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A b s t r a c t .  Extremely efficient surface interpolation can be obtained by 
use of a wavelet transform. This can be accomplished using biologically- 
plausible filters, requires only O(n) computer operations, and often only a 
single iteration is required. 

1 Introduct ion 

Surface interpolation is a common problem in both human and computer vision. Perhaps 
the most well-known interpolation theory is regularization [7, 9]. However this theory 
has the drawback that the interpolation network requires hundreds or even thousands of 
iterations to produce a smoothly interpolated surface. Thus in computer vision applica- 
tions surface interpolation is often the single most expensive processing step. In biological 
vision, timing data from neurophysiology makes it unlikely that many iterations of cell 
firing are involved in the interpolation process, so that interpolation theories have been 
forced to assume some sort of analog processing. Unfortunately, there is little experimen- 
tal evidence supporting such processing outside of the retina. In this paper I will show 
how efficient solutions to these problems can be obtained by using orthogonal wavelet 
filters or receptive fields. 

1.1 Background 

In computer vision the surface interpolation problem typically involves constructing a 
smooth surface, sometimes allowing a small number of discontinuities, given a sparse set 
of noisy range or orientation measurements. Mathematically, the problem may be defined 
as finding a function U within a linear space 7~ that minimizes an energy functional s 

s : i n f  s  inf (/C(12)+ R(12)) (1) 
vE~ ~E~ 

where K:(12) is an energy functional that is typically proportional to the curvature of 
the surface, and 7~(1~) is an energy functional that is proportional to the residual differ- 
ence between 12 and the sensor measurements. When the solution exists, the variational 
derivative (~ of the energy functional vanishes, 

~uC(U) = ,SulC(U) + ~r~(U) = 0 (2) 

The linear operators ~us SuK;, and $u7~ are infinite dimensional and normally dense. 
To solve Equation 2, therefore, it must first be projected onto a discretization S of 
containing n nodes. The resulting matrix equation is written SKU + R = 0 where 
is a scalar constant, U, R are n x 1 vectors and K an n x n matrix; these are the 
discretization of II, $uT~(ll), and ~K:(H),  respectively. To make explicit the dependence 
of R on U, I will write the regularization equation as follows: 

)tKU + S U -  D = 0 (3) 



616 

i.e., R = SU - D, where D is a n x 1 vector whose entries are the measured coordinates 
di where sensor measurements exist  and zero elsewhere, and S is a diagonal "selection 
matrix" with ones for nodes with sensor measurements and zeros elsewhere. 
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Fig. 1. Wavelet filter family "closest" to Wilson-Gelb filters (arbitrarily scaled for display). 

1 . 2  C h o i c e  o f  B a s i s  

When/C is chosen to be the stress within a bending thin plate (as is standard), then K 
is the stiffness matrix familiar from physical simulation. Unfortunately, several thousand 
iterations are often required to the interpolated surface. Although sophisticated multires- 
olution techniques can improve performance, the best reported algorithms still require 
several hundred iterations. 

The cost of surface interpolation is proportional to both the bandwidth and condition 
number of K. Both of these quantities can be greatly reduced by choosing the correct 
basis (a set of n orthogonal vectors) and associated coordinate system in which to solve 
the problem. In neural systems, transformation to a new basis or coordinate system can 
be accomplished by passing a data  vector through a set of receptive fields; the shapes of 
the receptive fields are the new basis vectors, and the resulting neural activities are the 
coordinates of the data  vector in the coordinate system defined by these basis vectors. If 
the receptive fields are orthonormal, then we can convert back to the original coordinate 
system by adding up the same receptive fields in amounts proportional to the associated 
neurons activity. 

For the class of physically-motivated smoothness functionals, the ideal basis would 
be both spatially and spectrally localized, and (important  for computer applications) 
very fast to compute. The desire for spectral localization stems from the fact that,  in the 
absence of boundary conditions, discontinuities, etc., these sort of physical equilibrium 
problems can usually be solved in closed form in the frequency domain. In similar fash- 
ion, a spectrally-localized basis will tend to produce a banded stiffness matrix K. The 
requirement for spatial localization stems from the need to account for local variations 
in K ' s  band structure due to, for instance, boundary conditions, discontinuities, or other 
inhomogeneities. 

1 . 3 0 r t h o g o n a l  W a v e l e t  B a s e s  

A class of bases that  provide the desired properties are generated by functions known 
as orthogonal wavelets [5, 2, 8]. Orthogonal wavelet functions and receptive fields are 
different from the wavelets previously used in biological and computational  modeling 
because all of the functions or receptive fields within a family, rather than only the 
functions or receptive fields of one size, are orthogonal to one another. A family of 
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orthogonal wavelets ha,b is constructed from a single function h by dilation of a and 
translation of b 

ha,b -- ,a,-i/2 h ( ~ a  b) , a y~ O (4) 

Typically a = 2 i and b = 1, ..., n = 2J for j = 1, 2, 3 .... The critical properties of wavelet 
families that  make them well suited to this application are that: 

- For appropriate choice of h they can provide an orthonormal basis of L2(~),  i.e., MI 
members of the family are orthogonal to one another. 

- They can be simultaneously localized in both space and frequency. 
- Digital transformations using wavelet bases can be recursively computed,  and so 

require only O(n~ operations. 

Such families of wavelets may be used to define a set of multiscale orthonormal basis 
vectors. I will call such a basis q~,  where the columns of the n x n matr ix ~ are the basis 
vectors. Because ~w forms an orthonormal basis, T T ~ w  = 4~w4~w = I. That  is, like the 
Fourier transform, the wavelet transform is self-inverting. Figure 1 shows a subset of q~w; 
from left to right are the basis vectors corresponding to a = 1, 2, 4, 8, 16 and b = n/2. All 
of the examples presented in this paper will all be based on the wavelet basis illustrated 
in this figure. 

The basis vector shapes shown in Figure 1 may be regarded as the neural receptive 
fields that  transform an input signal into, or out of, the wavelet coordinate system. I 
developed this particular set of wavelets to match as closely as possible the human psy- 
chophysical receptive field model of Wilson and Gelb [10]; there is only a 7.5% MSE 
difference between this set of wavelet receptive fields and the Wilson-Gelb model 1 [6]. 
This set of wavelets, therefore, provides a good model of human spatial frequency sensi- 
tivity, and of human sensitivity to changes in spatial frequency. 

2 S u r f a c e  I n t e r p o l a t i o n  u s i n g  W a v e l e t  B a s e s  

It  has been proven that  by using wavelet bases linear operators such as ( ~  can be 
represented extremely compactly [1]. This suggests that  4~w is an effective preconditioning 
transform, and thus may be used to obtain very fast approximate solutions. The simplest 
method is to transform a previously-defined K to the wavelet basis, 

T = (5)  

then to discard off-diagonal elements, 

Y~ = diag T (6)  

and then to solve. Note that  for each choice of K the diagonal matrix/22~ is calculated 
only once and then stored; further, its calculation requires only O(n) operations. In 
numerical experiments I have found that  for a typical K the summed magnitude of the 
off-diagonals of I(  is approximately 5% of the diagonal's magnitude, so that  we expect 
to incur only small errors by discarding off-diagonals. 

This set of wavelets were developed by applying the gradient-descent QMF design procedure of 
Simoneelli and Adelson [8] using the Wilson-Gelb filters as the initial "guess" at an orthogonal 
basis. Wavelet receptive fields from only five octaves are shown, although the Wilson-Gelb 
model has six channels. Wilson, in a personal communication, has advised us that the Wilson- 
Gelb "b" and "e" channels are sufficiently similar that it is reasonable to group them into a 
single channel. 
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Case I. The simplest case of surface interpolation is when sensor measurements exist for 
every node so that the sampling matrix S = I. Substituting ~wlJ = U and premultiplying 
by ~T converts Equation 3 to 

T ~ T ~ T A ~ K ~ U  + ~ O ~ U  = ~ D  (7) 

By employing Equation 6, we then obtain (A~2~ + I)I~l T = ~wD, so that the approximate 
interpolation solution U is 

U ~ w  (A~'~ 2 - I  T = + I) ~ V  (8) 

Note that this computation is accomplished by simply transforming D to the wavelet 
basis, scaling the convolution filters (receptive fields) appropriately at each level of re- 
cursion, and then transforming back to the original coordinate system. To obtain an 
approximate regularized solution for an v ~  x v ~  image using a wavelet of width w 
therefore requircs approximately 8wn + n add and multiply operations. 

Case 2. In the more usual case where not all nodes have sensor measurements, the in- 
terpolation solution may require iteration. In this case the sampling matrix S is diagonal 
with ones for nodes that have sensor measurements, and zeros elsewhere. Again substi- 
tuting �9 wI~ = U and premultiplying by ~ r  w converts Equation 3 to 

T ~ T ~ T A#wK#wU (9) + ~ S ~  U = Ow D 

The matrix T ~w S#w is diagonally dominant so that the interpolation solution U may be 
obtained by iterating 

v = + + V'  (1o) 

where S : diag(~Ts4~w) and D t = D - (K + S)U t is the residual at iteration t. I have 
found that normally no more than three to five iterations of Equation 10 are required 
to obtain an accurate estimate of the interpolated surface; often a single iteration will 
s a u c e .  

Note that for this procedure to be successful, the largest gaps in the data sampling 
must be significantly smaller than the largest filters in the wavelet transform. Further, 
when A is small and the data sampling is sparse and irregular, it can happen that the 
off-diagonal terms of ~T S ~  introduce significant error. When using small A I have found 
that it is best to perform one initial iteration with a large A, and then reduce A to the 
desired value in further iterations. 

Discontinuities. The matrix K describes the connectivity between adjacent points on a 
continuous surface; thus whenever a discontinuity occurs K must be altered. Following 
Terzopoulos [9], we can accomplish this by disabling receptive fields that cross discontinu- 
ities. In a computer implementation, the simplest method is to locally halt the recursive 
construction the wavelet transform whenever one of the resulting bases would cross a 
discontinuity. 

An Example. Figure 2(a) shows the height measurements input to a 64 x 64 node inter- 
polation problem (zero-valued nodes have no data); the verticM axis is height. These data 
were generated using a sparse (10%) random sampling of the function z = 100[sin(kx)+ 
sin(ky)]. Figure 2(b) shows the resulting interpolated surface. In this example Equation 
10 converged to within 1% of its true equilibrium state with a single iteration. Execution 
time was approximately 1 second on a Sun 4/330. 
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(a) (b) 

Fig. 2. A surface interpolation problem; solution after one iteration (1 second on a Sun 4/330). 

2.1 S u m m a r y  

I have described a method for surface interpolation that  uses orthogonal wavelets to 
obtain good interpolations with only a very few iterations. The method has a simple bio- 
logical implementation, and its performance was illustrated with wavelets that  accurately 
model human spatial frequency sensitivity. 
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