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Surface-Level Path Loss Modelling for Sensor Networks in Flat and
Irregular Terrain
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Many wireless sensor network applications require sensor nodes to be deployed on the ground or other sur-
faces. However, there has been little effort to characterise the large- and small-scale path loss for surface-
level radio communications. We present a comprehensive measurement of path loss and fading characteris-
tics for surface-level sensor nodes in the 400MHz band in both flat and irregular outdoor terrain in an effort
to improve the understanding of surface-level sensor network communications performance, and to increase
the accuracy of sensor network modelling and simulation. Based on our measurement results, we charac-
terise the spatial small-scale area fading effects as a Rician distribution with a distance-dependent K-factor.
We also propose a new semi-empirical path loss model for outdoor surface-level wireless sensor networks
called the Surface-Level Irregular Terrain (SLIT) model. We verify our model by comparing measurement
results with predicted values obtained from high-resolution digital elevation model (DEM) data and com-
puter simulation for the 400MHz and 2.4GHz band. Finally, we discuss the impact of the SLIT model and
demonstrate through simulation the effects when SLIT is used as the path loss model for existing sensor
network protocols.
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1. INTRODUCTION

Many of the current wireless sensor network applications require sensor nodes to be
deployed at ground- or surface-level, with the base of the antenna raised only a few
centimetres off the surface or even with PCB antennas at ground-level itself [Yoo et al.
2009]. This scenario is expected to be even more pronounced in the future when nodes
will be extremely small [Wong and Arvind 2005] and are expected to have antenna ele-
vations measuring mere milimetres off the ground or other surfaces (eg. floor, contain-
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ers). In such conditions, Norton surface waves [Norton 1937] may play an important
role in the communication between two RF devices.
Surface waves occur because the ground is not a perfect reflector, and its intensity

is affected by the surface’s characteristics of conductivity and permittivity along the
travelled path. Most of the existing works relating to surface wave propagation mod-
elling are for long-range and relatively low-frequency communications like AM radio
or high frequency surface wave radars (HFSWR). This is mainly because the effect of
surface waves can be neglected if the antennas of devices participating in the tran-
mission and reception are elevated more than one wavelength λ above the surface
[Bullington 1947]. Nevertheless, since most sensor networks communicate in the UHF
band between 300MHz to 3GHz, nodes placed on the ground fail to meet the criteria to
disregard the effects of surface waves. In such cases, surface waves play a significant
effect in the transmission of signals [Bullington 1947].
Besides the effects of surface waves, communication near surface level also occurs

with most of the first Fresnel zone [Rappaport 2001] blocked by the surface, causing
significant diffraction losses. As such, although two communicating devices may be
visually within the line-of-sight (LOS) of each other with no visible obstruction in be-
tween, the reality is that a significant path loss over free space occurs and should be
considered as quasi-LOS. Diffraction, reflection, and scattering of signals cause multi-
path effects. These multipath waves combine constructively and destructively to cre-
ate small-scale fading effects that can cause the signal attenuation to vary significantly
within a distance of half a wavelength [Hoffman and Cox 1982]. Since most sensor net-
works consists of static nodes, and small-scale fading is a spatial phenomenon, sensor
nodes experience static multipath fading.
Near ground packet transmission and reception measurements for sensor nodes

have been carried out in the past [Deepak et al. 2002; Cerpa et al. 2003; Woo et al.
2003; Cerpa et al. 2005; Zhao and Govindan 2003]. However, all these works focused
on the packet reception rates of nodes in different environmental conditions rather
than attempting to characterise the propagation channel. [Zhou et al. 2004; 2006] car-
ried out experiments to characterise the radio irregularity of wireless sensor networks.
Based on experimental results, they proposed a new Radio Irregularity Model (RIM)
to account for the anisotropy, continuous variation, and heterogeneity of radio signals.
In comparison, our work attempts to model the path loss using terrain information
that leads to radio signal irregularity due to the irregular terrain. A few attempts
to partially characterise the propagation channel at antenna heights of less than 1m
have been made before. However, they either sample too few data points because their
focus was on specific human forms (standing, sitting on the floor, or lying prone) and
ignore the large-scale path loss characteristics [Foran et al. 1999; Welch et al. 2000] or
they disregard small-scale fading [Sohrabi et al. 1999; Joshi et al. 2005; Martfnez-Sala
et al. 2005]. [Woyach et al. 2006] showed that the small-scale fading is a function of
spatial location for static sensor nodes and is time invariant, but the measurement
was performed in an indoor environment on top of a rotating turntable.
In this paper, we attempt to comprehensively measure and characterise the small-

scale fading and large-scale path loss of surface-level sensor nodes in the 400MHz
band in an outdoor environment in an effort to improve the understanding of surface-
level sensor network communications performance, and to increase the accuracy of
sensor network modelling and simulation. We start by measuring the small-scale fad-
ing characteristics for two different terrains, flat and irregular, and show that in a local
area of 0.72m2, the cumulative signal levels is Rician distributed. The medians of the
small-scale area signals are then used for comparison with different large-scale path
loss models. We demonstrate that the medians of the small-scale area signals are log-
normally distributed around the mean large-scale path loss, which can be accurately
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predicted using the surface wave model. We also calculate the standard deviation and
path loss exponential of the channel. Finally, we propose a more accurate path loss
model for surface-level UHF narrowband communications for outdoor irregular ter-
rain called Surface-Level Irregular Terrain (SLIT) model, and verify it by comparing
measurement results with predicted values calculated using terrain profiles obtained
from high-resolution digital elevation model (DEM) data and computer simulation.
The main contributions of our work are:

—We show through empirical measurements that the surface wave component is an
important factor that needs to be considered for an accurate prediction of large-scale
path loss for WSN located at surface-level, and that the distribution of the received
signal in a small-scale area is Rician distributed.

—We propose the SLIT model as a more accurate path loss model for outdoor irregular
terrain by taking into account the surface wave component, and applying effective
antenna heights and diffraction gains based on the terrain profile. The usage of the
SLIT model allows for a fast and accurate estimation of the large-scale path loss in ir-
regular terrain, and coupled with terrain information (fromDEM and other formats),
we can perform accurate computer simulations to verify wireless sensor network pro-
tocols.

The rest of the sections of this paper are organised as follows. Section 2 provides
an overview of related works. Section 3 describes our measurement set up and envi-
ronment. Section 4 and 5 presents the measurement results for the flat and irregular
terrain, respectively, and also the SLIT model. We then empirically verify our model in
Section 6. After what, we discuss the impact of the SLIT model and demonstrate the
effects of irregular terrain on existing sensor network protocols in Section 7. Finally,
we conclude in Section 8.

2. RELATED WORKS

A radio signal generated and propagated from a source in the vicinity of the ground
generally has a higher path loss than is expected in free space. The earliest works on
the transmission of radio wave over the surface of earth (ground-wave)was contributed
by Zenneck [Zenneck 1907] and Sommerfeld [Sommerfeld 1909]. Norton [Norton 1937]
later built upon their work to develop an improved form for the Hertz potential for arbi-
trary heights. The current definition of a ground-wave is a wave that is comprised of a
Norton surface wave (referred to as just ”surface wave” from here on), and a space wave
consisting of a direct wave and a ground-reflected wave [IEEE 1998]. In many previ-
ous wireless communication applications, the existence of surface waves could largely
be ignored because of the raised antennas, and much of the work on surface wave fo-
cused on HF applications that have a large λ. However, in WSNs, nodes are frequently
required to be deployed at surface-level, and we examine the effects of surface waves
on WSN modelling and applications. A summary of developments in ground-wave re-
search, including surface waves, is given by [Wait 1998].
One of the earliest RF propagation measurement for low-lying antennas for WSN

applications was performed by [Sohrabi et al. 1999] for the 800-1000MHz UHF band.
The path loss exponent and shadowing variance for a log-normal path loss model was
measured for eleven different sites, with a separation distance of up to 30m between
antennas. [Joshi et al. 2005] also performedmeasurements for LOS and forested paths.
However, their measurements had a minimum antenna height of 45cm, and did not
measure small-scale fading in a localised area. [Welch et al. 2000; Foran et al. 1999]
performed measurement of signal strengths for specific human forms (standing, sit-
ting, and lying on the ground), and ignored the large-scale path loss characteristics.
[Martfnez-Sala et al. 2005] proposed a 2-slope log-normal path loss prediction model
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based on their measurements over 3 locations, with a lower rate of signal decay for
a nodes located nearer to the signal source and a steeper rate of decay after a cer-
tain distance. [Su and Alzaghal 2009] measured the radiation pattern of MicaZ motes
(2.4GHz channel) and the effects of human interference when standing in-between a
transmitter-receiver pair. However, the antennas’ exact elevation above ground was
not stated. [Andersen et al. 1995] also highlighted the necessity of improving wireless
protocol models by customising them for different environments, and showed different
models that are used for more accurate modelling in different locations and conditions.
In this paper, we differ from these existing works by:

—Performing a raster scan at ground level to measure the effects of small-scale fading
in a local area, and to find the median signal level for the particular location for
large-scale path loss modelling

—We also characterise small-scale fading in local areas with a suitable distribution
—Proposing a more accurate path loss model by including the effects of the surface

wave model and terrain profile

Near ground packet transmission and reception measurements for sensor nodes
have been carried out in the past [Deepak et al. 2002; Cerpa et al. 2003; Woo et al.
2003; Cerpa et al. 2005; Zhao and Govindan 2003]. However, all these works focused
on the packet reception rates (PRRs) of nodes in different environmental conditions
rather than attempting to characterise the propagation channel. Most of them show
that packet reception rate is time variable and is not an exact function of distance,
but the results are not explained. [Zhou et al. 2004; 2006] carried out experiments to
characterise the radio irregularity of wireless sensor networks communications. Based
on experimental results, they proposed a new Radio Irregularity Model (RIM) to ac-
count for the anisotropy, continuous variation, and heterogeneity of radio signals. In
comparison, our work attempts to model the radio signal irregularity based on terrain
information and is complementary to these previousworks by proposing a new surface-
level path loss model for irregular terrain. We do not directly measure the packet re-
ception rate; rather, we examine the terrain conditions that may lead to varying signal
strengths that can affect the packet reception rates.

3. MEASUREMENT EQUIPMENT, ENVIRONMENT, METHODOLOGY, AND CHANNEL MODELS

3.1. Measurement Equipment

For our measurements, we used a sensor node developed by SNR [SNR ] that has been
used for a military surveillance and reconnaissance pilot project in Korea as the trans-
mitter (T). The sensor node employs a CC1101 [Texas Instruments 2008a] transceiver
as its radio, and was set to transmit continuously with a carrier wave (CW) in the
400MHz band. As the receivers, we used an Agilent spectrum analyser and other sen-
sor nodes to measure the amplitude of the CW. All systems were equipped with the
same type of λ/4 whip antenna, a type of omnidirectional antenna that is popularly
used in WSNs.
The spectrum analyser was controlled remotely through the GPIB (General Purpose

Interface Bus) interface and traces were captured directly into a laptop. The receiver
sensor nodes were configured to measure the RSSI value every 5ms. This setting allows
a constant sampling of the channel, and is similar or higher than the sampling rates
used in previous work [Hoffman and Cox 1982; Kajiwara 2000; Hashim and Stavrou
2005].
The receiver sensor nodes were calibrated using the spectrum analyser, which has

an amplitude accuracy of ±2.03dB at 0 to 55 ◦C for the 400MHz frequency band. Fig. 1
shows the measured signal strength at the spectrum analyser and sensor nodes versus
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Fig. 1. Scatter plot of measured signal versus input signal

the input signal strength after calibration. As can be seen from the figure, the sensor
nodes give a relatively accurate value of the signal strength compared to the spectrum
analyser. The range where the RSSI (Received Signal Strength Indicator) readout is
linear can be found in [Texas Instruments 2008a]. The reasons for using the sensor
nodes as receivers are mainly because of the difficulty in transporting the spectrum
analyser in irregular terrain where we would be performing the measurements and
the fast RSSI readout response time for the CC1101 transceiver (between 155 and
310µs depending on the filter length [Texas Instruments 2008b].

3.2. Measurement Environment

We performed the measurements in three different environments as detailed below:

—Location I - Two football (soccer) fields next to each other measuring 50m x 90m and
60m x 100m, respectively. The fields are flat and sparsely covered with short grass
that did not block the visual LOS between nodes.

—Location II - A hilly area with slope gradients between 6 and 25◦ (Fig. 2). The ground
is covered by leafy vegetation in summer and fall, and is also populated by a mix
of trees with coniferous and simple, deciduous leaves. However, we report only mea-
surements performed in winter here since our aim is to model the path loss caused
by the irregular terrain and to avoid the fading effects from wind-blown foliage [Ka-
jiwara 2000]. The terrain is highly irregular with few LOS paths.

—Location III - A plain which is covered in metre-high reedy grass and some small
shrubs interspersed with some 3m tall petiolated, compound leaf trees. Similar to
Location II, only measurement performed in winter is used to avoid the effects of
wind-blown foliage.

3.3. Measurement Methodology

To measure the fading and path loss at a local area, we follow the measurement
methodology first mentioned by [Hoffman and Cox 1982] and similar to that performed
by [Cox et al. 1983]. The transmitter was first placed at ground-level at a random
location with the antenna upright, and then turned on. We then held the receiving
antenna, attached to a 1.5m long pole and sampling the channel every 5ms, at about
2-3cm above the surface-level at another position and performed a raster scan over an
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(a) No snow (b) With snow

Fig. 2. Location II

area of 0.72m2. A scan is performed by moving the receiver along a horizontal plane
with the center of the plane normal to the transmitter’s location at a speed of 0.48m/s
(Fig. 3). Each scan area consists of 7 parallel lines separated by 10cm increments.
Consistent with previous works [Hoffman and Cox 1982; Cox et al. 1983], we use the

measured signals’ median level at each local area to characterise the large-scale path
loss. The median and mean are stationary over a local area, but the median value is
less affected in cases where part of the measured signal is below the noise floor.
For irregular terrain, each scan line followed the contours of the terrain at a fixed

height while maintaining an upright antenna position for the receiver. This raster
scanning technique has been shown by [Hoffman and Cox 1982] to produce results
very similar to those performed by mechanical devices with no human intervention.

3.4. Channel Pathloss Models

To model large-scale path loss for wireless communications, the free space, two-ray
ground reflection, and log-distance models [Rappaport 2001] are the most widely used.
However, for surface-level propagation, we need to take into account the effects of the
surface wave. We compare our measurements results against all these models to deter-
mine a suitable path loss model for surface-level WSNs. While the free space, two-ray
ground reflection, and ground-wavemodels predicts the path loss given environmental
and system parameters, we use our measurement results to estimate the least squares
error (LSE) path loss exponent n and standard deviation σdB for the log-distance and
log-normal models.
The free space model predicts the received signal strength when the first Fresnel

zone between a transmitter-receiver (T-R) pair is clear of obstacles. The free space
received power (in mW) is a function of the distance d between the pair and is obtained
from the Friss free space equation below [Rappaport 2001],

P0(d) =
PtGtGrλ

2

(4π)2d2L
(1)

where Pt is the transmitted power in mW,Gt andGr are the transmitting and receiving
antenna gains, respectively, λ is the wavelength of the signal, and L is the system path
loss. A summary of the mathematical notations used here and in the following sections
are given in Table I.
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Fig. 3. Raster scan pattern

A fundamental space field intensity E equation arising from the effects of plane
earth on the propagation of radio waves is given by [Bullington 1947] as

E

E0
=

Direct wave
︷︸︸︷

1 +

Reflected wave
︷ ︸︸ ︷

Γej∆ +

Norton surface wave
︷ ︸︸ ︷

(1− Γ)Aej∆ (2)

where Γ is the ground reflection coefficient,∆ is defined in Table I, E0 is the free space
field intensity in units of volts per meters (V/m):

E0 =

√
30PtGt

d
(3)

and A is the surface wave attenuation factor:

A ≈ −1

1 + j 2πd
d
(sinθ + z)

(4)

The three components of this field make up the ground-wave. The relationship between
E and the received power is:

Pr(d) = P0

∣
∣
∣
∣

E

E0

∣
∣
∣
∣

2

(5)

When both antennas are elevated at least one λ above ground (or 5-10 λ over water),
the Norton surface wave attenuation factor can be ignored and (2) reduces to:

E

E0
= 1 + Γej∆ (6)
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Table I. Mathematical Notations

Pr Received power (mW)

Pt Transmitted power (mW)

P0 Received power in free space (mW)

Gr Receiver antenna gain

Gt Transmitter antenna gain

d Transmitter-Receiver separation distance (m)

λ Wavelength (m)

L System loss factor not related to propagation

hr Receiving antenna height (m)

ht Transmitting antenna height (m)

PLdB(d) Mean path loss (dB) as a function of distance

d0 Reference distance (m)

n Pathloss exponent

E Electric field intensity (V/m)

E0 Electric field intensity for free space (V/m)

A Surface wave attenuation factor

Γ Ground reflection coefficient

Γ‖ =
ǫ sin θ−

√
ǫ−cos2 θ

ǫ sin θ+
√

ǫ−cos2 θ
(Vertical polarisation)

Γ⊥ =
sin θ−

√
ǫ−cos2 θ

sin θ+
√

ǫ−cos2 θ
(Horizontal polarisation)

z z‖ =

√
ε−cos2θ

ε
(Vertical polarisation)

z⊥ =
√
ε− cos2θ (Horizontal polarisation)

θ Grazing angle - angle between reflected ray and ground(o)

ε Complex relative permittivity

ǫ− j60sλ

ǫ Dielectric constant of ground relative to unity in free space

s Conductivity of ground (mhos per meter)

∆ Phase difference between direct and reflected E-field components ≈ 4πhthr
λd

h0 Minimum effective antenna height (m)

XσdB
Zero mean Gaussian distributed random variable with standard deviation σ (both in dB)

σ Standard deviation

The predicted reception power using this field intensity equation is known as the two-
ray ground reflection model and can be derived from (5) and (6):

Pr(d) =
PtGtGr

L

(
λ

4πd

)2

|1 + Γej∆|2 (7)

For near grazing paths, Γ is approximately -1 for both horizontal and vertical polar-
ization. This reduces (7) to:

Pr =
PtGtGr

L

(
λ

4πd

)2

|2sin∆
2
|2 (8)

When ∆/2 < π/10, sin∆
2 ≈ ∆

2 . Thus, for d > (20hthr/λ), the two-ray ground reflection
model can be simplified to:

Pr(d) =
PtGtGr

L

h2
th

2
r

d4
(9)
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Fig. 4. Overview of Model and Contribution

and this equation is used in network simulators such as [NS2 2009; Qualnet 2009]. For
conditions when d < (20hthr/λ), the received power theoretically oscillates between
local maxima of 6dB above free space to −∞dB at local minima. Both [NS2 2009;
Qualnet 2009] use (1) to approximate the path loss at this range for simplicity.
When antennas are located near ground (hr,t < λ), the first two terms in (2) cancel

each other out (Γ ≈ −1 and hr,t ≈ 0 ∴ ∆ ≈ 0). The surface wave thus becomes a more
dominant component of the signal propagationmechanism. The magnitude of the third
term in (2) can be written as [Bullington 1947]:

|(1− Γ)A| ≈ 2
2πd
λ

z2
=

4πh2
0

λd
(10)

where h0 is the minimum effective antenna height:

h0 =

∣
∣
∣
∣

λ

2πz

∣
∣
∣
∣

(11)

Using (1), (5) and (10), we simplify the surface wave path loss model as:

Pr(d) =
PtGtGr

L

(
h0

d

)4

(12)

which is similar to (9) except for the change in the minimum effective antenna height.
The log-distance path loss model predicts the average path loss for a T-R separation

based on the measured path loss at a reference distance d0 and a given path loss
exponent n, both of which are usually obtained from experimental results. In Appendix
B, we report the best fit for n from our measurement results, estimated using LSE, for
the equation given in [Rappaport 2001]:

PLdB(d) = PLdB(d0) + 10n log
d

d0
(13)

Due to various objects in the environment, two different locations with the same T-
R separation may have a large difference in received signal strength. Measurements
from [Cox et al. 1983] have shown that the median path loss for any small-scale area
with a T-R separation of d, is log-normally distributed about the mean value predicted
by (13). This log-normal shadowingmodel is given as [Rappaport 2001]:

PLdB(d) = PLdB(d0) + 10n log
d

d0
+XσdB

(14)

where XσdB
is a zero-mean Gaussian distributed random variable with a standard

deviation σdB, both in dB. We also present the value of σdB from our measurement
results in Appendix B.
Fig. 4 shows a brief overview of our model and contributions that will be detailed

in the following sections. We show that the ground-wave and surface wave models can
accurately model the path loss in flat terrain (Sec 4.1), and present the surface-level
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Fig. 5. Measured signals’ median levels relative to reference at Location I

irregular terrain (SLIT) model that takes into account the path profile and effective an-
tenna height for large-scale path loss prediction in irregular terrain (Sec 5.2). The con-
tributions of shadowing are reported as the standard deviation σdB for a log-normally
distributed random variable for the SLIT model for flat and irregular terrain (Sec 4.1,
5.1, 5.2). We also show that the small-scale area fading is Rician distributed, and we
propose an empirical expression of the average K-factor based on the distance from
the signal source and report the standard deviation σdB for a log-normally distributed
random variable around the average K-factor (Sec 4.2, 5.3). Finally, all three different
effects are combined as the distance and terrain dependent total fading experienced at
a randomly positioned receiver (Sec 4.3, 5.4).

4. FLAT TERRAIN

4.1. Large-scale path loss

The data points in the log-log graph in Fig. 5 are the median values of the signal
envelope from scans recorded in various randomly selected positions in Location I.
The signal levels in the y-axis of the figure is relative to the transmitter’s mea-
sured output. The free space (1) and two-ray (7) models severely under- and over-
estimate the actual path loss, respectively, for the given measurement parameters
(hr,t = 0.1, d >> (20hthr/λ)). Detailed results for the log-normal shadowing model
are available in Appendix B.
The simplified surface wave path loss model (12) gives a very good prediction of the

actual path loss for distances farther than 3-4m from the signal source at Location
I for ǫ = 3.9 and s = 0.058, both estimated using a technique proposed in [Kim and
Narayanan 2002], and vertical antenna polarisation. The reason for the error at closer
distances is because the direct and reflected wave terms do not completely cancel each
other out (i.e. Γ > −1). For these distances, the more complicated ground-wave model
(2) gives a very accurate result. The ground-wave model predicts the slower rate of
decay for signals at closer distances before a steeper slope further away from the signal
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source that matches the simplified surface wave path loss model. Results from Location
III match those from Location I when the ground-wave or surface wavemodels are used
with measured ǫ = 5.6 and s = 0.036. We speculate that the effects of the direct and
reflected waves at closer distance along with the surface wave component probably
accounts for the ”2-slope” result observed in [Martfnez-Sala et al. 2005] as well.
In Fig. 6, we plot the histogram of the signal envelope medians after removing the

surface wave trendline for distances 3m and above from the reference source. We can
see that the distribution tends to be log-normal with a σdB of 3.67. As such, the received
median signal strength for a random small-scale area with T-R separation d can be
modelled using the simplified surface wave model (12) as:

Prfl1(dBm)(d) = 10 log

(
PtGtGr

L

(
h0

d

)4)

+XσdB
(15)

where XσdB
is a Gaussian distributed random variable with a standard deviation of

σdB, both of which are in dB.
We would like to highlight that (15) gives a very accurate prediction of the mean

large-scale path loss for distances after the inflection point using just the ǫ and s, which
can be obtained using simple techniques proposed in [Kim and Narayanan 2002] (a
caveat to this method not mentioned in the paper is that measurements for lower fre-
quencies are best performed with smaller incidence angles or to use higher frequency
signals for better accuracy). If accurate prediction of path loss for small T-R separation
is needed, the ground wave model (2) can be used together with the measured ǫ and
s. The alternative method to model the received signal strength is to employ extensive
measurements to find the best fit n for the log-distance model and also the inflection
point where n shifts to a deeper gradient.

4.2. Small-scale Fading

Fig. 7 shows the signal level for each raster scan line at a position 30m away from
the signal source at Location I. This figure is representative of scans far from the sig-
nal source. Due to multipath propagation, even static nodes located relatively near
each other can experience significant fading effects. In conditions when the LOS path
between a T-R pair is totally obstructed, the fading is normally characterised as a
Rayleigh distribution [Hoffman and Cox 1982; Cox et al. 1983]. In this subsection, we
try to fit the small-scall fading effects measured at Location I, where half of the first
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Fig. 7. Signal scan at 30m from the source

Table II. Average RMSE for each distribution

Distribution Rice Rayleigh Gaussian Extreme Value

RMSE (all) 0.0556 0.0807 0.0557 0.0581

RMSE (<10m) 0.0673 0.0918 0.0675 0.0695

RMSE (≥10m) 0.0454 0.0707 0.0454 0.0481

Distribution Weibull LogNormal Nakagami

RMSE (all) 0.0639 0.0598 0.0565

RMSE (<10m) 0.0707 0.0690 0.0675

RMSE (≥10m) 0.0571 0.0516 0.0467

Fresnel zone is blocked by the surface, with the Rice, Rayleigh, LogNormal, Gaussian,
Weibull, Nakagami, and Extreme Value distributions[Parsons 1992]. All of these dis-
tributions have been used to characterise small-scale fading in wireless networks.
From the measured signal power, we extract the voltage amplitude of the received

signals envelopes for each scanned area, and normalise it to the median. We then used
the normalised values for distribution fitting. Table II shows the root mean square er-
ror (RMSE) between the theoretical distributions and measurement results. A smaller
RMSE shows a better fit for the distribution [Hashim and Stavrou 2005]. The Gaus-
sian and Rician distribution shows the best fits for the small-scale fading in Location
I. Since the Rician distribution is generally used to model small-scale fading with a
dominant path, we will use it to analyse our results.
The Rician probability density function is given as [Abdi et al. 2001]

fR(r) =
2(K + 1)r

Ω
e(−K−

(K+1)r2

Ω )I0

(

2

√

K(K + 1)

Ω
r

)

, r,K,Ω ≥ 0 (16)

where I0(·) is the zeroth-order modified Bessel function of the first kind, and K and Ω
are the shape and scale parameters, respectively. K is the ratio of the power received
via the dominant path to the power contribution of the random paths, and Ω = E[R2] is
the average signal power, where R(t) is the received signal envelope. Since the voltage
level was normalised about the median,K completely specifies the fading distribution.
We used the moment method [Abdi et al. 2001] to estimate K from our measurement.
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Fig. 8. Factors in determining Rician K-factor

Fig. 8a shows the plot of the measured Rician K-factor in dB (KdB) versus the dis-
tance in log scale from the signal source. The LSE regression line shows a strong nega-
tive correlation betweenKdB and distance. TheKdB is found to be normally distributed
around the regression line with a standard deviation σdB of 2.13dB. Therefore we pro-
pose the following equation to model the K-factor as a function of distance

KdB(d) = C1 log(d) + C0 +XσdB

or (17)

K(d) = d
C1
10 10

C0+XσdB
10

(18)

where C1 = −6.09 and C0 = 17.46 are the coefficients for Location I, and XσdB
is a

Gaussian distributed random variable.
Fig. 8b plots the measured KdB versus excess path loss in decibel (EPLdB). Excess

path loss here is defined as the measured path loss minus the theoretical mean path
loss. This means that the higher the EPLdB, the lower the measured signal is relative
to the predicted mean path loss. Results shown here use (12) for the predicted mean
path loss. For d ≥ 3m, results from (13) are quite similar to those of (12) and will not
be shown here. From Fig. 8b, we can see that there is negligible correlation between
KdB and EPLdB.
The correlation matrix for log(d), EPLdB, and KdB is given below:

ρ(log(d), EPLdB,KdB) =

[
1.0000 −0.0122 −0.7013
−0.0122 1.0000 −0.0150
−0.7013 −0.0150 1.0000

]

(19)

Results for the K-factor coefficients from Location III, which is also a flat terrain,
is quite similar to those from Location I although the ground quality is slightly bet-
ter (larger value of ǫ), and we do not factor in the ground conditions here. However,
it might have to be considered for larger differences in ǫ, and more experiments are
required in the future for different ground types to determine this. Temporal changes
to ground conditions due to weather (i.e. rain and snow) were found to have negligible
effects.
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Fig. 9. Classification of paths

4.3. Summary

The results above show that the path loss for any T-R pair located at surface-level on a
flat terrain is a random value. The large-scale path loss can be modelled using (15) as
a log-normally distributed value about a distance-dependent mean. This value is also
the median of the signal strength received within a small-scale area, which is Rician
distributed with a distance dependent K-factor (18). From (15) and (18), the received
signal power in dBm for a T-R pair with separation of d can be modelled as

Prfl2(dBm)(d) = Prfl1(dBm)(d) + 20 log(R(K(d))) (20)

where R(K(d)) is a Rician random variable.
The received power calculated from (14) can also be used in place of (15) in the

equation above if a log-normal shadowing model is used.

5. IRREGULAR TERRAIN

5.1. Large-scale path loss

For irregular terrain, we classify measured signals according to three types of path pro-
files; these paths are line-of-sight (LOS), blocked LOS (BLOS), and non-LOS (NLOS)
paths as shown in Fig. 9. LOS refers to paths that have a significant clearance above
ground and no obstacles in between the T-R pair, although in most cases for nodes on
surface-level, there is a probability that the edges of the first Fresnel zone for UHF
signals will be infringed upon by external objects since the size of the Fresnel zone is
large. BLOS paths are for T-R pairs that are located along the same incline with no
significant obstacles or depression (clearance) in-between, which means that almost
half of its Fresnel zone is obstructed by the ground. NLOS paths occur when the nodes
are completely blocked from each other by a large obstacle, with a diffracted signal
arriving at the receiver or in other words, the Fresnel zone is almost completely ob-
structed. These classifications serve as a rough guide as there are many borderline
locations that may be described as either one of two different types of paths.
The data points in Fig. 10 are the median small-scale area signal levels at various

points in Location II. The surface wave and ground-wave lines are based on the es-
timated ǫ of the location (which is located near Location I and has a slightly higher
ǫ = 4.3). The linear regression line is the LSE fit for all the sample points. From the
results, (12) and (2) show a very good fit for the BLOS data similar to the flat terrain.
However, the data points for LOS and NLOS paths show a large deviation from the
predicted value. The standard deviation for all the data points from the model trend-
line is 9.64dB. The standard deviation for the surface wave model is similar to the
ground-wave model for d > 3m.
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Fig. 10. Measured signals’ median levels relative to reference at Location II. The average standard devia-
tion of the measured signals is 2.93dB.

Fig. 11. Effective antenna height

5.2. Surface-Level Irregular Terrain (SLIT) Model

To model the path loss for the LOS paths more accurately, we found the difference
in height hd between the transmitting antenna and the point where the first Fresnel
zone intercepts the terrain to be a suitable effective antenna height (Fig. 11) to use. The
RMSE between the measured path loss for LOS data and the predicted path loss using
(12) is 15.46dB. By applying the new effective antenna height, the RMSE between the
measured LOS data and the new predicted path loss becomes 3.92dB. Substituting the
new effective antenna height into (12), the received signal strength for LOS paths can
then be modelled as follows:

Prir1(d) =
PtGtGr

L

(

(hdh0)

d2

)2

(21)

Fig. 12 shows the excess path loss from the measured signals relative to the surface
wave model (12) (and subsequently, ground-wave). As can be seen, the surface wave
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Fig. 12. Excess path loss for LOS paths

model severely underestimates the path loss compared to the measured LOS data.
Using (21), a more accurate prediction of the path loss can be obtained when there is
partial clearance around the transmitter.
For NLOS paths, we find that we can use a knife-edge model to represent the obsta-

cles and the classical Fresnel solution to obtain a relatively accurate path loss model
if there is a sharp bend along the surface path between the T-R pair with angle α (Fig.
13). From our experimental results, when α ≥ 35◦ and the path then continuing at
least λ in the same direction, additional diffraction gains Gd have to be accounted for.
For NLOS paths with only gradual changes along the path, the signal seems to be
guided along the surface and no additional diffraction gains occur. Gd can be obtained
using the terrain information to calculate the Fresnel-Kirchoff diffraction parameter v
[Parsons 1992]

v = h

√

2(d1 + d2)

λd1d2
(22)

where h,d1, and d2 are in terms of the geometry of Fig. 9. Instead of solving for the com-
plex Fresnel integral [Parsons 1992],Gd can then be approximated using the equations
derived from [Lee 1982]

Gd(v) =







0.5− 0.62v −0.8 < v < 0

0.5e−0.95v 0 < v < 1

0.4−
√

0.1184− (0.38− 0.1v)2 1 < v < 2.4
0.225
v

v > 2.4

(23)

The diffraction gain is then included into (14) to predict the mean received signal
strength as below

Prir1(d) = G2
d

PtGtGr

L

(

h0

d

)4

(24)

G2
d is used because Gd is calculated from volts instead of watts. Fig. 14 compares

the excess path loss predicted using (12) and (24). A much more accurate path loss
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Fig. 13. NLOS paths with sharp bend (top) and gradual change (bottom)
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Fig. 14. Excess path loss for NLOS paths

prediction is obtained after including the diffraction gain into the results. The RMSE
with and without diffraction gain is 3.25 and 12.66 dB, respectively.
We propose the following surface-level irregular terrain (SLIT) model to calculate

the large-scale mean path loss for any given T-R pair at surface-level on irregular
terrain through the following steps:

(1) Determine the larger of h0 and hd to be used as the effective transmitting antenna
height.

(2) Using the original antenna geometry, determine if there are any additional fea-
tures in the path profile that can cause additional diffraction gains using the DEM
information.
—First determine the distance between the T-R pair in a straight path.

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: November 2011.



39:18 Chong and Kim

—Then, perform a search using the DEM data for the terrain peak between the
T-R pair to determine if it obstructs the LOS of the T-R pair and if there is a
sharp bend at the peak as shown in Fig. 13.

— If both of these conditions are met, calculate the height of the obstacle as the
perpendicular distance from the top of the obstacle to the direct line between
the T-R pair (Fig. 9). The distance between the intersection of the two lines and
T is denoted as d1 and the distance between the intersection and R is denoted
as d2. Using these values, calculate v for the path from (22) and use it to find Gd

from (23).
(3) Calculate the average received power using the following equation obtained from

combining (12), (21), and (24):

Prir1(d) = G2
d

PtGtGr

L

(

hdh0

d2

)2

(25)

Using this proposed method, most of the outliers classified as BLOS can be more
accurately modelled. For example, the RMSE between the measured value and the
predicted path loss for the six BLOS data points above the linear regression line at
distances of 20-30m in Fig. 10, is 2.39 and 12.48 dB for the SLIT model and the sim-
plified surface wave model, respectively.
Finally, the median received power for a random small-scale area in irregular terrain

with a T-R separation of d can be represented as

Prir1(dB)(d) = 20 log

(

Gd

(
hdh0

d2

))

+ 10 log

(
PtGtGr

L

)

+Xσ(dB)
(26)

where Xσ(dB)
is Gaussian distributed random variable with a σdB = 4.38.

We would like to note that there is no actual need to classify path profiles when
using the SLIT model as the steps in SLIT already factors in both antenna height ad-
justments and diffraction losses on the path between a T-R pair based on the terrain’s
surface. This terrain-based path profile is then used to more accurately calculate the
large-scale path loss rather than relying on either a log-distance path loss model with
a single path loss exponent and a very large standard deviation or requiring multiple
path loss exponents and having to determine when to apply one of it for a T-R pair,
based on a classification of the path profile that can be arbitrary and inaccurate in
many borderline cases.

5.3. Small-scale Fading

Using the method described in sub-section 4.2, we find that the Rician distribution
gives the best fit for the small-scale fading in irregular terrain as well with a RMSE of
0.0521. Fig. 15a plots the estimated KdB from our measurements versus the distance
from the signal source in log scale. Similar to the results measured on the flat terrain,
the graph suggests that KdB is negatively correlated to the distance from the sender.
Fig. 15b shows the estimated KdB versus the excess path loss between the measure-

ment results and the SLIT model. Similar to the flat terrain, there is no correlation
between the excess path loss and the K-factor. Therefore, (18) can be used for irregular
terrain as well, with C1 = −3.84, C0 = 10.32, and σdB = 4.33.

5.4. Summary

Similar to flat terrain, the received signal strength for a T-R pair at any given location
in irregular terrain can also be modelled as a combination of two random variables. (26)
models the large-scale path loss as a log-normally distributed value around a distance-
and terrain-dependent mean calculated using the SLIT model (25). The small-scale
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Fig. 15. Factors in determining Rician K-factor

area fading in that particular location can then be modelled as a Rician distribution
with a distance-dependent K-factor that can be obtained from (18). Combining (26) and
(18), we can model the path loss for a particular T-R pair in irregular terrain as:

Prir2(dBm)(d) = Prir1(dBm)(d) + 20 log(R(K(d))) (27)

where R(K(d)) is a Rician random variable.

6. VERIFICATION OF PATH LOSS MODEL

To verify our proposed path loss model (25), we obtained high resolution 1m x 1m
DEM (Digital Elevation Model) files from the Korean National Geographic Informa-
tion Institute for an area near Location II, but with slightly steeper slopes. We then
measured the gains of two λ/4 whip antennas at specific angles. To verify our results
in irregular terrain, we measured the median small-scale area signal strength at 50
locations along 5 different paths (Fig. 16) with distances of between 20-65m from the
signal source using the same methodology described in Section 3. We first coupled one
of the whip antennas with the signal source. Next, we adjusted the antenna so that the
angle with the known gain faced one of the 5 paths. Finally, we ensured that the angle
of the antenna used for measurement of the signal strength faced the signal source to
reduce differences caused by the difference in radiation pattern of the antennas while
performing the raster scans. We repeated this procedure at each of the locations along
every path.
After extracting the path profiles from the terrain information, we used the SLIT

model to predict the signal strength at each location, and we compared the predicted
values with our measurement results. The results show that the predicted received
signal power is within ±8dB of the measured values (Fig. 17) and also within 2 stan-
dard deviations obtained from the previous results. The average difference between
the measured results and the predicted results from the SLIT model is 2.56dB with
a standard deviation of 1.82dB. The cumulative distribution function (cdf) of the dif-
ference between the measured and predicted values is plotted against the theoretical
cdfs for the SLIT and log-normal (LN) models in Fig. 18. Some of the differences be-
tween the measured and predicted values could be attributed to shadowing by objects
in the environment that are not part of the DEM information. One method to account
for the additional shadowing could be by adapting RIM [Zhou et al. 2004] or other
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Fig. 16. Path profile of irregular terrain verification site generated from DEM information
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Fig. 17. Measured signal level relative to predicted mean for irregular terrain verification location

Table III. Verification on flat terrain

Location ǫ s σdB

Park 3.81 0.039 2.05

Parking lot 2.07 0.064 2.59

River side 6.13 0.012 2.18

similar models. However, there is significant work to be done for accurately modelling
different objects in the environment, and we leave this for future work.
We also performed a similar verification on flatter terrain at a few different locations.

Following the same techniques to measure the permittivity and conductivity of each
location as described in [Kim and Narayanan 2002], we obtained the predicted mean
large scale path loss at each site. Location with low ǫ are considered as poor ground
where higher path loss will occur when RF signals are transmitted near the ground
surface, while ground with higher ǫ cause less losses. We use the same antennas and
technique to perform raster scans at 25 randomly chosen locations at each site between
the distances of 20m-65m from the signal source, and compared the measured medians
with the predicted average values. We ensured that there was no foliage or objects
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Fig. 18. CDF of difference between predicted and measured path loss (Fig. 17)
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(b) Parking lot
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Fig. 19. Measured signal level relative to predicted mean for different flat terrain

within the measurement locations that could cause additional path loss or small-scale
fading that would affect the measurement results for each location [Chong et al. 2011].
The results are shown in Table III and Fig. 19. Most of the measured median values lie
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Fig. 20. Measured signal level relative to predicted mean for 2.4GHz frequency band

within 2dB of the predicted values for all 3 sites. From the results obtained, it can be
seen that using a model that includes the surface wave component gives an accurate
prediction of path loss for sensor network communications located on different types
of flat ground as well as irregular terrain for the 400MHz channel.
Using a similar method as above, we also attempted to verify the SLIT model using

sensor nodes in the 2.4GHz band for irregular terrain. The results of the verifica-
tion are shown in Fig. 20. The results show a slightly better performance compared
to the 400MHz verification done on irregular terrain. The main reason for this is be-
cause the transmission ranges for 2.4GHz RF signals so close to the ground is much
shorter than for the 400MHz band. Therefore, measurements for this frequency were
performed closer to the transmitting antenna (between 10-35 m), and were less likely
to be interfered with by objects in the environment unlike the previous verification
for the 400MHz band performed over longer distances. The smaller Fresnel zones for
2.4GHz RF signals also mean that they are less likely to have interfering objects in
the Fresnel zone, leading to smaller multipath effects compared to the 400MHz band
for LOS propagation (less variation in a small-scale area).
We do not compare our results to other popular outdoor irregular terrain models

such as Longley-Rice[Longley and Rice 1968], Edwards-Durkin[Edwards and Durkin
1969], and Egli [Egli 1957] models as they were proposed for propagation with anten-
nas located higher than ground level. As such, they only consider the free space and
two-ray propagation models, and tend to over predict the path loss for surface-level
communications by not taking into account the surface wave component. Thus, we feel
that such comparisons are inappropriate.

7. IMPACT OF THE SLIT MODEL

[Zhou et al. 2004; 2006] performed logical analysis and simulated the impact of irregu-
lar radio communications on existing MAC, routing, localization, and topology control
protocols in wireless sensor networks. The impact of the results drawn from our work
has many similarities with those of [Zhou et al. 2004; 2006] since our results show
a slight variation in the placement of the radio within a small-scale area can result
in a significant difference in static small-scale fading, while the radio signal strength
received in different directions depends on the terrain between the transmitter and
receiver. The main difference is that our work models the path loss using terrain in-
formation, which contributes to a portion of the radio communication irregularities
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Fig. 21. Hidden terminal problem and correlated path loss

observed previously. We discuss the additional impact that can be observed through
the usage of the SLIT model below.
The irregularity of the communication range of sensor nodes in a 3-dimensional

viewpoint does not just depend on the direction of the T-R pair; it also depends on
the terrain between them. Consider the case shown in Fig. 21 where nodes B and C
are in the same direction from node A. However, nodes A and B are hidden from each
other due to the terrain profile, but are both exposed to node C. Situations such as this
can lead to more collisions due to the hidden terminal problem, and are not commonly
reflected in simulations. Since most sensor network MAC protocols use some form of
carrier sensing to prevent collisions, evaluation using simulation with terrain profiles
can help improve performance and parameter selection. Furthermore, some protocols
which depend on nodes overhearing each others packets to resolve contention (for ex-
ample, CMAC’s [Liu et al. 2009] forwarding node contention protocol) may perform
poorly in such environments.
Consider also the case where another node, D, is placed next to node C in Fig. 21. In

the commonly used log-normal shadowing model, it is likely that the simulated path
loss between the T-R pairs of A-C and A-D differ by a lot due to the randomly gen-
erated log-normal path loss variable. The non-correlation of received signal strength
could lead to both nearby nodes having vastly different packet reception ratios. An-
other impact from irregular terrain that can be demonstrated by the SLIT model is
that nodes that are located at the top of high ridges are likely to have much larger
number of neighbouring nodes compared to nodes located at the bottom of slopes or in
valleys. These highly elevated nodes are also more likely to be chosen by geographical
forwarding algorithms [Karp 2000; Zorzi and Rao 2003; Liu et al. 2009] as forwarders
since they are usually the furthest away from nodes at lower elevations. Due to their
larger number of neighbours and more frequent requests to be forwarders, it is likely
that the batteries of these nodes will drain off more quickly and suffer from more
packet losses due to collisions. However, scenarios such as these may allow users new
insight on ways to utilise geographical features for more efficient routing methods.
To highlight the differences between the SLIT model and commonly used path loss

models, we use Qualnet [Qualnet 2009] to compare the performance of Geographic For-
warding (GF) [Karp 2000] and AODV [Perkins et al. 2003] over a simple duty-cycling
CSMA MAC protocol modelled after X-MAC[Buettner et al. 2006] when using SLIT
and the log-normal path loss model. We modelled the transceiver after TI’s CC1101
[Texas Instruments 2008a] and we use a SINR model to determine the success of each
packet reception event. In the simulation, we randomly place between 100 - 800 nodes
within a 600m x 600m square area of irregular terrain obtained from the DEM map.
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Table IV. Environmental & Physical Simulation Pa-
rameters

Area 600m x 600m

Number of nodes 100 - 800

Rx Sensitivity -111dBm

Background noise -105dBm

Tx Power 10dBm

Phy header 7Bytes

Phy footer 2Bytes

ACK Packet 4Bytes

Control Packet 64Bytes

Data Packet 64Bytes

Antenna height 0.1m

Shadowing model Log-normal (7.78dB)

Path loss exponent 3.34

Frequency 433MHz

Packet reception SINR model

Sensor range 30m

# sensed objects 3

The DEM data, which provides the longitude, latitude, and altitude in square grids for
a given area, is used to derive the path profile between individual T-R pairs by using
each nodes latitude and longitude coordinates to determine its position, and antenna
elevation information to determine its height. The surface of the terrain along a T-R
pairs path is extrapolated from the heights of the surrounding grid points and is used
as the path profile. The SLIT model (Sec. 5.2) is then applied to each path profile to
calculate the large-scale path loss between them. The calculation of the large-scale
path loss can be either done before simulation or during run-time, if supported by the
simulator. Precomputation results in faster simulation, but slower loading time, and
requires a large number of values to be calculated and stored for mobile scenarios,
while run-time computation results in large memory consumption during simulation.
The large-scale path loss obtained from SLIT can also be used in conjunction with
other path loss models such as foliage models and small-scale fading models for more
detailed modelling.
We generate 3 events every second randomly across the map. Nodes within 30m of

the event will generate a packet towards the sink. The log-normal path loss model
disregards the effects of the terrain and uses parameters obtained from our measure-
ments in Appendix B. To isolate the effects of the irregular terrain, we disregard the
effects of the antenna radiation pattern and fast-fading in the environment here. How-
ever, these two effects can be easily used together with SLIT.
Fig. 22a shows the number of nodes that have connectivity to the sink, which we

define as each hop to the sink along the route having a packet reception ratio of at
least 0.1, when SLIT is used versus the log-normal model. The error bars in this fig-
ure show the maximum and minimum percentage of connected nodes measured over
30 simulations, while the large markers show the average measured value. As can be
seen from the results, the percentage of nodes connected to the sink for the SLIT model
is on the average lower than that of the log-normal model when the number of nodes
in the network is small due to the effects of the terrain. However, it can be possible
for the nodes in the SLIT model to have higher connectivity depending on the position
of the nodes in the simulation. The large standard deviation in the results for SLIT is
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Fig. 22. Difference between SLIT and log-normal model

due to the random positioning of nodes. In scenarios where more nodes are located on
elevated terrain, there is a higher chance that these nodes are able to communicate
with a larger number of neighbours and serve as a link to the sink for other not so
well connected neighbours. When most nodes are located in ravines or separated by
geographical features, connectivity to the sink reduces due to the lack of candidate for-
warders. This is a phenomenon that cannot be observed with the LN model due to the
random assignment of shadowing values and the lack of correlation between neigh-
bouring nodes, thus the connectivity of a node to the sink becomes a simple function of
the node density in the network for the LN model.
Fig. 22b shows the average number of neighbours each node has depending on the

density of the nodes in the network. On average, nodes in the SLIT model have lower
number of neighbours compared to the log-normal model. However, the standard de-
viation (indicate by the error bars) of the number of neighbours each node has is also
much larger in the SLIT model, due to the effects of the terrain elevation as men-
tioned above. This is an expected result based on our previous measurement which
highlighted that nodes located on elevated terrain managed to transmit much further
compared to nodes located on lower ground as long as there are no geographical ob-
structions. This translates to some nodes having a much larger number of neighbours
compared to others. However, due to geographical features, the neighbours are usually
distributed with a large bias towards certain directions. For the LN model, neighbours
are usually distributed equally in all directions when the node density is high. This is
also a factor that contributes to the higher connectivity seen in Fig. 22a.
While the preceding results highlight the difference between the SLIT model and

the log-normal path loss model, Fig. 23a shows the impact of the irregular terrain on
packet delivery. When actual terrain features are considered for path loss modelling,
the AODV and GF protocols are shown to deteriorate drastically compared to when
the terrain is ”flattened”. The sharp drop in the end-to-end packet delivery ratio for
the GF protocol is mainly due to interference from hidden terminals as GF tends to
select a node closest to the sink for forwarding. The signal strength for such T-R pairs
are usually weak and are easily interfered from hidden terminals surrounding the
pair. Furthermore, the GF algorithm is susceptible to void routes, which can easily
occur in irregular terrain in the SLIT model, but is not seen in the log-normal path
loss model. Another point of failure for GF which we found in our simulations is the
tendency of neighbouring nodes to attempt to forward to the same elevated node on
higher terrain due to the longer transmission distance achievable when SLIT is used.
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Fig. 23. Impact of SLIT model

This causes collisions at the receiver, especially when neighbouring nodes are unable
to hear each other’s transmission due to terrain features. The AODV protocol performs
better than GF in irregular terrain due to its characteristic of finding multiple paths
to the destination and its use of hops rather than distance as a routing metric.
The end-to-end delay for GF is generally lower than AODV due to it not requiring as

many control packets and its greedy selection policy, which works well on flat terrain.
In the case of when irregular terrain is taken into account, the packets that are deliv-
ered by GF are generally from nodes closer to the sink, thus skewing the delay metrics
to a much lower value, while packets from nodes further away are mostly dropped
along the way. The same is true for AODV in the SLIT model, but at a less inequitable
scale, thus the observation that the end-to-end delay of SLIT-AODV being lower than
LN-GF at certain lower node densities.
To summarise, the insights and additional information gained from using SLIT over

the LN model from this simulation are:

—The number of neighbours that is within radio range not only changes depending
on a node’s location and path loss exponent, but may also be clustered in certain
directions due to terrain factors.

—The node density needed to provide connectivity to the entire network depends more
on the position of individual nodes for SLIT compared to the LN model, where a uni-
form path loss exponent and a random log-normal shadowing value that is assigned
to T-R pairs ameliorates the effect of correlation between geographically co-located
nodes.

—The performance of protocols can vary much greater in SLIT compared to the LN
model due to geographical features influencing the RF propagation, thus making
them more dependent on the location of neighbouring nodes, unlike the LN model
that will average out when a larger number of neighbours are used. Geographical
forwarding algorithms are more severely affected by irregular terrain compared to
a reactive route discovery protocol like AODV, which performs better but at a cost of
additional routing overhead.

Taking all these factors into account will be important for the simulation and deploy-
ment of real-world applications. The actual performance of the protocols and network
life-time could be severely impacted compared to what is expected by the user if the LN
model is used. We hope that the usage of SLIT will allow the development of protocols,
through simulation, that will give a performance close to what is experienced in the
real-world.
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8. CONCLUSION AND FUTURE WORK

In this paper, we present results of channel measurements for outdoor, surface-level
RF communications for WSNs in both flat and irregular terrain. Based on these mea-
surements, we characterise the channel for surface-level communications for static
nodes, and also proposed a new semi-empirical path loss model for surface-level WSNs
called the SLIT model. We then verified this model using detailed terrain information
and computer simulation. We also discuss the impact of the SLIT model on existing
protocols and how it will affect the characteristics of simulation models. Finally, we
discussed and performed simulations to highlight the impact of the more realistic SLIT
model on sensor network simulations.
Key results show that it is necessary to include the direct, reflected, and surface

wave components of a RF signal to accurately predict the large scale path loss for flat
terrain. There is also a need to apply effective antenna heights and diffraction gains
based on the path profile for more accurate path loss prediction in irregular terrain.
Measurement results also show that fast fading in small-scale areas can be charac-
terised as a Rician distribution with distance-dependent K-factor, and that significant
differences in received signal strength can occur within small areas as the T-R separa-
tion increases.
The results and model presented here are also significant for sensor network appli-

cations such as localisation, simulation and modelling of protocols, or for deployment
planning of sensor nodes in irregular terrain by providing a more accurate and realistic
view of signal attenuation for surface-level WSNs communications.
Since there is a distinct lack of path loss models for surface-level wireless commu-

nications at the UHF band, we plan to perform more measurements and verification
for other frequency bands and terrain in the near future to fine tune our work. Results
from [Martfnez-Sala et al. 2005] show path loss curves at a higher frequency (dou-
ble that of the one used here) and at different locations that is consistent with what
we have reported here. Therefore, we are confident that our proposed model can be
extended to other frequency bands.
We would also like to explore ways to simplify our model to increase the ease of

integration into existing network simulators such as ns-2[NS2 2009] for more accurate
simulation results. As far as we know, ns-2 does not support small-scale fading models,
while Qualnet uses two pre-generated sets of Gaussian random numbers to simulate
Rayleigh or Rician fading. Qualnet also has a Longley-Rice based Irregular Terrain
Model that we have modified to support SLIT.
Finally, we would like to highlight that while a lot of work has been done to char-

acterise generic wireless communication channels [Andersen et al. 1995], a lot more
work is needed to fully characterise surface-level propagation for different environ-
ments, such as urban, sub-urban, and indoor, that are likely to see sensor network
deployment in the future. These characterisation includes path loss models, spatial
fast-fading, and temporal fast-fading caused by environmental changes around static
sensor networks.

APPENDIX

A. STANDARD DEVIATION OF MEASUREMENT SAMPLES

In this appendix, we present results for the standard deviation of each measurement
sample taken at Location I and II. The graphs in Fig. 24 shows that the standard
deviation tend to increase as distance increases. However, LOS and NLOS conditions
(Fig. 24b) are also a factor in determining the standard deviation of the measurements
as NLOS conditions means that there is no single dominant path between the T-R pair.
This causes a multipath condition where different radio waves arrive from different
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Fig. 24. Standard deviation of measurement samples

directions with different time delays. When they combine vectorially at the receiver,
the resultant signal can vary significantly over a small area. The reverse is true for
LOS conditions where a significant number of signals transmitted far away still have
a very strong single dominant path and thus a very low standard deviation for the
small-scale fading in a small area.

B. MODELLING THE RESULTS USING THE LOG-NORMAL PATH LOSS MODEL

In this appendix, we present results for the measured path loss exponent as well as the
standard deviation for the log-normal path loss model as this is one of the most com-
mon path loss models in use. We first show the results obtained from the flat terrain
in Section 4, then the results from the irregular terrain in Section 5.
Fig. 5 includes the best fit log-distance model (13) from the complete measurement

results with d0 = 1m as the reference. We see that it tends to slightly over estimate
path loss at small distances and under estimate them at larger distances. Plotting the
best fits using measurement results for d0 = 1, 2, 3, 4m in Fig. 25, we can see that the
slope of the fits converge somewhere between d0 = 3 and d0 = 4 for Location I, and
that using a reference distance too close to the signal source may affect the accuracy
of the model. However, this inflection point depends on the composition of the material
of the propagation surface, and varies from location to location. Experimental results
from [Martfnez-Sala et al. 2005] seem to confirm this, although they did not relate
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Fig. 25. Log-distance model with different d0 at Location I

Table V. n and σ for different d0 for Loca-
tion I

d0 (m) 1 2 3 4

n 3.42 3.66 3.88 3.96

σdB 5.07 4.69 4.74 4.83
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Fig. 26. Probability distribution of signals’ medians around predicted path loss (d > 3m)

the results to the surface’s permittivity and conductivity. Table V shows the best fit n
values for different d0s for the log-distance model.
In Fig. 26, we plot the histogram of the signal envelope medians after removing

the log-distance (d0 = 3m) trendlines for distances 3m and above from the reference
source. We can see that the distribution tends to be log-normal with a σdB of 3.48.
In the case of irregular terrain (Section 5), Fig. 27 shows the LSE log-distance fits

for the different path types. As can be expected, the values of n differ by quite a lot de-
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Table VI. n and σdB for Location II

Path Type Total BLOS LOS NLOS

n 3.35 3.43 2.88 4.26

σdB 7.84 5.48 3.80 4.35

pending on the path type with LOS paths having the lowest rate of signal attenuation
and NLOS paths having the highest. Using LSE, the fitted overall path loss expo-
nent n = 3.35 with σdB = 7.84dB for all the sample points, calculated using d0 = 1m
(d0 = 3m gives a similar result here due to LOS and NLOS paths causing a large devi-
ation from the mean). We summarise the values of n and σdB for the log-distance fits
for each path type in Table VI. While the log-normal shadowing model is useful when
the terrain profile is unknown, a more accurate model can be obtained by taking into
account the terrain profile.
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