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Surface Integral Formulae for Geomagnetic Studies 
Bruce A. Hobbs* and Albert T. Price 

(Received 1970 January 5)t 

Surface integral formulae are derived expressing any one of certain field 
quantities, namely current functions, magnetic potentials and normal 
components of magnetic fields, in terms of any one other, for current 
systems flowing in concentric spherical surfaces. In all, 36 such formulae 
are obtained, which should prove useful in many geomagnetic studies, 
especially in geomagnetic induction problems. 

1. Introduction 

Many geomagnetic studies are concerned with time-varying magnetic fields at 
the Earth’s surface, and their relation to electric current systems in the upper atmo- 
sphere and in the Earth. There are, for example, many recent (as well as many earlier) 
studies of the Solar and Lunar diurnal variation fields, and of the ionospheric and 
earth current systems associated with them. These studies have led to the development 
of various methods and formulae for separating the surface field into parts of external 
and internal origin, and for determining the ionospheric currents that correspond to 
the external part. Further, the relationship found between the fields of internal and 
external origin is of the form that would be expected if the earth currents were due 
simply to electromagnetic induction by the moving and varying ionospheric current 
systems. A study of this relationship can lead to information about the conductivity 
of the Earth at various depths. This requires the solution of various mathematical 
problems on the electromagnetic induction of currents in concentric spheres and 
spherical shells of non-uniform conductivity, and involves the evaluation of self and 
mutual induction effects in these conductors. One of the important problems is to 
estimate the influence of currents induced in the relatively highly conducting oceans, 
and the screening effects of these currents on the conducting layers of the earth below. 

In the earlier studies the current systems and magnetic fields were expressed in 
terms of series of spherical harmonics and many valuable results were obtained in 
this way. When, however, it is desired to study detailed features of certain fields, 
such as the great enhancement of the Sq field near the dip equator, or, again, when 
one attempts to solve an induction problem which has, as one of the conductors, a 
thin shell with abrupt changes in conductivity, as at the surface of the Earth, then 
this method leads to difficulties owing to the slow convergence of the spherical 
harmonic expansions required. In the solution of such induction problems, the 
numerical work involved in solving the infinite sets of simultaneous equations, that 
are found for the coefficients of the required spherical harmonic expansions, is often 
prohibitive, and the solution obtained by truncating the series at a point that would 
make the numerical work possible very inaccurate. (See for example, the discussion 
by Ashour (1965a) of a problem considered by Rikitake & Yokoyama (1955)). 
Hence, alternative methods of treating these problems have been sought. 
* Now at Laurentian University, Canada. 
t Received in original form 1969 August 18. 
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50 Bruce A. Hobbs and Albert T. Price 

A direct method of interpolating the Sq field to a regularly spaced system of mesh 
points on the Earth was developed by Price & Wilkins (1963), who also developed a 
numerical method, based on a surface integral formula given by Vestine, to separate 
the field into parts of external and internal origin. 

It is the purpose of this paper to derive a number of similar surface integral 
formulae relating to currepts flowing in concentric spherical surfaces, and their 
magnetic fields. Each formula expresses any one of several field quantities as a 
surface integral involving one (only) of the other field quantities. The particular 
formulae considered are those found useful for geomagnetic studies of the kind 
already mentioned. For the purpose of illustration and as an aid to the presentation, 
we shall occasionally refer to the self and mutual induction effects of currents flowing 
in two concentric non-uniform thin shells of radii a and b with u > b. We intend in 
a later paper to discuss the electromagnetic induction of currents in two such shells, 
but it should be noted that the formulae have other applications apart from their use 
in the solution of electromagnetic induction problems. 

2. Relations between field quantities in terms of spherical harmonics 

Although some of the formulae obtained by us could be derived directly from 
general theorems in potential theory, it seems easier and more instructive to obtain 
them by integration from the expressions in spherical harmonics for the various 
field quantities involved, using the orthogonal properties of spherical harmonic 
functions over a sphere. The field quantities of particular importance in the geo- 
magnetic applications are: (1) the streamline function for the currents in each shell; 
(2) the potential inside and outside each shell of the magnetic fields of the currents in 
that shell; and (3) the normal components of the magnetic field of the currents in 
each shell both at the surface of that shell and at the surface of the other shell. 

The streamline function for a system of steady or quasi-steady non-divergent 
currents flowing in a spherical shell of radius r = a, being finite and single valued, 
may be represented as a series of spherical harmonic terms 

n, m 

where the unm's are complex coefficients, which are in general functions of time, 
(r, 0, A) are spherical polar co-ordinates, and Snm is a surface harmonic of degree 
n satisfying 

1 a2s; 

sin 0 a 0  sin2 0 ah2 
+n(n+ 1) snm = 0 i a  - - (sin o 'g) +- - 

S /  is of the form eimhP,,'"(cosO), and the factor (2n+1)/471 is introduced into 
equation (1) to simplify expressions for the magnetic field potential. 

The potential, R, of the magnetic field of the current system Y, inside and outside 
the shell of radius a, can then be written 

and 

n. rn 
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Surface integral formulae for geomagnetic studies 51 

respectively, and the normal component, an/&, of this magnetic field, being 
continuous at r = a, is then 

If the potential of the magnetic field just inside and just outside the shell is 
denoted by R-  and R, respectively, we have 

n- = (R,),=, = -C(n+l)o,,"'S,,"' (6) 

and 
n.  m 

The above expressions will be used in Section 3 to obtain twelve surface integral 
formulae giving directly any one of the quantities Y,Q-,S2+ and (aQ/ar),=, in 
terms of any one other. 

If we now assume that a second concentric conducting shell of radius b < a is 
present, and that the currents in the outer shell are varying with time, then the varying 
magnetic field of these currents will induce a system of currents, having current 
function Y', say, in this inner conductor, the system Y' clearly depending on the 
conductivity of this conductor. The inner shell may or may not be uniformly con- 
ducting, and in some geomagnetic applications might usefully be replaced by a 
sphere having a spherically symmetrical distribution of conductivity. The current 
function Y' would not then exist, but the induced currents can be calculated (see 
e.g., Lahiri & Price 1939). 

From equation (3) the potential and normal component of the inducing field due 
to Y ,  at the surface r = b, are 

Solution of the induction equation for currents flowing in the conductor radius 
b, with the inducing field given by equations (8) and (9), would give a current system 
Y' which may be written 

2n+ 1 
Y' = 2 (4rr) b,,"'S,,"' 

n.  m 

where the coefficients brim have to be determined in the solution. 

outside the shell of radius b, may be written 
Analogy with (4) shows that the magnetic potential of the current system Y' 

no' = C n ( p ) " "  b,"S,,"' 

and that the normal component is 

1 b n + 2  
n(n + 1) - (-) b,,"' S,,'". ar b r  
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52 Bruce A. Hobbs and Albert T. Price 

The potential and normal component may be extrapolated to the surface of the 
shell r = a, giving 

(RO')r=a = 2 n($)"+' b," S," (13)  

The magnetic field represented by equations (11) and (12) is the magnetic field 
of the current system Y' induced in the inner conductor by the current system Y 
in the outer shell. This varying magnetic field will itself induce currents in the shell 
r = a, which will contribute to Y, so that both Y and Y' are affected by mutual 
induction between the two conductors. In order to determine this mutual induction 
effect, surface integral formulae will be obtained for the potential and normal 
component of the magnetic field at the surface of either shell in terms of each one of 
the quantities Y, 12-, R, and aR/ar associated with a system of currents flowing in 
the other shell. 

In general, determination of the current system flowing in the inner shell due to 
currents flowing in the outer shell, will require the solution of a linear set of equations 
connecting the coefficients bnm and a,". The complexity of the linear set of equations 
is governed by the conductivity of the inner shell (or sphere). When the inner 
conductor is a non-uniformly conducting thin shell, the induced current system may 
be determined by the theory given by Price (1949). When the conductivity of the 
inner shell is uniform, application of the resulting simplified boundary equation 
enables the linear set of equations to be written 

bnm = unmanm. (15) 

For finite conductivity, the anm's are easily derived and are complex. In the 
especially simple case of infinite conductivity, whether the inner conductor be a 
shell or solid sphere, the anm's are real and equation (15) becomes 

In this simplest case, using equation (16), the potential and normal component, 
say R* and aR*/ar, at r = a, of the magnetic field of the currents in the shell r = by 
due to mutual induction between two conductors radii a and b (a > b), arising 
from a current function $ defined by equation ( l ) ,  may be written 

(F) an* = ~ n ( n + l ) - ( ( $ ) z n + l a ~ S ~ .  1 
r = a  a 

Asterisks denote the mutual induction effect in the special case of a perfectly 
conducting inner conductor, and again surface integral formulae will be obtained 
relating (!2*),=, and (aR*/ar),,, with each of the quantities Y,n-,n+ and 
(anlar),,, associated with current flow in r = a. 
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3. Surface integral formulae relating to a single shell 

We shall first illustrate one method of obtaining the surface integral formulae by 
considering the particular problem of finding the potential R, of the magnetic field 
just outside a spherical shell, due to currents flowing in it, in terms of the normal 
component an/& assumed known everywhere over the surface. The spherical 
harmonic expansions for the potential and the normal component are given by (7) 
and (9, from which it will be seen that the series for R, can be obtained from that 
for (dR/dr) at r = a by replacing each coefficient -n(n+ 1 )  a / / a  in (5)  by nu,,"'. To 
obtain an operator which will make this transformation we can use some of the 
orthogonal properties of the spherical harmonics, in particular 

\ 11 Pn(cos 0) S,,,"'' (0, A) dS = 0, m' # 0; all n and n' 

= 0, n' # n; all m 

n' = n, m = 0 
4Ra2 - -- 
2n+ 1' 

the integral being over the sphere of radius a. 
We now consider the function defined by 

00 

2n+ 1 
n+ 1 K ( 0 )  = 2 - Pn(cos 0) 

n = O  
and evaluate the integral 

over the sphere. 

reduces, in virtue of the orthogonal properties (19), to 
On substituting for K ( 0 )  from (20) and for (dR/dr) from (3, this integral 

m 

a,O{P,,(cos O)}'dS = -47ra nu;. n(2n + 1 )  11s- 1 a 1 

But from (7) we have, since S,,'"(O, A) = 0 unless m = 0, = 1 when m = 0, 
00 

where A is the point (a, 0, A). 
Hence 

To evaluate K ( 0 )  we can write (20) in the form 
OD 00 

K ( 0 )  = 2 2 P n -  2 - P n  1 
n + l  

0 0 

and summing these series we obtain 
1 1 +sin+@ 

log ( sin+@ ) K ( 0 )  = - - 
sin 30 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/20/1/49/604028 by U

.S. D
epartm

ent of Justice user on 16 August 2022



54 Bruce A. Hobbs and Albert T. Price 

Substituting in (24) we obtain the formula 

Although K(O)  has a singularity at 0 = 0, the integral in (26) is convergent because 
d S  could be taken as a2 sin 0 d 0  dA, and the factor sin 0 removes the singu- 
larity from the integrand. Note that if the field is given relative to some fixed 
co-ordinate system (r,  8, A), a typical point A(a, OA, 3.”) may be taken :as the pole 
of the above co-ordinate system (r, 0, A). We then have 

cos 0 = cos 8 cos d A  + sin 8 sin OA cos (A - AA), 
and (26) may now be written in terms of 8,1, and thus affords a method of calculating 
a+ at any point A from a knowledge of an/& over the surface. 

The above formula (26) can be checked by obtaining it directly from known 
theorems in Potential Theory. A known result (Jeffreys & Jeffreys 1950, p. 219) is 
that for any continuously differentiable function n satisfying Laplace’s equation 
and tending to zero at infmity, 

where P is any point outside the sphere of radius a, r is its distance from the centre 
of the sphere, and R its distance from the surface element dS.  

Since no satisfies Laplace’s equation it easily follows that r(an/ar) also satisfies 
this equation, and we may apply (27), giving 

an an r2-a2  
4nr- = a R J d S .  

ar 

Dividing by r and integrating along the radius vector from a point A on the surface 
to infinity, we have 

where 
R2 = r2-2arcos @+a2. 

By elementary integration we find after some reduction that 

1% dr = -log a (R+a-:cosO ) - +  (31) 

and on inserting this in (29) with the appropriate limits, and noting that 

when r = a, we get 
R = 2a sin+@ (32) 

which is identical with (26), as required. Although we shall use a different method, 
all the formulae derived here may be derived by using such Green’s functions. 
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We now obtain a general integral formula for obtaining any one of the quantities 
R+,  R-,  Y and aRpr in terms of any one of the others. To do this we fist  consider 
a formal expansion for the kernel K ( 0 )  corresponding to (20), and we show that 
this expansion, though not always convergent, defines a generalized function which 
makes the required surface integral convergent. 

It is obvious from the expressions in spherical harmonics for the various field 
quantities that if the expansion for any one of them, W, say, is 

W, = C a f l s c  

the expansion for any other, W, say, will be of the form 

W, = x k n a f l S , , " '  

(33) 

(34) 
n, m 

where k, is a simple rational function of n, the numerator and denominator being 
in general of degree not greater than 2. Thus in the case just considered k, was 
- l/(n+ 1). The procedure found suitable in this special case clearly shows that we 
can get a formal expression for the transformation by taking 

m 

K ( 0 )  = 2 (2n+ 1) k, P,. t (35) 
n = O  

To obtain W, in terms of W, we then evaluate the integral 

5 s K(@) Wl d S  (36) 
over the sphere, and, making use of the orthogonal properties (19) of the spherical 
harmonics, we have that this integral has the value 

m 

4naz 2 k,, a:. 
1 

But from (34) we have at 0 = 0, i.e. at the point A, 
m 

n= 1 
and therefore 

(37) 

which is the required formula. 
For any particular pair of functions W, and W,, we have to ' sum ' the series 

(35) for K ( 0 ) .  This series is not always convergent, but it can generally be summed 
by Euler's method. There is always a singularity at 0 = 0, and if this is of order 
greater than 2, it is necessary to consider the complete integrand K ( 0 )  W,. 

An important special case is when k, = 1. Denoting the special value of K ( 0 )  
in this case by I ( @ )  we have formally 

W 

I ( @ )  = 2 (2n+ 1) P,(cos 0) 
n=O 

t The term n = 0 is omitted from the summation when &. contains the factor n-' 

(39) 
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56 Bruce A. Hobbs and Albert T. Price 

and the integral on the right of (38) reduces to (WJA,  i.e. 

This shows that I(@)/4naz is a Dirac delta function. When it is multiplied with W, 
and integrated over the spherical surface it picks out the value of W, at the point A. 

The expansion (39) for I(@) is not convergent but we can obtain an Euler sum 
of this expansion by considering it as 

r" 
r+a -  fZn 

I(@) = lim Z(2n+ 1) - Pn(cos 0). (41) 

Now the generating function for the Legendre polynomials is 
m 

1 r" 
- P,(COS 0 )  

1 -- 
R (aZ+rz-2urcos0)+ = C a"+l 

n = O  

and it is easily shown that 
1 u2-r2 2r- - +-=- 

f r ( A )  R R3 * 

Hence 5 (2n+1) ( ; )n P"(C0S 0) = (+)3(y) 
n = O  

(42) 

(43) 

so that 

Thus I(@) has the property that it is infinite at 0 = 0, and zero elsewhere, agreeing 

Another important case is when k, = n, and the corresponding expansion for 

Consider 

with the requirement already indicated in equation (40). 

K(0) can again be summed using the relation (44). 

Since 
lim R = 2a sin30 
r+a 

then 

if this integral exists. 
Using equation (44), this limit may be expressed in an alternative form, 

\ n = 1  m=O I 

rz . 2 (2n+ l ) (~) 'P , , (cos  0)] d S  
n = O  
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Surface integral formulae for geomagnetic studies 57 

since 
Snm(O, A) = 0 m # 0 

= I  m = O  
)all n 

and using the orthogonal properties of surface harmonics, this may be reduced to 

4n r2 
lim G ( r )  = lim - . - 
r - a  r - + a  a a2-r2 

n= 1 

I r2 
uno(r-u)u-" ( r n - l  + urn-' + ... a"-') . 4n 

r+a  u u2-r2 
= lirn - . ____ 

m 

Hence 
n =  1 

n=1 
Now consider the generalized function 

m 

I ! (@) = 2 n(2n+ 1) ~ , ( cos  0) 
n = O  s/ I ' ( 0 )  W, d S  = 

then 

n =  I 
and from equation (50) 

which defines the operator associated with the kernel Z' (0)  given by (51). 
W e  may now state the following rule for interpreting the kernel K(@), when it is 

obtained from the spherical harmonic expansions of W, and W2 in the form of a 
formal expansion in Legendre functions P,. The formal expansion is expressed as 
a linear combination of series of certain forms (i)-(v), which are then replaced by 
their Euler sums or other operator kernels as follows:- 

(i) $ n(2n+ 1) Pn = I!(@), 
n = l  

m 

4 
n = O  

m 
1 

2 sin +@ ' 
- - (iii) 2 P. 

n=O 

m 

n=O 

m 

= -log {(sin+@)(l +sin$@)}. 
n= 1 
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The last three results can be obtained as Euler summations directly from the 
generating function for the Legendre polynomials. We have 

= 5 Pn(cos 01, r < a (54a) 
1 

(rz + a’ - 2ur cos @)* 
n=O 

a 

Letting r + a in either (54a) or (54b) gives the Euler s u m  (iii). Integrating (54a) 
from 0 to r and then letting r + a- gives the result (iv), and integrating (54b) from 
r to infinity and letting r +a+ gives (v). The results (i) and (ii) are different in 
character from the others in that Z ( 0 )  and Z’ (0)  are generalized functions. 

As an illustrative example, consider the derivation of Y in terms of R-. Equation 
(35) requires that 

03 

1 
471 

K(O)  = - - 2 ‘2,lt’;lz P”(C0S 0) 
n=O 

f m  

(2n+ 1) P”(C0S 0) + =--+ 1 

1 - - - 1 4n (2Z(0)+ [log( 1 + =) 
5 (& -2) P”(C0S 0) 
n=O 

- ‘-1. sin $0 

With this interpretation of K(@),  equation (38) becomes 

-log 1+ - 
1 1 -- 2Z(0)- - ( sinl+o)] ] 1 

( y ) A  = SS S 411 ( [sin+@ 

Hence from equation (40) 

and this is the required surface integral formula. 

relating any two of the functions Y, aR/ar, 0- and R +  defined in Section (2). 
The following is a list of the 12 surface integral formulae obtained in this way 
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-log [(l +sin+@) sin+@] R, d S  (61) 
1 

1 
( Y ) A  = - - ( R - ) A  + ~ [,(&-lo9 R- d S  (62) 

211 16n2 a2 

dS  
R- - (R-), 
8a3 sin3 +@ 

S 

“(1 n 
d S -  - ( “ ) A .  (:) A = 1) 8a3 sin3 3 0  a (66) 

4. Relations between fields and currents on two concentric shells 

Suppose now a current system Y exists in a shell of radius a, and we require to 
express either the potential Rb or its normal derivative (aR/ar), on a concentric shell 
of radius b(< a), in terms of any one of the quantities Y, R+,  R-,  on the shell 
of radius a. 

The potential R, of the field inside the shell of radius a, due to the current system 
Y given by (1) in the shell has the value 

00 

Hence 

and 

a, = - c(n+l)(+.s ... 
n = O  
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Writing any of the above four quantities Y ,  R,, ... on the shell r = a in the 
spherical harmonic form for W,,  given by (33), and either of the series (68) and (69) 
in the form for W, given by (34), we see that k, will now be a function of a and b 
as well as of n. 

We now consider the kernel function 
m 

K ( O )  = 2 (2n+ 1) kn(a, b) Pn 
n = O  

and evaluate the integral 

over the sphere r = a. Using the orthogonal properties (19) of the surface harmonics, 
we obtain ss K(O)  W, d S  = 471a2 k,(a, b) a: 

n = O  5 
= 4nUz(W,)~ (71) 

where B is the point on r = b when 0 = 0. 
We thus have a formula for determining W, at a point B on r = b in terms of the 

field quantity W, given on r = a. As an example, let W, correspond to (dR/dr), 
and W, correspond to Y .  Then equations (69) for (dR/dr), and (1) for Y show that 

n(n+ 1)4n bn-’ 
2n+l a“ 

k, = - 

and therefore 
471 

K ( @ )  = - - Zn(n+ 1) 
a (72) 

This series for K(O)  is convergent for b < a, and using (54a) the sum is found 
to be 

(73) 
ab COS’ 0 - 2(a2 + b2) cos 0 + 3ab 

K ( O )  = 4na2 ( 
(a2 + b2 - 2ab cos @)* I * 

Therefore the required surface integral is, from equation (71), 

) Y d S  (74) 
ab cos2 0 - 2(a2 + b2) cos 0 + 3ab 

(a2+bZ-2ab cos @)* (5)~ = f ( 
where S is the surface r = a. 

Similarly R and dQ//ar on r = b may be obtained in surface integral form in 
terms of each of the functions Y ,  dR//ar, R- and R, defined on r = a by suitable 
substitutions in (71). This results in the following eight surface integral formulae:- 

(:) = ! ! $ {ab cos’ @ - 2(aZ + bz) cos 0 + 3ab) Y d S  
S 

where R = (a2 + b2 - 2ab cos @)* and S is the surface r = a, 

(75) 

1 1 
( ;)B = - I! ip {b(a2 + 3bZ) cos 0 + a(a’ - 5b2)} R, d S  (76) 

S 
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1 - {a(b2 + 3 ~ ' )  cos 0 + b(b2 - 5a2)} R- dS (g)~= & lj R5 

(a),= - //-$(a-bcos@)YdS 
S 

1 (a), = - -& jJ (irj (b2+32-4ab cos 0) 

a-b cos @ + R  - -log 
U [ 2a 

(a)E=Gj/ 1 (F-log 2a [a-b cos 2a @ + R ]  } (a,;) - d S  . 
a 

S 

It will be noted that since R does not now become zero anywhere on the surface, the 
integrand has no singularity in any of the above eight integrals. 

Analogous to the above, a current system '3" on r = b will give rise to a magnetic 
field at r = a, the potential R' and normal component aR'/ar of which can be 
obtained in series form from equations (13) and (14). Eight further surface integral 
formulae may therefore be derived for R' and aQ'/ar on r = a in terms of each of 
Y' and the associated 0-', Q+' and aQ'/ar on r = b, defined similarly to J z - ,  R+ 
and an/ar in (5)-(7). These are found to be:- r:) A = / j $ {ab cos2 @ - 2(az + b2) cos @ + 3 4  Y' dS 

S 

where S is the surface r = b in (83)-(90) inclusive. 

1 1 
-{b(u2+3bZ) cos @+u(u2-5bZ)} R+'dS f?)  ar A = - r i b S / R 5  S 

( % ) A = =  /I S R5 
1 

-{u(b2+3aZ) cos @+b(b2--5aZ)} R_'dS 
an, 1 

an' 1 1 an (%IA = 4Ka sI S $(a2-b2)  ( A d s  

(Q')A = J J$ {b-a cos @} Y' dS 
S 

1 1 (a), = j/ (a2-bz)  R+'dS 
S 
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1 (a),, = 4nb [/ ( (a2 + 3b2 - 4ab cos 0) 

3) R-'dS (89) 
b - a c o ~ O + R  - -log 

b 2a sin2 30 

(90) 
(a), = &/) (log [be' cosO+R] - s b ( a 2 - b 2 )  1 

2a sin2@ 

In some geomagnetic studies, e.g. in estimating the effects on magnetic variations 
of induced currents in the oceans and in the Earth's mantle, it is useful to consider 
an induction problem in which a non-uniform shell (r = a) surrounds a spherical 
conductor (r = b). It is sometimes possible, for a certain range of frequencies of the 
variations, to treat the inner conductor as effectively of infinite conductivity. In this 
case the potential R* and normal component aR*/ar at r = a of the magnetic field 
of the system of currents induced in the perfectly conducting inner conductor r = b, 
by a system of varying currents flowing in r = a, may be expressed directly in terms 
of each of the quantities R-,  R, and aR/Rr, and the streamline function Y, 
corresponding to the system of currents flowing in r = a. The eight surface integral 
formulae in this special case are:- 

= -b3 // -$ {a2 b2 cos2 0-2(a4+b4)  cos 0 + 3 a 2  b2} Y dS  
S 

where R, = (a4+b4-2a2 b2 cos 0)* and S is the surface r = a. 

b 
= 4x // ${b2(a4+3b4) cos 0+a2(a4-5b4)}  R +  d S  

S 

1 
7 {a2(b4 + 3a4) cos 0 + b2(b4 - 5a4)} R-  d S  

S 

(g)A = - - / / v { a 4 - b 4 }  b 1 (-) aR d S  
4xa ar a 

S 

(Q*),= -,s/ b3 ; t ; ; j - ( b 2 - a 2 c o s 0 ) Y d S  1 

S 

1 
= - /j ( R ,  3 (a4 + 3b4 - 4a2 b2 cos 0) 

b 

I )  R- d S  
1 b2-a2 cos O+R, - -log 
b2 
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In these eight formulae there are again no singularities in any of the integrands. 

5. Concluding remarks 

A number of the surface integral formulae derived in this paper have been 
programmed for evaluation computer. In particular, (63), (66) and (91) have been 
programmed and used in the discussion of geomagnetic induction problem relating 
to currents induced in the oceans and the Earth's mantle, and it is hoped to publish 
the results in a later paper. Formula (62) is being used by Price & Stone (1970) to 
determine representative current systems for the magnetic daily variation field, by 
automatic analysis of observational data fed into a computer. 

Acknowledgments 

The help of the Director and staff of the Computer Unit of Exeter University is 
gratefully acknowledged. One of us (B. A. Hobbs) also wishes to thank the University 
of Exeter for a Postgraduate Award, during the tenure of which this work was 
undertaken. 

University of Exeter, 
Exeter. 

1970 January. 
References 

Ashour, A. A., 1965. 
Jeffreys, H. & Jeffreys, B. S., 1950. Methods of Mathematical Physics, p. 220, 

Lahiri, B. N. &Price, A. T., 1939. Phil. Trans. R. SOC., A237, 509. 
Price, A. T., 1949. Q. J. Mech. Appl. Math., 2, 283. 
Price, A. T. & Stone, D. G., 1970. Paper in preparation. 
Price, A. T. & Wilkins, G. A., 1963. Phil. Trans. R. SOC., A256, 31. 
Rikitake, T. & Yokoyama, I., 1955. Bull. Earthquake Res. Ins?., Tokyo Univ., 33, 

Geophys. J .  R. astr. SOC., 10, 147. 

Cambridge University Press, Cambridge. 

297. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/20/1/49/604028 by U

.S. D
epartm

ent of Justice user on 16 August 2022


