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Recent theoretical work about the influence of a surface on first-order phase transitions is
reviewed. Several types of surface-induced disorder (SID) and surface-induced order (SIO)
transitions are discussed. These transitions exhibit interface delocalization phenomena, long-
range correlations, and critical behavior of local surface quantities. As a consequence, a variety of
universal surface exponents can be defined although there are no bulk exponents. These surface
exponents are calculated within Landau theory which is valid for space dimension , and
within effective interface models for and . An estimate of finite size effects on SID and
SIO is also given. Finally, it is discussed which critical effects at SID and SIO should be most
easily accessible to experiments and to computer simulations.
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I. INTRODUCTION

The theoretical work described in this paper deals with
the influence of a surface on a first-order phase transition. It
turns out that the surface can induce critical phenomena.
Thus, universal surface exponents can be defined although
there are no bulk exponents.1-4

The basic physical process behind these critical effects
is the following. At the surface, the number of nearest neigh-
bors is smaller than in the bulk. As a consequence, the sur-
face may start to disorder as the first-order transition is ap-
proached although the bulk is still in its ordered state [see
Fig. 3(a)]. Thus, a layer of the disordered phase intervenes
between the surface and the bulk, and the material under-
goes a surface-induced disorder (SID) transition. SID may
occur if the microscopic interaction parameters are compar-
able or weaker than those in the bulk. On the other hand, if
the microscopic surface couplings are sufficiently stronger,
the surface may begin to order as the coexistence curve is
approached from the other side where the bulk is still disor-
dered [see Fig. 3(b)]. This is a surface-induced order (SIO)
transition.

Both at SID and at SIO, several critical effects occur: (1)
continuous depinning of the interface between the two (al-
most) coexisting phases; (2) long-range correlations parallel
to the surface; (3) critical behavior of local surface quantities
such as the surface order parameter.

SID and SIO can occur if a disordered phase coexists
with several ordered phases. A disordered phase can always
be distinguished among the coexisting phases if a symmetry
is spontaneously broken at the transition as e.g., (1) in mag-
netic materials such as metamagnets5 or type I antiferro-
magnets6; (2) in binary alloys6; (3) at a Potts-like transition6,7;
(4) at the freezing transition of a crystalline solid.8

SID and SIO are two examples of interface delocaliza-
tion or depinning transitions. Similar transitions occur in
fluids and binary liquid mixtures in contact with walls. In
this context, they are called wetting and drying transitions.
Such transitions have been investigated for semi-infinite lat-
tice gas models,9,10 by van der Waals theory,11 and for a
Landau-Ginzburg (LG) model.9,12,13 This LG model is inti-
mately related to one of the LG models used for SID.14 As a

consequence, the physically different phenomena SID and
wetting can be studied within the same theoretical frame-
work e.g., Refs. 15-17. Interface delocalization has also been
discussed for the nonequilibrium phenomenon of kinetic dis-
ordering,18 and in a different geometry for ferroelectrics19

and for the Blume-Emery-Griffiths model.20

This paper reviews the theory for SID and SIO as devel-
oped in Refs. 1-4, 16, and in some unpublished work. This
theory consists of several steps, and I try to emphasize the
systematics of these steps. The interested reader can find
more details in the above references and in Refs. 25, 29, 31 to
be published soon.

The paper is organized as follows. In Sec. II, continuous
Landau-Ginzburg models for a scalar order parameter are
motivated and defined. These are the starting points for the
theoretical work described in Sec. III-IX which naturally
divides into four parts: (1) Landau or mean field theory (Sec.
III, IV); (2) a scaling phenomenology (Sec. V) which is ob-
tained as a reformulation of the results of Landau theory; (3)
a Ginzburg criterion (Sec. VI) which shows that Landau the-
ory is invalidated by interface fluctuations for space dimen-
sion ; (4) effective models for these interface fluctuations
(Sec. VII-IX).

In Sec. X, the effects due to the finite size of a real sam-
ple are briefly discussed. These effects are important in order
to predict which critical properties at SID and SIO should be
most easily accessible to experiments and to computer simu-
lations (Sec. XI).

II. LANDAU-GINZBURG MODELS

The coexistence of several thermodynamic phases at a
first-order transition can be described by a Landau-Ginz-
burg (LG) potential with several degenerate minima. If a
symmetry is spontaneously broken, one of the minima is dis-
tinguished from the others since it corresponds to the disor-
dered phase with a vanishing order parameter.

In general, depends on several densities ,
which include the order parameter fields and,

perhaps, some nonordering densities. Consider, for instance,
a metamagnet, i.e., an Ising model with competing interac-
tions on a simple cubic lattice in a magnetic field.5 There are
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FIG. 1. Landau-Ginzburg potential for a metamagnet on a simple
cubic lattice. The minima of are indicated by encircled dots, and the full
curve indicates the trough which connects these minima.

two distinct sublattices with sublattice magnetizations
. The order parameter is whereas

the magnetization is a nonordering den-
sity. In the vicinity of the first-order transition, the LG po-
tential has three minima as shown in Fig. 1. The
minima are indicated by encircled dots, and the full lines
indicate the troughs of which connect these minima. At the
transition, all three minima have the same depth, and two
ordered phases coexists with the disordered
phase . A more complicated example is obtained if
such an Ising model is placed on a fcc lattice. This model
describes type I antiferromagnets and binary alloys such as
Cu3Au.6

In a semi-infinite geometry, the expectation values
depend on the distance from the surface. Within

Landau theory, the are obtained from

(1)

with appropriate boundary conditions at and
Equation (1) is a classical equation of motion of a particle
with coordinates , which moves in the poten-
tial SID occurs if the particle starts for in the
vicinity of the minimum of with vanishing order parameter
(see Fig. 1), and arrives for at one of the minima corre-
sponding to an ordered phase. SIO occurs if the particle
moves from one of the ordered phases to the disordered one.

If one wants to investigate the complete phase diagram
of the physical system under consideration, one has to solve
the multidimensional Eq. (1) for both the order parameter
fields and the nonordering densities. In general, this has to be
done numerically even for the simple two-dimensional case
shown in Fig. 1. On the other hand, if one wants to study the
universal aspects of SID and SIO, the multidimensional
problem may be reduced to a one-dimensional one since all
"particle motions" which give rise to critical effects ap-
proach asymptotically one "critical trajectory" which con-
nects the two minima of 21 This "critical trajectory" is
typically quite close to the trough between the two minima.
Thus, one may consider effective LG models for a scalar
order parameter field which is the coordinate along this
"critical trajectory".

For a semi-infinite geometry, these effective LG models
have the generic form1 - 4

(2)
is the coordinate perpendicular to the surface at . The

coordinates parallel to it are denoted by . The bulk
potential is taken to be22

(3)
The disordered phase with and the ordered
phase with coexist for has been rescaled
in such a way that where means "at coexistence

". Thus, measures the distance from bulk coexistence.
The correlation lengths of the disordered and the ordered
phase are and

, respectively. Equation (3) implies
For , Eq. (3) describes systems such as the state

Potts model with a cubic term . In the case of a Potts
model, is the temperature deviation from the transition
temperature .1,2 Furthermore, this model with is
equivalent to the LG model studied in the context of wet-
ting.9,12,13 If wetting is described in the magnetic language
via the equivalence between the lattice gas and the Ising
model, the variable corresponds to the bulk magnetic field
of the Ising model for temperatures below the critical tem-
perature . 1 4 For , Eq. (3) is applicable to systems
such as a metamagnet where odd powers of are not possible
due to an underlying symmetry. In the following, is taken
to be an arbitrary positive integer.

The surface term in Eq. (2) will be assumed to be

(4)
This expression can be obtained from mean-field approxima-
tions for appropriate lattice models. In the continuum lim-
it,9,1 one finds that is the difference between the symmetry
breaking fields in the surface and in the bulk, and is related
to the ratio of the coupling constants in the surface to those
in the bulk. If the continuum limit is performed in a specific
way, one obtains . However, finite values for
and affect the phase diagram and can lead to higher-order
multicritical behavior.2,14

Two physically important limitations of the model (2)-
(4) should be mentioned: (1) it deals with short range interac-
tions only. Thus, long-range forces such as dipole-dipole
forces in magnets, or elastic forces in binary alloys are not
taken into account23; (2) the effects due to the discreteness of
the underlying lattice are not included. The lattice becomes
important if the transition temperature is below the
roughening temperature of the interface between the two
coexisting phases.10 Thus, the above model should be valid
for systems with

III. DIFFERENT TYPES OF SURFACE CRITICALITY

The type of transition which occurs in the semi-infinite
system as bulk coexistence is approached depends crucially
on the values for the Landau coefficients in (4). For simplicity,
I will mainly discuss the case . The correspond-
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FIG. 2. Phase boundaries inside the coexistence surface . SID and
SIO transitions are indicated by a superscript and since they occur as
the coexistence surface is approached from and , respectively.24

ing phase diagram for is displayed in Fig. 2. A super-
script indicates a SID (SIO) transition correspond-
ing to .24 The transition occurs for
values which belong to the lower shaded area in Fig. 2. This
area is bounded by two curves: by the line of discontinuous
transitions , and by the line of critical transitions
These two lines meet at the tricritical transition with

The critical phenomena at these transitions are most
easily understood if one considers the order parameter pro-
files . The profiles for SID are displayed in Fig.
3(a).3 At , the interface at moves continuously to
infinity with

(5)

At and , the local order parameter
in the surface goes continuously to zero as the interface be-
comes delocalized:

(6a)

(6b)

with the surface exponent at and
at with from Eq. (3).1 - 4 Finally, at , the

SID transition is discontinuous since the interface jumps

FIG. 3. Order parameter profiles : (a) at the SID transitions
and ; (b) at the SIO transitions and .3,24 The interface
position is denoted by in each case.

from a finite to . For in Eq. (4), one finds a
line of tricritical transitions which ends in a higher mul-
ticritical point  24 at . At

, Eq. (6) still holds but with .2

Similar phenomena occur when the system undergoes
one of the SIO transitions (see Fig. 2). The tricritical transi-
tion occurs at with defined
after Eq. (3). The order parameter profiles at SIO are shown
in Fig. 3(b). At , the interface position diverges as3

(7)

At and , one finds

(8)

with and at for all values
in Eq. (3).

So far, the phase boundaries within the coexistence sur-
face have been discussed. There are additional phase
boundaries for which are attached to the coexistence
surface along the discontinuous transitions . These ex-
tended phase diagrams are discussed in Refs. 2 and 3.

IV. GAUSSIAN FLUCTUATIONS WITH A SOFT MODE

The Gaussian fluctuations are obtained if the expres-
sion

(9)

with the order parameter profile from Landau theory is
inserted into Eq. (2), and the resulting functional is expanded
up to second order in . As a consequence, one has to study a
Schrödinger-type equation as discussed in Ref. 16. It turns
out that the ground state energy goes to zero at the depin-
ning transitions, i.e., the ground state is a soft mode.

Upper and lower bounds for yield

(10)

for all depinning transitions, and

(11)
with , and at , , and

25,16  For and  , the eigenvalue problem is
exactly solvable.13

The correlation function has the singu-
lar part

(12a)

with the correlation length

(12b)

is the soft mode with energy . Equations (10) and (12b)
imply with .2

Thus, there are long-range correlations parallel to the
surface. Note, however, that enters in Eq. (12) not only
through but also via since

(13)

with at and otherwise.25 As a conse-
quence, the amplitude of is decreased by a factor

near the surface.
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V. SCALING PHENOMENOLOGY

Within Landau theory, additional power laws for many
other surface quantities have been derived, and a large num-
ber of surface exponents has been defined.2,3 In the case of a
second-order bulk transition, all power laws describing the
critical surface behavior can be derived from a scaling form
for the surface free energy .26,27 This is also possible for the
physical systems studied here although the bulk transition is
first order.2,12,14

Consider, for instance, the critical SID transition
(see Fig. 2). There are two relevant scaling fields, namely
and . The surface-free energy has the singular part2

(14a)

In Landau theory, one obtains

(14b)

with and .2,3 All surface exponents can be
expressed in terms of and via scaling laws,2 e.g.,

(15)
For the transitions , is the only relevant scaling

field. At the multicritical transitions and , there
are three and four such fields, respectively.2,14

Scaling relations such as Eq. (15) which do not depend
on the space dimension should hold beyond Landau the-
ory. This can be verified for the two-dimensional interface
models discussed in Sec. VIII. On the other hand, one ex-
pects that the singular part (14) of is related to the correla-
tion length [see Eq. (12)] by 15 This implies
the hyperscaling relation (Ref. 2) which
is fulfilled in since and in this case.
If the Landau exponents and are inserted
into this relation one obtains . Thus, one expects that

is the upper-critical dimension for SID and SIO. This
is supported by a simple criterion below.

VI. A SIMPLE GINZBURG CRITERION

An estimate of the effect of fluctuations can be obtained
when the contribution of the Gaussian fluctuations to
the surface free energy is compared to the Landau ap-
proximation for this quantity. The singular part of the Gaus-
sian contribution is16

(16)

is an ultraviolet momentum cutoff, and is the energy of
the soft mode (see Sec. IV). Equation (16) leads to

(17)

It follows from Eq. (9) that for , and
for . This should be compared with the

Landau result . Thus, is less singular
than for , and more singular for . In , both
terms are equally important. If Eq. (11) is inserted into Eq.
(17), one obtains

(18)

with . The Landau result is . Again,
is less singular for , and more singular for . In

this case, dominates over even for due to the
additional factor in Eq. (18).

Thus, Landau theory should be valid for .16

is rather special since the scaling dimension of t may be cor-
rectly described by Landau theory in whereas the scal-
ing dimension of is certainly changed by fluctuations. For
the LG model (3) with and , a different line of
arguments for has been given in Ref. 13.

VII. EFFECTIVE INTERFACE MODELS

The fluctuations which invalidate Landau theory for
are due to the soft mode of Sec. IV. At the depin-

ning transitions, . Thus, if one projects the
fluctuation variable in Eq. (9) on this soft mode, one
obtains

(19)

where is a collective coordinate.16 This indicates that
the dominant fluctuations are those of the local interface

position where is the interface position as
obtained from Landau theory (see Fig. 3). If Eq. (19) is insert-
ed into Eq. (2), one obtains an effective field theory
After some simplifications, one arrives at an effective model

(20a)

for the local interface position .16 is the surface tension
of the fluctuating interface. For the critical transition

(20b)

with and . At and , contains the
additional terms

Similar expressions can be derived for SIO. It is convenient
to absorb a factor in the field variable . As a conse-
quence, the interface model depends only on

(21)
For and , Eq. (20) has been obtained in Ref. 13 by

a different approach.
The interface model (20) can be easily analyzed within

Landau theory where is determined from
. It turns out that all critical properties at all SID

transitions discussed in Sec. III and IV are recovered.
Note, however, that the interface position in a semi-

infinite geometry is restricted to . Thus, a hard wall at
should be added to the potential in Eq. (20). In
, such a wall does not affect the critical properties at the

depinning transitions.15 In , the effects of a hard wall
on the critical singularities are presently not known.

VIII. INTERFACE MODELS IN

In , no phase boundaries away from bulk coexis-
tence are possible. As a consequence, the phase boundaries

and inside the coexistence surface (see Fig. 2)
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must also disappear in .14 Thus, a two-dimensional sys-
tem can only undergo the depinning transitions and

The field theory (20) with can be replaced by a
one-dimensional eigenvalue problem via transfer matrix
methods.28 One has to consider a Schrödinger-type equation
with the potential given by Eq. (20). One finds that the
coexistence surface is still given by whereas the phase
boundaries inside this surface are shifted by the fluctu-
ations.16 At , the scaling form Eq. (14a) for is ob-
tained with and . For , ,

, and . In addition, the interface width
diverges as with

Thus, the relation holds in .2 In
, the first-order cumulant approximation (see Sec. IX)

yields , and thus. . For ,
from Landau theory.

IX. INTERFACE MODELS IN

For , the field theory (20) may be tackled by a
cumulant expansion.29 So far, only the first nontrivial term
of this expansion has been investigated.15-17 This first term
can be obtained either by a normal-ordering procedure,15,17

or by a variational method.16 In this first-order cumulant
approximation, the scaling dimension of in is the
same as in Landau theory: and , i.e.,

and are recovered.16 On the other hand, the
scaling dimension of is changed in a complicated way. 15-17

Note that this difference was to be expected from the simple
Ginzburg criterion of Sec. VI.

For , the properties of the critical and the multicri-
tical transitions are found to depend on the variable given
by Eq. (21) which is dimensionless in . Consider, for
instance, the critical transition . For and

, the interface becomes delocalized as
, and where the exponent depends on in a

nonuniversal manner. For and , an additional
phase boundary not present in Landau theory is found.
Along this phase boundary, , and has an
essential singularity. For and , the interface is
delocalized even for a finite surface field .16

In a field-theoretic description, the interface width
diverges at all depinning transitions. This should be valid if
the transition temperature is above the roughening tempera-
ture. The first-order cumulant approximation yields

What happens if one goes beyond the first-order term in
the cumulant expansion? It turns out that normal ordering is
not sufficient to renormalize the effective interface models.
Consider, for instance, an interaction term in
After normal ordering, the order term of the cumulant
expansion is still ultraviolet divergent for ,29

Whether a field theory such as Eq. (20) is renormalizable at
all in beyond the first-order term has to be seen in the
future.

One may estimate the validity of the first-order cumu-
lant approximation by applying it to the field theory (20) in

since exact results are available in this case (Sec. VIII).

One finds that it gives the correct phase diagram qualitative-
ly but it overestimates the divergence of and underesti-
mates the divergence of .29

X. FINITE SIZE EFFECTS

The theoretical work described in Sec. III-IX has been
concerned with a semi-infinite geometry where the thickness
of the surface layer diverges. This cannot happen in a real,

finite sample. The obvious question is: how far does the sur-
face layer intrude into such a finite sample?

Consider a slab of linear dimension . The semi-infinite
case is recovered for . The most important effect of
finite is a shift of the bulk coexistence curve from to

.30 For large , Landau theory yields4,31

(22)

where is the surface tension of the interface at coexis-
tence. Equation (22) should hold beyond Landau theory as
long as is finite.4,31

The shift (22) of the coexistence surface implies that the
continuous behavior predicted for becomes weakly
discontinuous for large but finite . For , the maxi-
mal thickness of the surface layer is for , and

for . Thus, the thickness of the surface layer is
rather small in even for a macroscopic sample. The
maximal value of the parallel correlation length is
in , and in . At the critical and multicri-
tical transitions, the surface order parameter makes a
small jump at .4,31

XI. OUTLOOK  

[

  

]

The theory described above is still far from complete.
First of all, the critical singularities in are still not
known precisely (Sec. IX). While the scaling dimension of
may be correctly described by Landau theory, the scaling
behavior at coexistence is changed by interface fluctuations
in a complicated manner not fully understood. This seems to
be the most interesting theoretical problem. Furthermore,
one should investigate more realistic Landau-Ginzburg
models for magnetic materials and binary alloys which in-
clude several densities (see Sec. II) in order to estimate the
range of interaction parameters where SID and SIO are ex-
pected to occur.

Nevertheless, the above theory already indicates which
critical effects at SID and SIO should be most easily accessi-
ble to experimental studies and to computer simulations.
First, consider . In this case, the diverging thickness
of the surface layer cannot be observed easily due to finite
size effects (Sec. X). The divergence of the correlation length

is not severely restricted by such effects. However, is
contained in the singular part G of the correlation function
(12) which may be difficult to detect at the surface since the
amplitude of G goes to zero at the transition [see Eq. (13)]. As
a consequence, the most promising quantity to look at in

is the local order parameter at the surface which
may be experimentally investigated by LEED,32 spin polar-
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ized LEED,33 or total reflected x rays.34 Indeed, the contin-
uous behavior of predicted by Eq. (6b) may have been
observed already in a LEED experiment on Cu3Au,32 and in
a Monte Carlo simulation of an Ising model for this alloy.32

Similar computer studies on two-dimensional lattice
models would also be interesting in order to investigate the
critical phenomena discussed in Sec. VIII. For example, one
could study the state Potts model on a simple cubic lattice
for large where SID and SIO have been found within a
mean-field approximation.1 Apparently, SID has also been
found in a molecular dynamics study of the melting transi-
tion in a two-dimensional Lennard-Jones system.35

Could SID or SIO also be observed experimentally in
? Possible candidates are first-order transitions in

monolayers of noble gases adsorbed on graphite. The sub-
strate crystallites of such systems have a typical size

. Consider, for instance, values for the tempera-
ture and the pressure where a two-dimensional solid can
coexist with a two-dimensional liquid. As before, measures
the distance from the coexistence curve and corre-
sponds to the disordered liquid phase. Assume that the mi-
croscopic interaction parameters along the one-dimensional
boundaries of the substrate crystallites are such that the liq-
uid starts to freeze at these boundaries. In this case, the ad-
sorbate would undergo a SIO transition: strips of the solid
phase would appear along the one-dimensional boundaries
as . These strips may be modeled by a random network
of rectangles where each rectangle has an approximate size
times If x rays are scattered from one such rectangle, the
scattering intensity around a two-dimensional reciprocal lat-
tice vector is anisotropic: the width of this intensity is
or if the momentum transfer is parallel or perpendicular
to the long edge of the rectangle which is . An average
over the random orientation of the rectangles leads to an
isotropic linewidth One may also include the effect of
fluctuations of the one-dimensional interface between the
solid strips and the liquid in the "middle" of the substrate
crystallites. These fluctuations give rise to a diffuse scatter-
ing intensity with a linewidth .4,31 Since
in (see Sec. VIII), the critical effects of SIO may pro-
vide an explanation for the scattering data obtained at the
two-dimensional freezing transition of Xenon on graph-
ite.36,4
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