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Surface impedance is an important concept in classical wave systems such as photonic crystals (PCs).

For example, the condition of an interface state formation in the interfacial region of two different

one-dimensional PCs is simplyZSL þ ZSR ¼ 0, where ZSLðZSRÞis the surface impedance of the semi-

infinite PC on the left-hand (right-hand) side of the interface. Here, we also show a rigorous relation

between the surface impedance of a one-dimensional PC and its bulk properties through the geometrical

(Zak) phases of the bulk bands, which can be used to determine the existence or nonexistence of interface

states at the interface of the two PCs in a particular band gap. Our results hold for any PCs with inversion

symmetry, independent of the frequency of the gap and the symmetry point where the gap lies in the

Brillouin zone. Our results provide new insights into the relationship between surface scattering properties,

the bulk band properties, and the formation of interface states, which in turn can enable the design of

systems with interface states in a rational manner.
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I. INTRODUCTION

Impedance is a very important and useful concept in

wave physics because it is the parameter that governs how a

wave is scattered or reflected when it encounters an

interface. As such, it characterizes how a material couples

with waves coming from outside. On the other hand, the

bulk band structure characterizes how waves can travel

inside a periodic system. These quantities should be related

in some way. We establish that, for a periodic multilayer

film, commonly referred to as 1D photonic crystals, the

surface impedance is related to the Zak phase [1] of the

bulk bands. As the existence of interface states is deter-

mined by the surface impedance, this means that the

existence of localized states at an interface is determined

by the geometric phases of the bulk crystals. It is well

known that interface states can exist in a quantum system

when the topological properties of two semi-infinite sys-

tems on each side of the interface are different [2–5].

A famous example is the Su-Schrieffer-Heeger (SSH) model

for polyacetylene [6–8]. In such systems, it was shown that

an interface state exists when the Zak phase of the occupied

band on one side of the chain is different from that on the

other side, which can be obtained through gap inversion

[9–11]. The purpose of this work is to find a general

connection between the existence of an interface state in a

photonic system and the bulk band topological properties as

well as the surface impedances of the two systems on

each side of the boundary. The analog between photonic

systems and quantum systems was discussed recently

[12–15]. Based on this analog, the Zak phase can also be

defined in photonic crystals (PCs). For 1D binary PCs, we

find a rigorous relation that relates the existence of an

interface state to the sum of all Zak phases below the gap on

either side of the interface. This relation holds for any 1D

PCs with inversion symmetry, including those with graded

refractive indices. Similar to the “bulk-edge correspon-

dence” found in topological insulators [2–4], the “bulk-

interface correspondence” found here provides not only a

tool to determine the existence of interface states in a

photonic system but also the possibility of designing a

photonic system with interface states appearing in a set of

prescribed gaps.

II. RESULTS

A. Impedances and Zak phases of 1D photonic

crystals and their relationship

Let us consider a dielectric AB layered structure as

shown in Fig. 1(a). A plane wave from free-space incidents

normally on the semi-infinite 1D PC on the right and the

reflection coefficient of the electric field Ex is given by rR.
When the frequency of the incident wave is inside the band

gap of this system, the incident wave will be totally

reflected, and we have rR ¼ eiϕR , where ϕR is the reflection

phase. We define a surface impedance ZSR of the semi-

infinite PC as the ratio of the total electric field to the total
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magnetic field on the right-hand side of the boundary, i.e.,

ZSR ¼ Exðz ¼ 0þÞ=Hyðz ¼ 0þÞ, where z ¼ 0 defines the

boundary. The impedance ZSR and the reflection coefficient

rR are related by

ZSR ¼ 1þ rR

1 − rR
Z0; (1)

where Z0 is the vacuum impedance. Inside a band gap,

ZSR is a pure imaginary number and we can write

ZSR=Z0 ≡ iςR, where ςR is a real number. The reflection

phase can hence be expressed as ϕR ¼ π − 2 arctanðςRÞ.
Let us now put another PC on the left of the interface,

and we denote the impedance and the reflection phase of

the left PC by ZSL and the reflection coefficient rL. The
condition for the presence of an interface state is simply

ZSR þ ZSL ¼ 0. According to Eq. (1), this condition

implies that ð1þ rRÞ=ð1 − rRÞ þ ð1þ rLÞ=ð1 − rLÞ ¼ 0,

which is equivalent to rRrL ¼ 1 or ϕRþϕL¼2mπðm∈ℕÞ.
A simple way to obtain an interface state is to construct a

system in which the surface impedances on the two sides

are opposite in sign. A similar condition has been reported

for 2D PCs [16,17]. But the question is then, how can we

design or control the value of the surface impedance? We

show that the sign of the surface impedance for frequencies

inside a band gap is, in fact, determined by the geometrical

phase of the bulk bands. In the following, we derive a

rigorous relation between the surface impedance and the

Zak phase of the PC.

The band structure of a dielectric binary PC shown in

Fig. 1(a) can be obtained from the following relation [18]:

cosðqΛÞ ¼ cos kada cos kbdb

−
1

2

�

za

zb
þ zb

za

�

sin kada sin kbdb; (2)

where ki ¼ ωni=c, ni ¼
ffiffiffiffiffiffiffiffi

μiεi
p

, zi ¼
ffiffiffiffiffiffiffiffiffiffi

μi=εi
p

, (i ¼ a or b);
da, db, and Λ ¼ da þ db are the widths of slabs A and B
and the unit cell, respectively; and q is the Bloch wave

vector. Here, c denotes the wave speed in vacuum,εa, εb,

μa, and μb are the relative permittivity and permeability of

slabs A and B, respectively. The band structure for the

parameters εa ¼ 4, μa ¼ εb ¼ μb ¼ 1, da ¼ 0.4Λ, and

db ¼ 0.6Λ is shown in Fig. 1(b). For convenience of

discussion, we have numbered the pass bands and band

gaps, independent of whether a gap is closed or not. It is

easy to show that the midgap positions (or the crossing

points when two bands meet) of the PC are at ωm ¼
mπc=ðnada þ nbdbÞ (see Appendix A). For each isolated

(no crossing) band n, we define the Zak phase as

[12–14,19]

θZakn ¼
Z

π=Λ

−π=Λ

�

i

Z

unit cell

dzεðzÞu�n;qðzÞ∂qun;qðzÞ
�

dq; (3)

where i
R

unit celldzεðzÞu�n;qðzÞ∂qun;qðzÞ is the Berry connec-

tion, εðzÞ denotes the dielectric function, and un;qðzÞ is the
periodic-in-cell part of the Bloch electric field eigenfunc-
tion of a state on the nth band with wave vector q, i.e.,
Ex;n;qðzÞ ¼ un;qðzÞ expðiqzÞ. For the case of a binary PC,

the function un;qðzÞ can be obtained analytically from the

transfer-matrix method [18] (see Appendix B). The 1D
system with inversion symmetry always has two inversion
centers and the Zak phase is quantized at either 0 or π if the
origin is chosen to be one of the inversion center [1]. If the
Zak phase equals 0ðπÞ relative to one inversion center, it
must be πð0Þ relative to the other inversion center. Without
loss of generality, we choose the center of slab A as the
origin for calculating Zak phases. If the surface of the semi-
infinite PC is also chosen at the same origin, i.e., the center
of slab A, we find a rigorous relation between the surface

impedance of the PC in the nth gap, i.e., Z
ðnÞ
S =Z0 ¼ iςðnÞ,

and the sum of Zak phases of all the isolated bands below
the nth gap [Appendix D, Eq. (D12)]. This relationship
relates the surface scattering properties and the topological
properties of bulk dispersion. It can predict the existence of
an interface state in a band gap and determine the location
of the interface state if it exists. In addition, if we are only
interested in knowing whether such a state exists in a gap,

we only need to know the sign of ςðnÞ on each side. The sign
of ςðnÞ has the following simple expression:

sgn½ςðnÞ� ¼ ð−1Þnð−1Þl exp
�

i
X

n−1

m¼0

θZakm

�

; (4)

where the integer l is the number of crossing points under
the nth gap [in Fig. 1(b), the crossing point is at the 7th
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FIG. 1. (a) Plane wave incidents normally on an AB layered

structure. The reflection coefficient of the electric field is given by

r. The yellow dashed line marks the unit cell we consider. (b) The

band structure of the PC (solid black curve) with parameters

given by εa ¼ 4, μa ¼ εb ¼ μb ¼ 1, da ¼ 0.4Λ, and db ¼ 0.6Λ,

where Λ is the length of the unit cell. The magenta strip represents

the gap with ς > 0, while the cyan strip represents the gap with

ς < 0. The Zak phase of each individual band is labeled in green,

and the numbers of the bands and gaps are listed with red and

blue labels, respectively.
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band gap]. The Zak phase of the lowest 0th band is
determined by the sign of ½1 − εaμb=ðεbμaÞ�, i.e.,

expðiθZak0 Þ ¼ sgn½1 − εaμb=ðεbμaÞ� (5)

(see Appendixes C and D).

We calculate the Zak phase of each isolated band (band

1–5) in Fig. 1(b) using Eq. (3). These Zak phases are shown

with green letters in Fig. 1(b). According to Eq. (4), we

obtain sgn½ς� in each gap. They are marked by magenta

when ς > 0 and cyan when ς < 0.

B. Changing the sign of impedance by passing a

topological transition point

To have a guaranteed existence of an interface state, one

needs to make sure that surface impedance on the left and

right half-space is of opposite sign at one common gap

frequency. One possible way (but not the only way) is to

“tune the system parameters across a topological transition

point,” as elaborated below. To demonstrate this idea, we

simply tune the parameter εa used in Fig. 1(b) from 3.8 to

4.2 and keep μa ¼ μb ¼ εb ¼ 1 unchanged. In the mean-

time, we also vary da and db in such a way as to keep

nada þ nbdb unchanged so that all of the midgap positions

do not alter. In Figs. 2(b) and 2(c), we show the band

structures of two PCs from the 4th gap to the 8th gap:

Fig. 2(b) shows “PC1” with εa ¼ 3.8, εb ¼ μa ¼ μb ¼ 1,

da ¼ 0.42Λ, and db ¼ 0.58Λ, and Fig. 2(c) shows “PC2”

with εa ¼ 4.2, εb ¼ μa ¼ μb ¼ 1, da ¼ 0.38Λ, and

db ¼ 0.62Λ. It is interesting to see that Zak phases of

all the bands below the 6th gap remain unchanged during

the variation of εa, but the Zak phases of bands 6 and 7 in

these two PCs switch with a corresponding sign change in

the surface impedance in the 7th gap. When the value of εa
is increased from 3.8, the size of the 7th gap reduces and the

crossing of band 6 and band 7 occurs when εa ¼ 4, at

which gap 7 is closed, as shown in Fig. 1(b). When the

value of εa is further increased, the gap opens again and is

accompanied by a change of sign in the surface impedance

as well as a switch of the Zak phase in bands 6 and 7. This

represents a topological phase transition, which occurs

when two bands cross each other. Thus, by constructing an

interface with PC1 on one side and PC2 on the other side,

we should see an interface state inside gap 7. This is

verified in our numerical study of the transmission spec-

trum of a system consisting of a slab of PC1 (with 10 unit

cells) on one side and a slab of PC2 (with 10 unit cells) on

the other side embedded in vacuum. Figure 2(a) clearly

shows a resonance transmission due to an interface state

around ω ¼ 5πc=Λ in gap 7. Such a topological phase

transition represents a classical analog of the SSH model in

electronic systems [6–8] although impedance is not usually

considered in electrons.

The above example is a manifestation of a topological

phase transition arising from band crossing in photonic

systems. It should be pointed out that the occurrence of the

band crossing shown in Fig. 1(b) is by no means accidental.

It can be shown rigorously (see Appendix A) that if the

ratio of the optical paths in two slabs of a PC is a rational

number, namely, α ¼ nada=ðnbdbÞ ¼ m1=m2 ∈ ℚ, where

m1, m2 ∈ ℕþ, then band m1 þm2 and band m1 þm2 − 1

will cross at the frequency ωm1þm2
¼ðm1þm2Þπc=

ðnadaþnbdbÞ. At this frequency, sinkada ¼ sinkbdb ¼ 0,

cosðkbdbÞ ¼ ð−1Þlm2 , and cosðkadaÞ ¼ ð−1Þlm1 , where

l ∈ ℕþ, so cosðqΛÞ ¼ ð−1Þlðm1þm2Þ and the gap m1 þm2

will close at the center or boundary of the Brillouin zone

(BZ) depending on whether lðm1 þm2Þ is even or odd. It is
easy to see that, if the ðm1 þm2Þth gap is closed, so are all

other gaps that are integer multiples ofm1 þm2. In fact, the

above condition is also a necessary condition for two bands

to cross (see Appendix A).

The origin of the topological phase transition shown in

Fig. 2 is directly related to a special set of frequencies ~ω

given by sinðnbdb ~ω=cÞ ¼ 0. It can be shown rigorously

(see Appendix B) that if one of the ~ω appears inside a band,

the Zak phase of the band must be π. Otherwise, it is zero.

This rule applies to all bands except the 0th band, for which

the Zak phase is determined by the sign of function

½1 − εaμb=ðεbμaÞ� (see Appendixes C and D). For the case

of Fig. 2(b), ~ω appears in band 7, whereas for Fig. 2(c), ~ω

appears in band 6. Thus, the value of ~ω decreases as εa is

increased. For the entire band 6 of Fig. 2(b) and band 7 of

Fig. 2(c), the function sinðnbdbω=cÞ does not change sign.
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FIG. 2. (a) The transmission spectrum of a system composed of

10 unit cells of PC1 on the left-hand side and 10 unit cells

of PC2 on the right-hand side in vacuum. The parameters of PC1

are given by εa ¼ 3.8, εb ¼ μa ¼ μb ¼ 1, da ¼ 0.42Λ, and

db ¼ 0.58Λ, and the parameters of PC2 are given by εa ¼ 4.2,

εb ¼ μa ¼ εb ¼ 1, da ¼ 0.38Λ, and db ¼ 0.62Λ, where Λ is the

unit length of the PCs. (b),(c) The band structure (solid black

curve) of PC1 and PC2. In both (b) and (c), the magenta strip

represents the gap with ς > 0, while the cyan strip represents the

gap with ς < 0, and the Zak phase of each individual band is also

labeled in (b) and (c) in green. We note that if the gaps of the PCs

on either side of the interface carry the same sign of ς, there is no

interface state. If the sign of ς is opposite, there must be an

interface state (e.g., at a reduced frequency unit of 2.5).
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The variation of ~ωwith respect to εa can be seen as follows.

In Fig. 1(b) (εa ¼ 4), the frequency at which two bands

meet in gap 7 is ω7 ¼ 5πc=Λ [see Fig. 1(b)], which is also

the frequency where sinðnbdbω7=cÞ ¼ 0, i.e., ~ω ¼ ω7.

When εa is decreased from 4, say [Fig. 2(b)], we need

to increase the value of da in order to keep nada þ nbdb
unchanged. Thus, the value of nbdb is reduced accordingly,
which in turn implies ~ω > ω7. On the other hand, if εa is

increased from 4, say [Fig. 2(c)], we have ~ω < ω7. Here,

we have used the fact that ~ω will always appear in a pass

band. This can be seen from Eq. (2) because the absolute

value of the rhs of the equation at ~ω is always less than or

equal to unity.

C. Relationship between the Zak phase and the

symmetry properties of the edge states

We give a physical interpretation of the Zak phase in an

isolated band by using the symmetries of the two edge

states at the two symmetry points of the Brillouin zone. As

we have seen, the topological property of the band structure

changes every time when a band crossing occurs as α≡

nada=ðnbdbÞ passing through a rational number, and the

change can be seen from the changes in the symmetries of

the edge states. As an example, let us focus on the 6th and

7th bands in Figs. 2(b) and 2(c), in which the Zak phases

change by π when εa is increased from 3.8 to 4.2. These

two bands are highlighted in Figs. 3(a) and 3(b) with the

band edges marked by red letters. The corresonding Zak

phases are shown in green. The difference in the Zak phase

of each band can be understood by examing the symmetry

of the absolute value of electric distribution jEn;qðzÞj of the
two edge states in the band. The black curves in Figs. 3(c),

3(e), and 3(g) show the functions jEn;qðzÞj in a unit cell in

arbitrary units for the three edge states of PC1 at points L,
M, and N. The black curves in Figs. 3(d), 3(f), and 3(h)

correspond to the points P, Q, and R of PC2. Here, we use

the important result from Kohn [20] and Zak [1] for 1D

systems with inversion symmetry, which, when generalized

to a photonic system, states that the Zak phase of the nth
band is zero if either jEn;q¼0ðz¼0Þj¼jEn;q¼π=aðz¼0Þj¼0

or jEn;q¼0ðz ¼ 0Þj ≠ 0; jEn;q¼π=aðz ¼ 0Þj ≠ 0. Otherwise,

it is π. The blue dashed lines in Figs. 3(c)–3(h) indicate the

position of the origin (z ¼ 0), which is the center of slab A.
According to this rule, it is easy to see from Figs. 3(e)

and 3(g) that the Zak phase of the 6th band of PC1 is zero as

the wave functions of the pointsM and N are both nonzero

at the origin, whereas the value changes to π in PC2

because the wave function at point Q becomes zero after

band crossing. For the same reason, the Zak phase of the

7th band in PC2 is also changed after band crossing. The

band inversion can also be seen from the switching of two

edge states across the gap. For example, the wave functions

at points L and Q have nealy the same distribution, i.e., the

wave functions are both zero at the origin and with larger

amplitudes in slab B, whereas for points M and P the

absolute values of the wave functions are both at maximum

at the origin and their amplitudes are nearly the same in slab

A and slab B. However, the wave functions at points N and

R are nearly the same, not affected by the band crossing.

This is also true for points K andO. Thus, it is precisely the

switching of two edges states at gap 7 that gives rise to

different Zak phases in PC1 and PC2 for both bands 6 and

7. Similar behavior has been reported in the electronic

system [9–11].

D. Relationship between the sign of impedance and the

symmetry properties of the edge states

The sign of the imaginary part of the surface impedance,

i.e., ς, can also be related to the symmetries of the two edge

states. It is well known that the amplitude of the wave

function of the band-edge states at the origin (z ¼ 0) is

either zero or maximum [21] as is also shown in Fig. 3 (see

a proof in Appendix C). For convenience, we name the

wave function with zero amplitude at the origin as A
(antisymmetric) state and the other as S (symmetric) state.

For the A state, the electric field is zero at the boundary of
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FIG. 3. (a) The band dispersion of the PC with parameters

εa ¼ 3.8, εb ¼ μa ¼ μb ¼ 1, da ¼ 0.42Λ, and db ¼ 0.58Λ.

(b) The band dispersion of the PC with parameters εa ¼ 4.2,

εb ¼ μa ¼ μb ¼ 1, da ¼ 0.38Λ, and db ¼ 0.62Λ, where Λ is the

unit length of PCs. The Zak phase of each band in (a) and (b) is

shown in green. (c)–(h) The absolute value of the electric field

EðzÞ (black solid line) of the band-edge state as a function of

position z. Six band-edge states, L, P,M,Q, N, R, indicated with
solid red circles in (a) and (b), are shown in (c)–(h), respectively.

The region of slab A isð0; daÞ, the left is slab B, and the blue

dashed lines mark the center of slab A.
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the PC, which is equivalent to a perfect electric conductor-

like boundary condition, while the electric field is maxi-

mum at the boundary for the S state, which gives a perfect

magnetic conductor-like boundary condition. Since two

edge states across a gap are orthogonal, they always belong

to different symmetries. With this definition, as can be

easily seen from Figs. 3(c)–3(h), points L and Q belong to

type A, whereas points P,M,N, and R belong to type S. If a
reflection measurement is done at the frequency of the type-

A state, we must have r ¼ −1, corresponding to a reflection

phase ϕ ¼ π. On the other hand, if the measurement is done

at the frequency of the type-S state, we have r ¼ 1 and

ϕ ¼ 0 or 2π. From the relation ϕ ¼ π − 2 arctanðςÞ, it can
be shown that, for a gap with state A at the lower edge, the

function ς has a value 0 at the lower edge and decreases

monotonically to −∞ as the upper edge is approached. For

a gap with state S at the lower edge, the function ς

decreases monotonically from ∞ to 0 as the upper edge

is approached (see Appendix D). Thus, the sign of ς in a

gap is determined solely by the type of state at the lower

edge (or upper edge, since these two states are orthogonal)

of the gap, and if two states at the lower edges of the

common gap belong to different types, an interface state

must exist inside the gap.

E. Existence of interface states

As we mentioned earlier, the occurrence of band cross-

ing at a particular gap (say, the nth gap) appears simulta-

neously for all gaps that are integer multiples of the nth

gap. However, we emphasize that “gap inversion” is just

one way, but not the only way, to achieve an interface state.

As an example, we consider a system consisting of 10 unit

cells of “PC3” (εb ¼ 3.5, εa ¼ μa ¼ μb ¼ 1, da ¼ 0.35Λ,

and db ¼ 0.65Λ) on the left and 10 unit cells of “PC4”

(μb ¼ 6, εa ¼ μa ¼ εb ¼ 1, da ¼ 0.6Λ, and db ¼ 0.4Λ) on

the right embedded in vacuum. The corresponding band

structures are shown in Figs. 4(b) and 4(c) for PC3 and

PC4, respectively. There are six overlapping gaps in the

frequency range in which we are interested. The trans-

mission spectrum of the system is shown in Fig. 4(a). We

find three interface states in gaps 1, 2, and 5. The existence

of interface states in these gaps is not due to band

inversion. However, their existence can still be predicted

by Eq. (4). To demonstrate this, we calculate the Zak phase

of each isolated band in PC3 and PC4 using Eq. (3). The

results are shown in Figs. 4(b) and 4(c) with green letters.

The sign of the imaginary part of the surface impedance,

i.e.,sgn½ς�, of each gap can now be obtained from Eq. (4).

As before, we mark the ς > 0 gaps with magenta and the

ς < 0 gaps with cyan. According to the condition of an

interface state, i.e., ςL þ ςR ¼ 0, the interface states exist

only in gaps 1, 2, and 5 in which ςL and ςR have different

signs. This is consistent with the result of the transmission

study shown in Fig. 4(a).

F. Generalization to other waves

Finally, we want to stress that the results obtained above

for PCs also hold for other one-dimensional systems with

inversion symmetry, such as acoustic waves. Because of

inversion symmetry, the wave functions at two edges of an

isolated band can be either symmetric with a maximum

amplitude or antisymmetric with zero amplitude. Thus, the

symmetry properties of these two edge states determine

the Zak phase of the band. From Eq. (4), the sign of the

imaginary part of the surface impedance ς can be deter-

mined. An interface state can then be created by construct-

ing an interface from two semi-infinite systems with

opposite signs in ς. The validity of Eq. (4) is also not

limited to the binary layer structure considered in this work.

In fact, Eq. (4) also holds when the relative permittivity and

permeability are continuously varying functions of position

as long as the inversion symmetry is kept, and the lattice

constants of the left and right periodic systems do not need

to be equal. Examples are given in Appendix E.

We mention that the electric field is taken as the scalar

field in this work. If the magnetic field is chosen as the

scalar field, Eq. (4) still holds. The sign of the imaginary

part of the surface impedance is an intrinsic property of the

PC and should not depend on the choice of field. The Zak

phase of an isolated band also remains unchanged because

it depends on the symmetry properties of two edge states of

the band. The change of field from electric to magnetic

changes the symmetry properties of both edge states and,

F
re

q
u

e
n
c
y

( ω
Λ

/ 2
π
c
)

qΛ/(2π) qΛ/(2π)|t |

π

π

π

π

π

π

π

0

0

0

(a) (b) (c)

FIG. 4. (a) The transmission spectrum of the system composed

of 10 unit cells of PC3 on the left-hand side and 10 unit cells of

PC4 on the right-hand side in vacuum. The parameters of PC3 are

given by εb ¼ 3.5, εa ¼ μa ¼ μb ¼ 1, da ¼ 0.35Λ, and

db ¼ 0.65Λ, and the parameters of PC4 are given by μb ¼ 6,

εa ¼ μa ¼ εb ¼ 1, da ¼ 0.6Λ, and db ¼ 0.4Λ, where Λ is the

unit length of the PCs. (b),(c) The band structure (solid black

curve) of PC3 and PC4. In both (b) and (c), the magenta strip

represents the gap with ς > 0, while the cyan strip represents the

gap with ς < 0, and the Zak phase of each individual band is also

labeled in (b) and (c) in green. Whenever two gaps with different

character (different sign of ς) have a common region, there will be

an interface state.
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therefore, keeps the Zak phase unchanged. However, the

Zak phase of the 0th band will change sign, but the outcome

will be the same because the effect will be canceled by the

change of the factor ð−1Þn to ð−1Þnþ1 in Eq. (4).

III. CONCLUSION

In summary, we show that, due to the inversion sym-

metry, which is inherent in the system we are considering,

the two band-edge states of any band gap have to be either

symmetric or antisymmetric with respect to the chosen

origin. If one band-edge state (say, the upper one) is

symmetric, the other must be antisymmetric, and vice

versa. The sign of the imaginary part of the impedance

inside a band gap is determined by the parity of the band-

edge states. As the frequency is increased from zero to the

higher bands, more and more electric field oscillations

appear within a unit cell. As a consequence, the parity of

the eigenstate at the center or boundary of the Brillouin

zone changes as we move up the bands. Our main result,

i.e., Eq. (4), provides a simple and yet deterministic way to

calculate the symmetry of two edge states of any particular

band gap, and this is obtained by keeping track of the

symmetries of all other band-edge states below the gap. We

note, in particular, that the geometric Zak phase of a band

tells us how the parity changes within that particular pass

band. As the surface impedance determines the existence of

interface states at the boundary of PCs, the existence of

the interface states can be determined by the bulk band

geometric phases. This correspondence between surface

impedance and bulk band properties gives us a determin-

istic recipe to design systems with interface states.

ACKNOWLEDGMENTS

This work is supported by Hong Kong RGC through

AOE/P-02/12. We thank Professor S. Q. Shen and

Professor Vic Law for stimulating discussions.

APPENDIX A: BANDS CROSSING CONDITION

In the Appendixes, we give some mathematical details

mentioned in the main text. We then give several additional

examples in support of the statements made in the

main text.

We consider a dielectric AB layered structure with the

relative permittivity, relative permeability, refractive index,

relative impedance, and width given by εa, εb, μa, μb, na,
nb, za, zb, da, and db respectively, where ni ¼

ffiffiffiffi

εi
p ffiffiffiffi

μi
p

,

zi ¼
ffiffiffiffi

μi
p

=
ffiffiffiffi

εi
p

, with i ¼ a, b. The unit cell length is Λ ¼
da þ db and the relative permittivity and permeability

of the slabs are positive and nondispersive. We employ

several ancillary parameters α¼nada=ðnbdbÞ, γ ¼ ðnadaþ
nbdbÞω=c, and τ ¼ ðza=zb þ zb=zaÞ=2. These parameters

have the following physical meaning: α is the ratio of the

optical path in slabs A and B, γ is the phase delay in a unit

cell, and τ reflects the impedance mismatch between slabs

A and B and is always larger than 1 when the impedances of

slab A and slab B are not the same.

Here, we prove that, when za ≠ zb, the necessary and

sufficient condition for two bands to cross (either at zone

center or zone boundary) is given by α ¼ nada=ðnbdbÞ,
which is a rational number, i.e., α ¼ m1=m2, where

m1, m2 ∈ ℕþ.
Sufficient condition.—The band dispersion relation of

the dielectric AB layered structure is given by [18]

cosðqΛÞ ¼ cos kada cos kbdb

−
1

2

�

za
zb

þ zb
za

�

sin kada sin kbdb; (A1)

where ki ¼ ωni=c (i ¼ a or b) and q is the Bloch wave

vector. When sinkbdb ¼ 0, the absolute value of the rhs of

Eq. (A1) is smaller than or equal to 1, which is the

frequency at which sinkbdb ¼ 0 must be in the pass band.

At ω ¼ lm2πc=ðnbdbÞ, where l ∈ ℕþ, sinkbdb ¼ 0,

cosðkbdbÞ ¼ ð−1Þlm2 , and cosðkadaÞ ¼ ð−1Þlm1 , so we

have cosðqΛÞ ¼ ð−1Þlðm1þm2Þ. We get q ¼ 0 when lðm1 þ
m2Þ is even, while we get q ¼ �π=Λ when lðm1 þm2Þ is
odd. Near these frequencies, i.e., ω ¼ lm2πc=ðnbdbÞ ¼
lm1πc=ðnadaÞ, the band has linear dispersion. To prove

this, we choose l ¼ 1 [where ω ¼ m2πc=ðnbdbÞ] as an

example; the other cases could be proved following the

same process. Whenm1 þm2 is even, the degeneracy band

point is ðq0;ω0Þ¼½0;m2πc=ðnbdbÞ�. Suppose that ðq1;ω1Þ
is another band point near ðq0;ω0Þ, then jq1 − qj, jω1 − ω0j
are small numbers. Keeping to the lowest order of expan-

sion of Eq. (A1), we have

jq1 − q0j ¼
ffiffiffiffiffiffi

C1

p

jω1 − ω0j=c; (A2)

where

C1 ¼
�

ðnadaÞ2 þ ðnbdbÞ2 þ
�

za

zb
þ zb

za

�

nbdbnada

�

=Λ2:

(A3)

When m1 þm2 is odd, it can also be shown that

jq1 − q0j ¼
ffiffiffiffiffiffi

C1

p jω1 − ω0j=c, where C1 is same as before.

So when α ¼ m1=m2, bands will cross at frequency points

ω ¼ lm2πc=ðnbdbÞ with linear dispersion.

Necessary condition.—It is easy to prove that the cross

points of two bands could occur only at the boundary or the

center of the BZ for 1D PC cases. If two bands cross at

points other than the center or boundary of the BZ, then for

frequency near the cross point, by the continuity of band

dispersion, each frequency would have four corresponding

Bloch vectors q. This is not possible because the rhs of

Eq. (A1) is completely determined by the frequency and is

single valued, so there can be at most two values of q for

each frequency. As defined previously, γ ≡ ðnadaþ
nbdbÞω=c, τ≡ 1

2
ðza=zb þ zb=zaÞ, and τ > 1, when
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za ≠ zb. The rhs of Eq. (A1) can be written as cos γ−

ðτ − 1Þ sin kada sin kbdb. If kada þ kbdb ¼ ð2m − 1Þπ,
where m ∈ ℕþ, then cos γ ¼ −1 and sinkadasinkbdb≥0,

so the rhs of Eq. (A1) is less than or equal to −1.

If γ ¼ 2mπ, where m ∈ ℕþ, then cos γ ¼ 1 and

sin kada sin kbdb ≤ 0, so the rhs of Eq. (A1) is larger than

or equal to 1. In short, if one frequency satisfies the

condition γ ¼ mπ, where m ∈ ℕþ, then it must be in the

band gap if two bands do not cross. If two bands cross at

γ ¼ mπ, then sin kada ¼ 0 and sin kbdb ¼ 0 simultane-

ously, so kada=kbdb ¼ m1π=m2π ¼ m1=m2, where

m1,m2 ∈ ℕþ. In other words, ωm ¼ mπc=ðnada þ nbdbÞ
labels the midgap positions (or the crossing points when

two bands meet) of the PC. Following the same idea, we

can also prove that ωm ¼ ðmþ 1=2Þπc=ðnada þ nbdbÞ
labels the midband positions.

APPENDIX B: ZAK PHASE OF EACH BAND

In this appendix, we show that if one isolated band

(excluding the 0th band) contains the frequency point ~ω at

which sinð ~ωnbdb=cÞ ¼ 0, then the Zak phase of this band

must be π (if we set the origin of the system at the center

of sla A).
Proof.—The Zak phases of isolated bands depend on

the choice of origin. We choose the origin to be at the

center of slab A. To prove this assertion, we adapt the

standard transfer-matrix method described in Ref. [18].

The eigenvector of the transfer matrix of the unit cell under

consideration is ½t12; expðiqΛÞ − t11�T , where t11, t12 are

coefficients in the transfer matrix for one unit cell and only

depend on ω, and are defined as

t11 ¼ expðikadaÞ
�

cos kbdb þ
i

2

�

za

zb
þ zb

za

�

sin kbdb

�

;

(B1)

t12 ¼ expð−ikadaÞ
�

i

2

�

za

zb
−
zb

za

�

sin kbdb

�

: (B2)

With this eigenvector, the eigenelectric field along the

x direction and the magnetic field along the y direction in

slab A are given by

ExðzÞ ¼ t12 exp½ikaðzþ da=2Þ�
þ ½expðiqΛÞ − t11� exp½−ikaðzþ da=2Þ�; (B3)

HyðzÞ ¼
ka

ωμa
ft12 exp½ikaðzþ da=2Þ�

− ½expðiqΛÞ − t11� exp½−ikaðzþ da=2Þ�g; (B4)

where t12, expðiqΛÞ − t11 are, respectively, the coefficients
of forward wave and backward wave in slab A. The electric
field and magnetic field in slab B are given by

ExðzÞ ¼ s11 exp½ikbðzþ da=2Þ�
þ s12 exp½−ikbðzþ da=2Þ�; (B5)

HyðzÞ ¼
kb

ωμb
fs11 exp½ikbðzþ da=2Þ�

− s12 exp½−ikbðzþ da=2Þ�g; (B6)

where s11, s12 are, respectively, the coefficients of the

forward wave and the backward wave in slab B, and the

relationship between t11, t12, s11, s12 is given by

�

eikbda e−ikbda

eikbda −e−ikbda

��

s11
s12

�

¼
�

eikada e−ikada
zb
za
eikada −

zb
za
e−ikada

�

×

�

t12
expðiqΛÞ − t11

�

:

(B7)

The mathematical details can be found in Ref. [18]. Here,

we adopt some changes in notation. Knowing the eigenfield

distribution, the Zak phase of each band can be further

calculated with Eq. (3) in the main text. With periodic

gauge, Eqs. (B2)–(B6) define the gauge for calculating the

Zak phase. Below, we use this chosen gauge to prove the

statement made at the beginning of this section.

We show that t12 and expðiqΛÞ − t11 equal to zero

simultaneously at the frequency point ~ω at which

sinð ~ωnbdb=cÞ ¼ 0, with either q > 0 or q < 0. It is obvious

that when sinðkbdbÞ ¼ 0, t12 ¼ 0, and the only possible

solution for t12 ¼ 0 is also sinðkbdbÞ ¼ 0, when za ≠ zb
(necessary condition). Combining Eq. (A1) with the

condition sinðkbdbÞ ¼ 0, we have

cos½qΛ� ¼ cos γ; (B8)

where γ ≡ kada þ kbdb is the phase delay in each unit cell

as defined before. When γ ∈ ð2mπ; ð2mþ 1ÞπÞ with

m ∈ ℕ, sin½qΛ� ¼ sin γ for q > 0. When γ ∈ ðð2m − 1Þπ;
2mπÞ where m ∈ ℕ, sin½qΛ� ¼ sin γ for q < 0. For points

on the band, Eq. (A1) is automatically satisfied, so

expðiqΛÞ − t11 is a pure imaginary number. And when

sin½qΛ� ¼ sin γ, Im½expðiqΛÞ − t11� ¼ 0. So here we could

conclude that t12 and expðiqΛÞ − t11 are equal to 0

simultaneously at the frequency point where sinkbdb ¼ 0

with either q > 0 or q < 0.

Suppose t12 and expðiqΛÞ − t11 are equal to 0 at ðq0;ω0Þ
simultaneously; thus, ω0nbdb=c ¼ mπ, m ∈ ℕ. And

ðq1;ω1Þ is another point on the band near ðq0;ω0Þ, then
ω1nbdb=c −mπ ¼ δ, where δ is a small number.

Expanding t12 and expðiqΛÞ − t11 around ðq0;ω0Þ and

keep to the lowest order of δ, we have
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t12 ¼ expð−ikadaÞ
�

i

2

�

za

zb
−
zb

za

���

ð−1ÞmδþO3ðδÞ
�

;

(B9)

expðiqΛÞ − t11 ∝ O2ðδÞ: (B10)

Since the electric field is a linear combination of t12 and

expðiqΛÞ − t11, it will change sign near ðq0;ω0Þ, i.e.,

junq0þi ¼ −junq0−i; (B11)

where jun;qi is the normalized periodic part of the field in a

cell eigenvector at ðω; qÞ of the nth band and Xþð−Þ

represents approaching X from the positive (negative)

direction.

At other band points except ðq0;ω0Þ, jun;qi is a con-

tinuous function of q. Since the inversion center is chosen

at the origin, the system is invariant under the space

inversion. Following the same argument as stated before,

we find

En;qðzÞ ¼ En;−qð−zÞ: (B12)

With Ex;n;qðzÞ ¼ un;qðzÞ expðiqzÞ, we have

un;qðzÞ ¼ un;−qð−zÞ: (B13)

Since jun;qi is the periodic part of the wave function, the

integration in Imhun;qj∂qjun;qi is performed from −Λ=2 to

Λ=2. Thus, Imhun;qj∂qjun;qi is an odd function of q; in

other words,

Im½hun;qj∂qjun;qi þ hun;−qj∂qjun;−qi� ¼ 0. (B14)

If t12 and expðiqΛÞ − t11 do not equal 0 simultaneously on

one band, then with the chosen gauge, jun;qi is a continuous
function of q. Thus, Eq. (B12) is applied all over that band

and the Zak phase is 0. Otherwise, if t12 and expðiqΛÞ − t11
equal 0 simultaneously at ðq0;ω0Þ, then jun;qi is discon-

tinuous at ðq0;ω0Þ, and the Zak phase of this band is

given by

γn ¼ −Im lim
δq→0

��
Z

q0−δq

−π=Λ

þ
Z

π=Λ

q0þδq

dq

�

hun;qj∂qjun;qi

þ lnhun;q0þδqjun;q0−δqi
�

¼ π: (B15)

The above proof can easily be extended to the case when

the system is dispersive [12–14].

APPENDIX C: EIGENSTATE AT THE

BAND EDGE

In this appendix, we prove that the electric field at the

inversion center for a band-edge state should be zero or

maximum. There are two inversion centers in this system,

namely, the center of slab A and slab B. Without loss of

generality, we choose the center of slab A as the inversion

center. At the center of slab A, according to Eqs. (B3)

and (B4),

Ex ¼ ζEft12 expðikadaÞ þ ½expðiqΛÞ − t11�g; (C1)

Hy ¼ ζHft12 expðikadaÞ − ½expðiqΛÞ − t11�g; (C2)

where ζE and ζH are some complex constants. For an

arbitrary state ðω; qÞ on the band, t12 expðikadaÞ and

expðiqΛÞ − t11 are pure imaginary numbers. At band

edges, cosðqΛÞ ¼ �1, sinðqΛÞ ¼ 0. After some mathemat-

ics, we could arrive at

f rhs of Eq. ðA1Þg2 þ fIm½expðiqΛÞ − t11�g2

¼ 1þ fIm½t12 expðikadaÞ�g2; (C3)

then

t12 expðikadaÞ ¼ �½expðiqΛÞ − t11�: (C4)

From Eq. (C4), it is easy to find that either the electric field

or the magnetic field should be 0 at the center of slab A. So
there are only two types of states at the band edges. For the

type-A (antisymmetry) state, Exðz ¼ 0Þ ¼ 0. For the type-

S (symmetry) state, Exðz ¼ 0Þ ≠ 0, Hyðz ¼ 0Þ ¼ 0; the

electric field is at the maximum value inside slab A.
Now we go further to find out whether the A or the S state

is at the lower or upper edge of the nth gap. The sign

of the function sinðωnbdb=cÞ depends on the number of

zeros it crosses in the frequency range ð0;ωÞ, so to get

sgnðsin kbdbÞ, we only need to count the number of zero

points of sin kbdb. As proved before, if the frequency ~ω at

which sin kbdb ¼ 0 is on an isolated band, then this band

has Zak phase π; otherwise, ~ω is at the crossing point of two

bands since ~ω is always on the pass band. Thus, for a

frequency ω inside the nth gap,

sgn

�

sin
ω

c
nbdb

�

¼ ð−1Þl exp
�

i
X

n−1

m¼1

θZakm

�

; (C5)

where l ∈ ℕ is the number of band crossing points under

the nth gap, and the second term on the rhs of Eq. (C5) is a

summation of the Zak phase below this gap. We then define

χ ¼ sgnð1 − εaμb=εbμaÞ (C6)

according to Eq. (B2):
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sgnfIm½t12 expðikadaÞ�g ¼ ð−1Þl exp
�

i
X

n−1

m¼1

θZakm

�

χ:

(C7)

With Eq. (B1), it is easy to get, for the band-edge states,

Im½expðiqΛÞ− t11�¼−½sinðγÞþðτ−1Þcoskada sinkbdb�:
(C8)

At γ ¼ ð2nþ 1=2Þπ, where n ∈ ℕ, sinðγÞ ¼ 1,

cos kada sin kbdb ¼ cos2ðkadaÞ ≥ 0; at γ ¼ ð2nþ 3=2Þπ,
where n ∈ ℕ, sinðγÞ ¼ −1, cos kada sin kbdb ¼
−cos2ðkadaÞ ≤ 0. Thus, at γ ¼ ðnþ 1=2Þπ, where n ∈ ℕ,

sgn½sinðγÞ þ ðτ − 1Þ cos kada sin kbdb� ¼ sgn½sinðγÞ�:
(C9)

From Eq. (C3), it is easy to get that, for states on the band,

½sinðγÞ þ ðτ − 1Þ cos kada sin kbdb�2

¼ ðτ2 − 1Þsin2kbdb þ 1 − cosðqΛÞ ≥ 0. (C10)

The equality is achieved at the point where two bands cross;

thus, ½sinðγÞ þ ðτ − 1Þ cos kada sin kbdb� does not change

sign on the isolated pass band. sinðγÞ changes sign only

inside the band gap (or at the crossing point of two bands)

and the frequency at which γ ¼ ðnþ 1=2Þπ must be in the

pass band, so Eq. (C9) is also true for band-edge states. As

γ ¼ nπðn ∈ ℕþÞ gives the midgap position of the nth gap,

for the edge state below the nth gap,

sgnfIm½expðiqΛÞ − t11�g ¼ −sgn½sinðγÞ� ¼ ð−1Þn;
(C11)

for the edge state above the nth gap,

sgnfIm½expðiqΛÞ − t11�g ¼ ð−1Þnþ1: (C12)

Therefore, if ð−1Þnð−1Þl expði
P

n−1
m¼1 θ

Zak
m Þχ ¼ 1, then

the edge state below the nth gap is an S state, and

above the nth gap is the A state; otherwise, if

ð−1Þnð−1Þl expðiPn−1
m¼1 θ

Zak
m Þχ ¼ −1, then the state below

the nth gap is an A state, and above the nth gap is an S state.

In Fig. 5, we give an example to illustrate the relation

between the edge state and the Zak phase. The band

structure (solid black line) of a particular PC with param-

eters given by εa ¼ 4, μa ¼ εb ¼ μb ¼ 1, da ¼ 0.4Λ, and

db ¼ 0.6Λ is plotted in Fig. 5. The rule specified in

Appendix B gives the Zak phase of each isolated band,

as shown in green. We labeled the type-A edge states with

solid purple circles and the S state with yellow circles. As in

Fig. 1(b), sgn½ς� ¼ sgn½ImðZsÞ� is marked by magenta

when ς > 0 and cyan when ς < 0. We point out three

important features of Fig. 5: (i) The state must change from

ðSÞ to ðAÞ or from ðAÞ to ðSÞ when passing through a band

gap, (ii) the upper and lower edge states of a band are of the

same type if the Zak phase of this band is 0, otherwise it is

π, and (iii) sgn½ς� of each gap is related to the edge state

bounding this gap. If the ðAÞ state is at the lower edge and
the ðSÞ state is at the upper edge, then ς < 0; otherwise, if

the ðSÞ state is at the lower edge and the ðAÞ states is at the
upper edge, ς > 0. This will be proved in Appendix D.

APPENDIX D: BULK BAND AND SIGN OF

REFLECTION PHASE

In this appendix, we show that

sgnðϕnÞ ¼ ð−1Þnð−1Þl exp
�

i
X

n−1

m¼1

θZakm

�

χ; (D1)

where ϕn is the reflection phase of the nth gap (as

defined below).

We consider a plane wave Ei ¼ E0e
ikz being incident on

the PC from vacuum as shown in Fig. 1(a), and the reflected

wave is Er ¼ rE0e
−ikz. The field inside the gap at z ¼ 0þ is

given by

Ex ¼ t12 expðikada=2Þ þ ½expðiqΛÞ − t11� expð−ikada=2Þ;
(D2)

Hy ¼
ka

ωμa
ft12 expðikada=2Þ

− ½expðiqΛÞ − t11� expð−ikada=2Þg: (D3)

A state S state

π

π

0

0

0

qΛ/(2π)

F
re

q
u
e
n
c
y
(ω

Λ
/2

π
c
)

FIG. 5. The band structure (solid black line) of the PC with

parameters given by εa ¼ 4, μa ¼ εb ¼ μb ¼ 1, da ¼ 0.4Λ, and

db ¼ 0.6Λ.The light magenta strip represents the gap with ς > 0,

while the cyan strip represents the gap with ς < 0, the Zak phase

of each individual band is labeled in green. The solid purple circle

is the A (antisymmetric) state (Eeigen ¼ 0 at the center of slab A)
at the band edge, and the solid yellow circle is the S (symmetric)

state (Eeigen ≠ 0 at the center of slab A).
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Matching the boundary condition, we have

1þ r

1 − r
¼ za

t12 expðikadaÞ þ ½expðiqΛÞ − t11�
t12 expðikadaÞ − ½expðiqΛÞ − t11�

: (D4)

From Eq. (D4), we calculate the reflection phase delay

inside the gap. As an example, in Fig. 6, we give the

reflection phase delay inside the first gap of PC3 (εb ¼ 3.5,

εa ¼ μa ¼ μb ¼ 1, da ¼ 0.35Λ, and db ¼ 0.65Λ) for light

incident from vacuum (black line). The reflection phase

increases monotonically from −π to 0 with increasing

frequency. As a comparison, we also give the reflection

phase calculated directly using the transfer matrix for a slab

consisting of a finite number of unit cells of PC3. The solid

blue line is for a slab with 5 unit cells and the solid red line

is for a slab with 10 unit cells of PC3. As the number of unit

cells increases, the reflection phase converges to the one

given by Eq. (D4), which is derived for a semi-infinite PC.

For frequency inside the nth gap (including band-edge

states),

qΛ ¼ nπ þ iK18; (D5)

where K > 0 and describes the decay length inside the gap.

jt12 expðikadaÞj2 − jIm½expðiqΛÞ − t11�j2

¼ cosh2ðKÞ − 1 ≥ 0; (D6)

and the equality is achieved only at the band edge. From

Eq. (B2), we know t12 expðikadaÞ is a pure imaginary

number, so

sgnImft12 expðikadaÞ � ½expðiqΛÞ − t11�g

¼ sgnIm½t12 expðikadaÞ� ¼ ð−1Þl exp
�

i
X

n−1

m¼1

θZakm

�

χ:

(D7)

Inside the nth gap,

Re½expðiqΛÞ − t11� ¼ ð−1Þnþ1 sinhK: (D8)

So,

1þ r

1 − r
¼ za

ð−1Þnð−1Þl expði
P

n−1
m¼1 θ

Zak
m ÞχΛþ þ i

ð−1Þnð−1Þl expði
P

n−1
m¼1 θ

Zak
m ÞχΛ− − i

; (D9)

where

λ� ¼ jt12 expðikadaÞ � iIm½expðiqΛÞ − t11�j= sinhK > 0.

(D10)

Inside the nth gap, r ¼ eiϕn , where ϕn (the subscript n

labels the gap) is a function of frequency. Thus

ð1þ rÞ=ð1 − rÞ ¼ i cotðϕn=2Þ, a pure imaginary number,

which means the rhs of Eq. (D9) is also pure imaginary.

After some mathematical works, we can prove λþλ− ¼ 1

and

Im

�

za
ð−1Þnð−1Þl expði

P

n−1
m¼1 θ

Zak
m Þχλþ þ i

ð−1Þnð−1Þl expði
P

n−1
m¼1 θ

Zak
m Þχλ− − i

�

¼ sgn

�

ð−1Þnð−1Þl exp
�

i
X

n−1

m¼1

θZakm

�

χ

�

zaλþ: (D11)

So if the reflection phase is limited to ½−π; π� and from the

relation ϕn ¼ π − 2 arctanðςnÞ (here we shift ϕn back to be

inside ½−π; π�), then

sgn½ςn� ¼ sgnðϕnÞ ¼ ð−1Þnð−1Þl exp
�

i
X

n−1

m¼1

θZakm

�

χ:

(D12)

It is easy to show that Im½expðiqΛÞ − t11� is a monotonic

function inside the nth gap. As λþλ− ¼ 1, and the differ-

ence between λþ, λ− is Im½expðiqΛÞ − t11�; thus, λþ is a

monotonic function inside the nth gap. Combining

Eqs. (D9) and (D11), we that find ϕn is also a monotonic

function. As we already proved, the edge state must be an A
state or an S state. When A is present, r ¼ −1 and ϕ ¼ �π;

when S is present, r ¼ 1 and ϕ ¼ 0. With Eq. (D11) and the

reflection phase at the band edge, we further conclude that

ϕn is a monotonic increasing function of frequency. From

the relation ϕn ¼ π − 2 arctanðςnÞ, it is straight forward to

show that ςn is a monotonic decreasing function of

FIG. 6. The reflection phase of PC3 in vacuum inside the first

band gap. The parameters of PC3 are given by εb ¼ 3.5,

εa ¼ μa ¼ μb ¼ 1, da ¼ 0.35Λ, and db ¼ 0.65Λ. The solid blue

line and the solid red line are calculated with the transfer matrix

directly and for 5 and 10 unit cells of PC3, respectively. The open

black circle is calculated with the Eq. (D4). It is clear that, as the

unit number increase, the reflection phase converges to the one

calculated with the Eq. (D4).
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frequency from ∞ to 0 or from 0 to −∞ depending on the

sign of ςn.

In the main text, we argue that, once sgnς of the left

and right PCs are different inside the common band gap,

there must be an interface state; here, we give another

example. In Fig. 7(b), we choose the 2nd common band gap

in Fig. 4 as an example. The solid black, red, and blue lines

show the imaginary parts of relative impedances of PC3,

PC4, and the sum of those two, respectively, inside the 2nd

common band gap. The solid black and red lines are both

monotonic decreasing functions of frequency, and their

sum must also be a monotonic decreasing function of

frequency from positive to negative. Thus, there must exist

some frequency point at which the blue line crosses 0,

corresponding to an interface state, as shown in Fig. 7(a),

where resonant transmission is observed inside the

common band gap.

APPENDIX E: EXTENSION OF EQ. (4)

In this appendix, we show that Eq. (4) is still valid when

the relative permittivity and permeability are continuously

varying functions, and the lattice constants of the left and

right periodic systems do not need to be equal.

For an interface state to exist, we only need two over-

lapped gaps with different signs of ς ¼ Im½ZS=Z0� and we

do not care about the “origin” of the gap (e.g., gap number

or the lattice constants of PCs of the left or right periodic

system). In Fig. 8, we give an example to illustrate this

point. We consider a system consisting of 7 unit cells of

PC5 (εb ¼ 3.5, εa ¼ μa ¼ μb ¼ 1, da ¼ 0.7Λ, and

db ¼ 1.3Λ) on the left and 14 unit cells of PC4 on the

right embedded in vacuum. The parameters of PC4 are the

Im
(Z

S
/Z

0
)

(a)

(b)

|t
|

Frequency (ωΛ/2πc)

PC3

PC4

Sum

FIG. 7. (a) The transmission spectrum of the system composed

of 10 unit cells of PC3 on the left-hand side and 10 unit cells of

PC4 on the right-hand side in vacuum. The parameters of PC3 are

given by εb ¼ 3.5, εa ¼ μa ¼ μb ¼ 1, da ¼ 0.35Λ, and

db ¼ 0.65Λ, and the parameters of PC4 are given by μb ¼ 6,

εa ¼ μa ¼ εb ¼ 1, da ¼ 0.6Λ, and db ¼ 0.4Λ, where Λ is the

unit length of PCs. (b) The imaginary part of relative surface

impedance (divided by the impedance of vacuum) of PC3 (solid

black line), PC4 (solid red line), and the sum of the two (solid

blue line) inside the common gap region. The green dashed lines

are for illustration only; the position where the blue line crosses 0

corresponds to an interface state between two PCs.

F
re

q
u

e
n

c
y
 (

ω
Λ

/2
π
c
)

qΛ/π qΛ/(2π)

(a) (b) (c)

|t|

π

π

π

π

π

π

0

0

FIG. 8. (a) The transmission spectrum of the system con-

structed with 7 unit cells of PC5 on the left-hand side and 14 unit

cells of PC4 on the right-hand side in vacuum. The parameters of

PC5 are given by εb ¼ 3.5, εa ¼ μa ¼ μb ¼ 1, da ¼ 0.7Λ, and

db ¼ 1.3Λ, which just doubles the length of PC3; the parameters

of PC4 are given by μb ¼ 6, εa ¼ μa ¼ εb ¼ 1, da ¼ 0.6Λ, and

db ¼ 0.4Λ. (b),(c) The band structure (solid black curve) of PC5

and PC4. In both (b) and (c), the magenta strip represents the gap

with ς > 0, while the cyan strip represents the gap with ς < 0,

and the Zak phase of each individual band is also labeled in (b)

and (c) in green.

π

ππ

0

qΛ/(2π) qΛ/(2π)|t |

F
re

q
u

e
n

cy
 (

ω
Λ

/2
π
c
)

(a) (b) (c)

FIG. 9. (a) The transmission spectrum of the system con-

structed with 20 unit cells of PC6 on the left-hand side and 10 unit

cells of PC7 on the right-hand side in vacuum, where the

parameters of PC6 are given by εr ¼ 12þ 6 sin½2πðz=Λþ
1=4Þ�, μr ¼ 1, and the parameters of PC7 are given by

εr ¼ 12þ 5 sin½2πðz=Λ− 1=4Þ� þ 5 sin½4πðz=Λþ 1=8Þ�, μr ¼ 1.

The boundary between PC6 and PC7 is now set at z ¼ 0. (b),

(c) The band structure (solid black line) of PC6 and PC7. In both

(b) and (c), the magenta strip represents the gap with ς > 0, while

the cyan strip represents the gap with ς < 0, and the Zak phase of

each individual band is also labeled in (b) and (c) in green.
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same as that in the main text; i.e., μb ¼ 6, εa ¼ μa ¼
εb ¼ 1, da ¼ 0.6Λ, and db ¼ 0.4Λ. Note here that we just

double the length of da and db of PC3, so that the lattice

constant of PC5 is twice that of PC4. According to the

scaling law, the Zak phase of each isolated band would not

change, as labeled in Figs. 8(b) and 8(c) in green. Using

Eq. (4), we get sgn½ς�, which is also labeled with magenta

(ς > 0) or cyan (ς < 0) in Figs. 8(b) and 8(c). Though now

the gap numbers of PCs from the left-hand and right-

hand sides of the common gap region are different, the rule

still applies, because whenever two gaps with different

color have common frequency region, there must be an

interface state.

Equation (4) also applies when the dielectric function

is a continuous function of z. In Fig. 9, we consider a

system that consists of 20 unit cells of PC6 (εr ¼
12þ 6 sin½2πðz=Λþ 1=4Þ�, μr ¼ 1) on the left-hand side

and 10 unit cells of PC7 [εr¼12þ5sin½2πðz=Λ−1=4Þ�þ
5sin½4πðz=Λþ1=8Þ�, μr ¼ 1] on the right-hand side

embedded in vacuum. The transmission spectrum of the

system is given in Fig. 9(a), where the boundary between

two PCs is set at z ¼ 0. The band structures (solid black

line) of PC6 and PC7 are given in Figs. 9(b) and 9(c),

respectively. We calculate the Zak phase of each band

numerically with Eq. (3) and label them in green, then

sgn½ς� of each gap is also shown in magenta (ς > 0) or cyan

(ς < 0) in Figs. 9(b) and 9(c). It is clear that Eq. (4) could

still predict the existence or absence of the interface state in

this case.
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