are important

topics in computer vision. These algorithms typically pro-

duce a sparse or dense normal/disparity map, from which a

surface is reconstructed. While existing surface estimation

algorithms already produce good surfaces, they have one or

more of the following limitations:

• A complex, non-linear energy functional is minimized,

so initialization and convergence rate are issues.

• Initial user-input heights are necessary to constrain the

solution space.

• When no heights are available, dense surface gradients

are required to integrate the underlying surface.
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• Surface details are either smoothed out in the output, or

detected as crease curves and surface-curve integration

is performed as a separate process.

• Many surface-from-gradients methods output a Monge

patch (h = f(x, y), that is, a height-field), which can-

not handle normals lying on the image plane. To han-

dle these normals, their orientations must be altered

to satisfy the integrability constraint, which introduces

distortion to the computed surface.

Given a single view of dense or sparse data, which can

be surface gradients without 3D locations, or 3D locations

without surface gradients, or a combination of both, we pro-

pose a uniform algorithm to reconstruct the underlying sur-

face from the single view data. Our closed-form solution of-

fers good numerical stability, where initialization and con-

vergence rate are not issues. The output surface preserves

important surface details, and does not suffer surface distor-

tion common to height-field output. Such output is highly

desirable for tasks in computer vision, image-based model-

ing, and computer graphics.

2. Related work

Surface reconstruction for single view modeling has spe-

cific challenges (e.g., heights are usually unavailable, or a

few user-input heights are required), properties (e.g., the

output is a visible surface) and requirements (e.g., the re-

constructed surface should be highly-detailed for graphics-

related tasks); all of which can be actively exploited to

produce results better than those produced by general 3D

surface fitting algorithms, which are targeted at generating

generic surface descriptions for vision-related tasks.

Terzopoulous et al. [21] inflated a surface using thin plate

energy given sparse geometric cues. Later, the method

presented in [20] provides a compact framework for visi-

ble surface reconstruction, which considers simultaneously

surface normal, height field, orientation discontinuity and

depth discontinuity. The energy functional is non-linear and

complex, so incomplete height field is needed for initial-

ization. Other regularization approaches also minimize a
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Figure 1. Normals lie on the image plane. For the methods proposed in [5, 9], these normals have to be altered before running the

algorithms. Our method produces a faithful ‘staircase’ surface without manually changing input normals.

functional to derive an optimal surface while preserving dis-

continuities. For instance, the Mumford-Shah model rep-

resents discontinuity using a discrete set. Blake and Zis-

serman [2] developed a weak membrane model that explic-

itly deals with discontinuities, by iteratively solving for the

labeling of data and the model in a functional optimiza-

tion framework. [1] focused on discontinuity and intro-

duced anisotropic weights for better surface estimation. The

complexity and/or the heuristic nature inherent in these ap-

proaches have inspired non-iterative approaches to address

the surface inference problem.

A non-iterative method, tensor voting [11], was devel-

oped by Medioni et al. to infer a layered surface descrip-

tion, from a combination of points, points with tangents,

and points with normals, which can be sparse or dense. Sur-

faces, curves and junctions are inferred. Given sparse input,

since the detected curves are often not localized well on

the inferred surface, an integration process should be per-

formed [19].

When dense surface gradients are available, the integra-

bility constraint can be applied to obtain the height-field

(e.g., notably [6] where discontinuity and height constraints

can be imposed readily). One classical approach that makes

use of basis functions was proposed by Frankot and Chel-

lappa [5], where Fourier basis functions were used. More

recently, shape from shapelets was proposed [9]. This

method accepts dense normals as input, and correlates the

measured surface gradients with the gradients of a bank of

shapelet basis functions which satisfy a set of constraints.

Discontinuity and height constraints, however, cannot be

imposed readily in these methods based on bases. When

both dense surface gradients and dense position constraints

are present, one can obtain decent 3D surfaces by using

[13].

In [25], an interactive approach on single-view model-

ing was presented. The method takes as input a combina-

tion of user-specified constraints, such as surface positions,

normals, silhouettes, and creases to generate a height-field

that satisfies the supplied constraints. The associated en-

ergy functional is based on thin-plate-spline. Typical of

height-fields, surface distortion is particularly severe along

object silhouettes. In [15], a closed-form solution was pro-

posed for single-view reconstruction of curved 3D surfaces.

The formulation is discrete in nature. In particular, the user

needs to supply the inflation constraints, by guessing sur-

face heights at sample image locations. The input normals

are specified in the discrete parameter space, which is un-

intuitive compared with directly specifying normals in the

spatial domain.

3. Motivation

In this section, we present cases to illustrate that our

closed-form solution has advanced previous results, using

a classical approach [5] and a new approach [9] for compar-

ison on surface-from-gradients, where no heights are avail-

able.

Height-field and integrability. Figure 1 shows that we

can handle case where normals are nearly lying on the im-

age plane, i.e.
∂f(x,y)

∂x
and/or

∂f(x,y)
∂y

→ ∞, For [5, 9],

which were designed to handle height-fields, fail to do so

because these normals introduce severe numerical instabil-

ity. In order to generate the suboptimal output for [5, 9]

shown in Figure 1, the normals in question must be per-

turbed. Albeit such manual perturbation, the output sur-

face is still unsatisfactory. The observed distortion is in fact

due to enforcement of the integrability constraint, which

requires changing the orientations of the normals. This

is, however, problematic because this ‘staircase’ surface is

characterized by these normals, which define the surface

orientation discontinuity. Unfortunately, this discontinuity

exactly violates the integrability constraint.

Dense normals with no heights. Figure 2 compares the

surfaces generated using an input dense ‘needle map’ of

a sphere with ‘ICCV’ engraved on the spherical surface.

Our method produces a hemispherical shape, where all ob-

servable surface details are faithfully preserved. For [5, 9]

to work properly, we perturbed the normals along the

sphere’s outline in order to avoid division-by-zero. Even

this, needle-like spikes are produced as shown, when the z
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Fourier [5] Fourier [5] Fourier [5] Fourier [5]
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Figure 2. Sphere. The x, y, z components of the input dense normals are color-coded in RGB. Top: Closed-form solution. Middle: [5].

Bottom: [9]. For our closed-form solution, normals lying on image plane need not be altered, and no user-input parameter is required.

Needle map discontinuity map Fourier [5] Shapelets [9] Closed-form Closed-form

no discontinuity with discontinuity

Figure 3. Button. From left to right: the sparse needle map, the discontinuity map, results generated by [5], [9], our closed-form solution.

For [5, 9], the missing normals are assumed to be [0 0 1]T .

components of normals are close to zero. Also, these meth-

ods rely on a good input scale, which is guessed by trial-

and-error. Our method, on the other hand, does not require

such user-input parameter.

Sparse normals, with discontinuity but no heights. The

third example shown in Figure 3 demonstrates the abil-

ity of different approaches in incorporating discontinuities

into consideration. Such sparse normals and discontinuity

map on a single view are typically available in single-view

modeling [25, 15, 24]. Different from manually guessing

heights, we can specify normals and discontinuities eas-

ily via a 2D sketching interface [24]. Because the input

is quite sparse, integration approaches cannot be applied

to this case. Our closed-form solution, on the other hand,

produces a surface faithful to the input gradients where the

specified discontinuity is preserved. For [5, 9], there is



no easy way to impose the given discontinuity constraint,

where the enforcement of integrability constraint further ag-

gravates the distortion problem.

4. A Closed-Form Solution to Surface-from-

Gradients with Incomplete Data

In this section, we describe how we can generate a 3D

surface given the complete or incomplete 3D and first-order

gradient information, within a unified framework imple-

mented as a closed-form solution. The following lists the

information that can be obtained from a single view.

Normals/Gradients They can be either sparse or dense,

residing on a 2D regular or irregular grid space.

3D points They can be either sparse or dense, scattering

in a finite space.

Discontinuities They describe the occlusion boundaries

or orientation discontinuities between surface regions.

Note that, as mentioned, previous methods can either

handle a subset of the situations listed above, or produce

results that exhibit severe distortion, or use a complex prob-

lem formulation.

Now, we show that, by formulating the above into per-

tinent equations, we can derive a closed-form solution to

solve for the corresponding 3D point observed at an image

location. The collection of the (sparse) 3D points solved

will be employed to compute the underlying surface.

Given the information listed above, to avoid producing a

Monge patch and to generate a true 3D surface, we want to

find a mapping function f : R
2 → R

3 that maps an image

point to the corresponding 3D location. The form of the

function can be defined as:

f(t) = (fx(t), fy(t), fz(t))
T (1)

where t = (u, v)T ∈ R
2 in image coordinate, fa : R

2 → R

and a ∈ {x, y, z}. In terms of parametric surface represen-

tation, one may consider that the underlying 3D surface is

parameterized by t.

4.1. Representation

By Eqn. 1, f is characterized by fa. So, the question we

want to ask is what is the form of fa? Since fa can be any

function, we need a representation that provides as much

flexibility as possible. One feasible and convenient way to

model fa is by using kernel functions [16] or radial basis

functions [3]. Mathematically,

fa(t) =

N
∑

i

αaik(ti, t) (2)

where k : R
2 × R

2 → R is a chosen kernel, N is the to-

tal number of kernel sites (i.e., input and non-input sites

depending on image resolution), and {αai} is a set of un-

knowns to be estimated.

Theoretically, any differentiable function can be mod-

eled by Eqn. 2, given a sufficient number and a correct

distribution of kernel sites, and a chosen kernel function.

While the discussion is out of the scope of this paper, we

will show that in our experiments that a simple arrange-

ment is sufficient to produce very decent results. We can

set the kernel sites to be resided either on the image grid,

or in a best resolution that contains the sparse input data.

Although the kernel sites are discrete, the resultant function

fa is continuous. We will discuss the choice of kernel later.

4.2. Data Constraints

Here we translate the available information (complete or

incomplete) provided by a single view into constraints for

the estimation of {αai}.

Let us first assume the input is formed by orthographic

projection, which is usually assumed in single-view mod-

eling. The u and v components of the image points must

coincide with the x and y components of the correspond-

ing 3D points, which still allows for estimating a 3D sur-

face but not a Monge patch. Suppose we have some in-

complete heights (they can be obtained from object silhou-

ettes where z = 0, disparity, user-supplied cues, depend-

ing on applications), the z components of the correspond-

ing image points can be set to the known values. To trans-

late this paragraph into mathematical description, we let

H = {sj ∈ R
2|j = 1, 2, ..., m} be the set of image lo-

cations where the heights are known. The estimated surface

must satisfy:

f(sj) = (sT
j , hj)

T (3)

where hj is the known height value at sj . In general,

f(sj) = vj , where vj is the 3D location that corresponds to

sj , can be used to encode known 3D locations, without the

assumption of orthographic projection.

Besides, we may have some known normals at image lo-

cations V = {cj ∈ R
2|j = 1, 2, ..., n} (note that H∩V can

be non-empty). To force the estimated surface to align with

the known normals corresponding to V , the tangents along u

and v directions in the set V in the parameter space must be

perpendicular to the given normals. Let n(t) ∈ R
3 be the

surface normal at t and qp(t) = (∂fx(t)
∂p

,
∂fy(t)

∂p
,

∂fz(t)
∂p

)T

be the tangent along direction p ∈ {u, v} at t, the estimated

surface must satisfy:

(

1 0 0
0 1 0

)

f(cj) = cj (4)

qp(cj)
Tn(cj) = 0 (5)

When cj is in H, Eqn. 4 is duplicated and can be removed.



Figure 4. Noise robustness. Top: color-coded normal map. Bottom: the reconstructed surface. From left to right: The normals are perturbed

with additive Gaussian noise with standard deviations of 0, 0.3, 0.6, 0.9 radians respectively.

image normal map surface view 1 surface view 2 surface by [9]

Figure 5. Results on dense gradients. The three examples are Rope, Hair and Face. From left to right: image, color-coded normal map

obtained by photometric stereo, two views of the reconstructed surfaces. The corresponding zoom-in views of the surface generated by [9]

are also shown.

Let

Λ = (αx1, · · · , αxN , αy1, · · · , αyN , αz1, · · · , αzN )T (6)

we can rewrite the above three sets of constraints (Eqn. 3, 4

and 5) into the following form:

AΛ = b (7)

Now, all the known normals and 3D information are en-

capsulated in Eqn. 7, which is a set of linear equations. Ex-

cept for normals and incomplete 3D, one may incorporate

any constraint into Eqn. 7, as long as the constraints can be

modeled by linear equations. This provides an interface for

future extension.



4.3. Inference Capability

Since the available information can be incomplete, we

need to define a term to incorporate inference or interpola-

tion capability to the algorithm. The idea is based on mini-

mizing the smoothness over the estimated surface.

To propagate the shape information from one image lo-

cation to another, we can consider first-order neighborhood

and minimize their difference. In order to produce smooth

surfaces for non-input sites with no information, we mini-

mize the surface gradients or tangents between kernel sites

while preserving discontinuities. Let (s, t) ∈ N be the set

of first order neighbor locations of site p, we minimize the

following:

w(ts, tt)||qp(ts) − qp(tt)||
2 (8)

where w(ts, tt) ∈ {0, 1}. If normal or depth discontinu-

ity exists between ts and tt, w(ts, tt) = 0. Otherwise,

w(ts, tt) = 1. In general, w(ts, tt) can be a soft label in

the range of [0, 1] (user-supplied or computed by, for in-

stance, [23]). By considering all (s, t) ∈ N , we can rewrite

the set of Eqn. 8 into matrix form:

||SΛ||2 (9)

and this term will be incorporated during estimation and

thus 3D location can be inferred at each site.

4.4. Solution

With Eqn. 7 and Eqn 8 , we can obtain our energy func-

tion as the following:

E(f) = ||AΛ − b||2 + λ||SΛ||2 (10)

where λ is the weight indicating the importance of the

smoothness term (The typical value of λ is 0.1). We can see

that the surface estimation problem is now translated into

a regression problem. To minimize the energy function, we

set the first derivative of the energy function w.r.t. Λ to zero,

and obtain a set of linear equations:

(AT A + λSTS)Λ = AT b (11)

To solve Eqn. (11), we can apply Gauss-Seidel method with

successive over-relaxation to obtain Λ, and so we can find

the 3D location for each image point.

At this point, one may notice that the size of matrix A

and S can be very large for a dense input, for example, a

normal map produced by photometric stereo. To make the

estimation practical, the choice of the kernel function k is

very important. We choose exp(− ||t−t
′||2

σ
) as our kernel

because Gaussian is simple and it leads to a sparse system

so that both the computational and storage requirements can

be reduced in implementation.

To take the depth discontinuity into account, we can mul-

tiply one weighting function to the Gaussian kernel and ob-

tain our final kernel function as the following:

k(t, t′) = d(t, t′) exp(−
||t− t′||2

σ
) (12)

where d(t, t′) ∈ {0, 1}. If depth discontinuity exists be-

tween the straight line joining t and t′, d(t, t′) = 0. Other-

wise, d(t, t′) = 1. So, d, which can be obtained by image

snapping tools or from disparity map, indicates and controls

the influence between kernel sites. Finally, to generate a 3D

surface mesh for visualization, we use the solved f (Eqn. 1)

to find the 3D point for every image location, and then gen-

erate the surface by applying [14], for instance.

5. Results

Surface from dense surface gradients. We first demon-

strate the robustness of our system by adding different

amount of Gaussian noise to the input. Figure 4 shows

a Torus, a genus-one object, where the orientations of the

normals are perturbed. The results show that our closed-

form solution is quite robust and degrades gracefully with

increasing amount of noise. Figure 5 shows several input

dense normal maps obtained by photometric stereo (cour-

tesy of [22]). Rope is a complex object with a lot of struc-

tures. For Hair, the normal map is very noisy because some

hairs of the wig were always under shadows regardless the

lighting direction, when the object was captured under vari-

able illumination. Face is complex with typical facial fea-

tures. Interestingly, the subject has a few pimples on the

face, and wears eye glasses which introduce surface ori-

entation discontinuities to the resulting dense normal map.

Note the faithfulness of the surface results generated by our

closed-form solution.

Surface from very sparse surface gradients. Figure 6

shows several views of the sparse normals of Torsos. For

each view, the normals along each pair of closely-spaced

curves are pointing away from each other. They are used to

model crease curves, which incorporate surface details on

the torsos. Note that even without any user-input height, our

surface results are very good considering only sparse nor-

mals are available. We tested the Male Torso using [5, 9]

and show the results in Figure 7. The resultant surfaces

exhibit terrace-like structures. For [9], we tested the input

with different input parameters. Better results with less dis-

tortion are produced, but the visual quality of the surfaces

is still far from ours.

Surface from incomplete surface gradients and incom-

plete heights. Finally, we propose an application on dis-

parity editing, by assigning sparse normals to the disparity

map based on a monocular view. State-of-the-art stereo al-

gorithms already produce very good disparity map for mod-

eling the global structure of a real scene. However, local



Figure 6. Results on very sparse gradients. From left to right: Input sparse normals, obtained from the sketched-based single-view modeling

system [24], are available along the blue curves, which are overlayed onto the images of the statuettes. Two views of the reconstructed

surface are shown. Top: Male Torso – front and back. Bottom: Female Torso – front and back.

Fourier [5] Shapelets [9] Shapelets [9] Shapelets [9]

6 scales, min σ = 1 6 scales, min σ = 4 7 scales, min σ = 2

Figure 7. Surfaces from sparse gradients generated by [5] and [9]. The missing normals are filled with [0 0 1]T as applied in [9]. In

particular [9] reconstructs the surface by correlating multiple shapelet scales, while an over-smoothed surface is reconstructed using a

large minimum σ. Increasing the number of scales used will produce an over-flattened surface.

structures are usually lost during stereo reconstruction, due

to limited image resolution. For the Tsukuba dataset (Fig-

ure 8), for instance, while the global structure of the scene

is excellent, the details on the bust and the curvature of the

lamp-shade are both lost.

We propose to improve the disparity map by taking

only the disparity along the object silhouettes (incomplete

heights without normals), and associate in the interior of

each chosen disparity region sparse normals (incomplete

normals without heights), based on a given stereo image.

The principle behind the specification of local structures

using normals can be traced back to Pictorial Relief by

Koenderick et al. [8], which concludes that humans are very

good at assigning local surface normals for specifying local

shape. To specify the normals, we make use of intelligent

scissor [12] to follow the salient curves on the image, fol-

lowed by interactive normal transfer using a sketching inter-

face [24]. Given the incomplete heights and incomplete nor-

mals, our closed-form solution generates a highly-detailed

disparity surface as shown in Figure 8, where the bust suf-



input image

incomplete heights incomplete normals

frontal view of disparity map, without texture

zoom-in oblique view of disparity map, with texture

Figure 8. Surface from incomplete heights and incomplete nor-

mals. The blue curves indicate the loci where normals are avail-

able. The left shows the original disparity map. The right shows

the disparity surface generated using our closed-form solution.

fers significantly less distortion after it is rotated.

6. Conclusion

We have described a closed-form solution to surface-

from-gradients from incomplete data on a single view. The

proposed algorithm can operate on dense or sparse input.

The input can consist of normals without corresponding

3D locations, or 3D locations without corresponding nor-

mals. We tested our implementation in a combination of

different input scenarios. The good results we obtained

demonstrate that our method is ready to be “plugged” into

single-view modeling, photometric and geometric stereo

systems, where numerically-stable surface generation, ca-

pable of producing surfaces faithful to the input while being

robustness to noise, is essential.
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