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Surface matching with salient keypoints
in geodesic scale space

By Guangyu Zou, Jing Hua*, Ming Dong and Hong Qin
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This paper develops a new salient keypoints-based shape description which extracts the
salient surface keypoints with detected scales. Salient geometric features can then be defined
collectively on all the detected scale normalized local patches to form a shape descriptor for
surface matching purpose. The saliency-driven keypoints are computed as local extrema of
the difference of Gaussian function defined over a curved surface in geodesic scale space.
This method can properly function on either manifold or non-manifold surface without
resorting to any surface mapping or parameterization procedures. Therefore, it has a wide
utility in many applications such as shape matching, classification, and recognition. Our
experiments on 3D shapes demonstrate that the salient keypoints and local feature
descriptors are robust and stable to noisy input and insensitive to resolution change. We
have applied our technique to the tasks of 3D shape matching, and the experimental results
showed good performance and the effectiveness of this new method. Copyright © 2008
John Wiley & Sons, Ltd.
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Introduction

Three-dimensional (3D) surface matching is a fun-
damental research issue in computer graphics and
computer vision useful for many applications such
as shape registration,1,2 motion capture, animation
synthesis, partial scan alignment, 3D object recognition,
and 3D shape retrieval.3–5 Generally, the crux of
3D shape matching is to find out good shape
representations, allowing us to match two surfaces
by comparing their shape representations. Compared
with shape matching between 2D images, one of
the essential differences is that 3D surface models
typically lack a regular and uniform parametrization
domain. Therefore, the extensions of 2D algorithms
into 3D are oftentimes non-trivial. Recently, geometric
mapping-based techniques such as spherical mapping
and conformal mapping1,6 are popularly used to map
3D surfaces onto parametric domains for subsequent
analyses, as conducted in 2D images. However, these
methods may introduce inevitable, large distortion when
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mapping large, complex, and topologically complicated
surfaces to a canonical domain. This unwanted distortion
changes the characteristics of actual 3D shapes and
affects the performance in shape matching or other
shape analysis. In addition, it may be very difficult
to compute parameterization of certain high-genus
surfaces. Generally, these methods do not perform well
when processing large-scale models.

While a straightforward approach is to resort to mesh
simplification techniques for a compromise between
geometric accuracy and computational cost, there is
another alternative which focuses only on a set of
selected salient sub-parts that are descriptive enough to
well characterize the whole shape. In our framework,
the essential motivation to incorporate the concept of
saliency into geometric processing is to derive a more
compact shape representation. Apparently, it is very
important that the saliency needs to be identified at all
scales in order to represent all the shape characteristics.
Naturally, scale-space processing seems a viable solution
to this end. Scale-space theory is popularly used to
handle image structures at different scales, in which the
image is represented as a sequence of smoothed images,
parameterized by the size of the smoothing kernel
used for suppressing fine-scale structures.7 Recently,
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scale-space processing has been introduced to identify
mesh saliency8 and multiscale geometric features.9

However, how to generalize it as a stable, robust shape
descriptor remains an open problem.

Based on the psychological finding that human
perceive and recognize real-world objects through
different structures or features at different scales,10

visual data are more reasonable to be represented as a
decomposition across multiple scales, particularly when
the appropriate scale for a structure of interest can not
be determined a priori. Toward this end, we present a
novel non-parametric method based on a construction
of geodesic scale space. The main merits of our approach
are that it can directly identify stable, representative,
salient keypoints on surfaces by computing local extrema
of the Difference-of-Gaussian function defined over the
curved surfaces in geodesic scale space. Scale invariant
geometric features can then be extracted to represent and
characterize the scale-normalized local patches whose
sizes are defined by the scale selection. Collectively, they
form a stable, scalable, and compact shape representation
which can effectively support matching and comparison
of large-scale surfaces. This method directly works on
manifold or non-manifold surface without any surface
mapping or parametrization procedure. Therefore, it has
better scalability, facilitating a wider use in applications.
Our experiments on 3D shapes demonstrate that the
salient keypoints and local feature descriptors are robust
and stable to noisy input and insensitive to resolution
change. We have successfully applied our approach in
face matching, surface alignment, and stitching.

Related Work

Our work is related to the research work in geometric
saliency and the scale-space theory. This section reviews
some closely related work in these fields, from which
more complete literature can be found.

Geometric Saliency

Recently, Gal et al. proposed the construction of salient
geometric features for a range of shape comparison
applications, in which the saliency grade was defined
as a summation of the relative curvature to their
surroundings and the variance of curvature values
in a clustered patches.4 In References [8,11], low-
level human visual attention was modeled by a
center-surround operator on Gaussian-weighted mean

curvatures in a scale-dependent manner, and applied to
mesh simplification and optimal view selection. Most
recently, mesh saliency was also implemented through
Morse theory by Liu et al.12 Salient critical points were
extracted for topological simplification and hierarchical
representation of 3D shapes. Motivated by the success
of such mechanisms applied in the 2D scenario7,10 as
well as a few limited extensions to 3D surfaces, visual
saliency has been paid increasing attention in the fields
of geometry processing and shape understanding. One
of our goals in this paper is to further explore effective
methods for computing geometric saliency which can be
used to establish shape correspondence in 3D. Ideally,
extracted saliency should be the same as the ones
involved in the human perception.

Scale Space

This scale-space processing has been successfully
applied to a variety of topics in computer vision
including feature detection, computation of shape
cues, and object recognition.7,10 Because similar issues
regarding the scale variation of geometric structures
are often observed in 3D shape analysis as well,
extensions of basic scale-space theory onto 3D shapes
have received increasing research interests in recent
years. Based on the geodesic curvature flow, a scale
space for images painted on surfaces was formulated
in Reference [13]. However, it only dealt with surfaces
that were given as parameterized functions on a
bounded domain. Li et al. employed a scale space
representation in the detection of feature point for
point-based surface alignment.14 The scale-space was
generated by iteratively smoothing the original shape
itself with increasing scales, in which there is no clue how
the behavior can be quantitatively controlled. Similarly,
a scale-space representation defined as different levels
of smoothness for the point-based surface was given
in Reference [9], focusing its applications on multiscale
surface editing. In Reference [15], the surface is first
parameterized onto a 2D plane, and then the scale space is
built upon a regularly sampled normal map in a manner
similar to 2D scale-space processing.7 The geodesic scale
space we propose in the following section is formulated
as a sequence of the geodesic Gaussian smoothing
directly on the surface attributes. Similar method is used
for salient keypoint detection in Reference [16]. However,
the Gaussian filtering is directly applied to the vertex
coordinates in 3D, which is fundamentally different from
our method.
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Geodesic Scale Space

In order to define a scale space, it is of utter importance
that new structures must not be introduced from a fine
scale to any coarser scale. Suppose L is a time-varying
function defined on a certain domain. In general, the
diffusion equation

∂tL = c∇2L,

provides a unified framework for the construction
of continuous and discrete scale spaces with initial
condition L(x, y, 0) = f (x, y),10,13 where c is the diffusion
factor. In the 2D case, it has been shown that it
is equivalent to successively convolve the image by
a Gaussian kernel of increasing standard deviation.10

With further requirements regarding linearity and shift
invariance, the Gaussian kernel as well as its derivatives
are the only possible smoothing kernels.10 Therefore, in
this paper we use the Gaussian smoothing and geodesic
distance metric to construct a scale space of the geometric
properties on the surface.

The surface geometry in 3D can be represented as
multiple intrinsic properties defined on the domain.15,17

Features of different scales can thus be extracted from
a multi-scale representation of certain property maps.
We regard geometric attribute maps as a set of function
spaces defined on a two-manifold domain. Let M denote
a two-manifold. The function f : M → R

n(n = 1, 2, . . .)
defines a map. Different measurements of surface
geometry, i.e., mean curvature, Gaussian curvature, and
maximal/minimal curvature ratio, and the normals, are
therefore modeled as surface maps.

In this paper, a scale space is defined on a curved
surface based on geodesic distance, namely the geodesic
scale space (GSS). Suppose M(ρ, θ) is a local patch of
surface S, where ρ is the geodesic radial distance from the
central point, and θ is the angular coordinate with respect
to a preassigned tangential direction. �(ρ, θ) denotes the
certain surface property residing at M(ρ, θ). The scale
space is locally defined as a function, L(ρ, θ, σ), which
is produced from the convolution of a variable-scale
Gaussian, G(ρ, θ, σ), with �(ρ, θ)

L(ρ, θ, σ) = G(ρ, θ, σ) ∗ �(ρ, θ),

where

G(ρ, θ, σ) = 1
2πσ2

e−ρ2/2σ2
,

and ∗ is the convolution operation, formulated as

(f ∗ g)(ρ, θ) =
∫ π

0

∫ +∞

−∞
f (τ, φ)g(ρ − τ, θ − φ)dτ dφ.

Note that the integration of Gaussian kernel on a
curved domain is usually larger than 1. To eliminate the
unwanted scaling effect from the Gaussian convolution
and restrict the computation in a local area, in practice,
we set cut-off for the Gaussian filter at twice of the
standard deviation and normalize the convolution by the
integration of the corresponding Gaussian kernel. The
actual computation is performed using

L(ρ, θ, σ) =
∫ π

0

∫ +2σ

−2σ
�(τ, φ)G(ρ − τ, θ − φ)dτ dφ∫ 2π

0

∫ 2σ

0 G(ρ, θ, σ)dρ dφ
.

Hence, the generated scale space is invariant to bending
of the surface. In addition, we compute the geodesic
distance on triangulated manifolds by solving the
Eikonal equation

|∇T | = F,

in a fast marching manner as shown in Reference [18],
where the propagating speed F is assigned to a constant,
e.g., 1.

Without prior knowledge of the appropriate scales
for each potential feature, a scheme for the automatic
scale selection and scale invariant feature detection is
necessary. In our setting, the scale is selected based on
the local extrema over scales of the scale-normalized
Laplacian of Gaussian, σ2∇2G, in a geodesic manner. All
the discrete approximation are explained in detail in the
following sections. Figure 1 shows the geodesic Gaussian
smoothing of the curvature map of a face model with
scales of σ2i.

Salient Keypoint Detection

Our approach searches local extrema in geodesic scale
space to define the salient points on surfaces. These
points are further pruned down by applying a threshold
based on contrast and anisotropy to eliminate pseudo-
salient points. Scale invariant features are then extracted
from the detected regions for surface matching. In this
section, we will detail each step for the detection of
salient keypoints on 3D surfaces. Since the triangle mesh
is the most popular approximation of the continuous
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Figure 1. Geodesic Gaussian smoothing of the curvature map of a face model with scales of σ2i. (a) σ2 = 0.84 (b) σ6 = 1.85 (c)
σ10 = 4.08 (d) σ14 = 9.01 (e) σ18 = 19.89.

surface, we present our method in this discrete form. In
the remainder of this paper, no distinction will be made
among terms: shape, surface, and mesh, unless where it
is noted. A few relevant notations are given as follows:
M denotes a mesh, v a vertex of M, e an edge of M, N1(v)
the 1-ring neighborhood of v, and f (v) a certain attribute
associated with v ∈ M.

GSS-Extrema Detection

It has been found that extrema of normalized Laplacian-
of-Gaussian (LoG) produce the most stable salient
features.10 Since Difference-of-Gaussian (DoG) function
can provide a close approximation to the scale-
normalized LoG,7 the salient keypoints can be detected
by searching the local extrema in both spatial and scale
domains in the DoG function. In order to efficiently detect
the stable keypoints in the GSS, we first discretize the
scale by a constant multiplicative factor k and search
for the extrema of the DoG function in the discretized
space,

D(ρ, θ, σ) = (G(ρ, θ, kσ) − G(ρ, θ, σ)) ∗ �(ρ, θ)

= L(ρ, θ, kσ) − L(ρ, θ, σ) (1)

Let �(v, q) denote the geodesic distance from vertex v to
q. At a given scale σi, the neighborhood of v is defined as

N(v, σi) = {q|�(v, q) < σi} (2)

If the attribute value associated with v at scale σi is
larger or smaller than any other vertices in N(v, σi) ∪
N(v, σi−1) ∪ N(v, σi+1), v is selected as a local extremum.

The frequencies of sampling in scale and spatial
domains determine the number of detected stable
keypoints in matching and recognition tasks. In order to
effectively extract keypoints in GSS, here we empirically
define an automatic scheme to determine the minimum

and maximum scales, as well as the number of scale
samples in the range as follows:

σmin = min{‖e‖|e ∈ M}
2

σmax =
(∑

T∈M

area(T )

) 1
2
/

5

σi = σmin · ti (3)

where M denotes the mesh, e and T denote the edge

and face, respectively, and t is calculated by t = (
σmax
σmin

) 1
32 ,

which divides the scale axis into 32 logarithmically
uniform units from σmin to σmax.

Location Refinement of Keypoints

Since the extrema identified as in Section “GSS-Extrema
Detection” are computed based on the discretized
function, their locations might not be the actual positions
of the DoG extrema. Thus, the detected GSS-Extrema
D(v, σi) only indicate that salient keypoints are likely to
be around. In order to obtain more precise estimation
about the actual location, scale, and the value of the
DoG extrema, a quadratic fitting is performed around the
neighborhood of each vertex of interest in the geodesic
scale space to locally reconstruct the continuous DoG
function. Therefore, all the analysis regarding the salient
keypoints can be conducted analytically from the locally
fitted quadratic function. For a 3D-space-like GSS, a
trivariate function is employed for the quadratic fitting.
The defined fitting problem can be solved using least
squares approach.

In order to ensure that the spans of the local frame
in each dimension are close in magnitude, equalizing
the computational precision during the fitting process,
the D(v, σ) in the neighborhood of (v0, σi) needs to be
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Figure 2. Local sampling frames along the σ axis.

normalized as

D(v, σ) =




D̃

(
v−v0
‖e‖ ,

log σ−log σi

log σi−log σi−1

)
if σ ∈ [σi−1, σi]

D̃

(
v−v0
‖e‖ ,

log σ−log σi

log σi+1−log σi

)
if σ ∈ [σi, σi+1]

(4)

where ‖e‖ is the average edge length in N1(v). For the
scaled function D̃(·, ·), the vertex of interest has been
shifted to the origin with respect to the (x, y, z) coordinate
of v. Furthermore, we approximate the neighborhood of
v by its tangential plane, which can be parameterized by
two independent variables (x, y). Suppose x and y are
the two orthogonal unit vectors in the tangential plane,
both orthogonal to the normal vector n. Given a vertex
w ∈ N1(v), the map,

w �→ (x, y) = (< w − v, x >, < w − v, y >), (5)

projects w onto its tangential plane.
Once the above initialization is done, the fitting is

computed in the neighborhood of (v, σi) as in a 3D
volume, considering the scale σ as another independent
dimension with the existence of x and y. We use
{(vk, σk)|vk ∈ N(v, σk)}, σk ∈ {σi−1, σi, σi+1} as the sample
points. This sampling frame is illustrated in Figure 2,
where the solid dots denotes the vertices used for the
local fit. For each point, the parametric coordinate in the
tangential space is denoted in the form of (x, y, σ), and
the function value is given by D̃(v(x, y), σ), or simply,
D̃(x, y, σ). Empirically, the following quadratic prototype
gives the best fits, in terms of robustness to the noise as
well as the adequacy in capturing the local change of
D̃(x, y, σ):

D̃(x, y, σ) = Ax2 + By2 + Cσ2 + Dxy

+ Ex + Fy + Gσ + H. (6)

Estimating the parameters [A, B, C, D, E, F, G, H]T is
a linear least squares problem, which corresponds to a

system of linear equations:

{D̃(xi, yi, σi) = Ax2
i + By2

i + Cσ2
i +

Dxiyi + Exi + Fyi + Gσi + H}|n−1
i=0 , (7)

where n denotes the number of points in the
neighborhood, and i is the index of each point in
the neighbor set. The location of the extremum, (x̂, ŷ,
σ̂), is consequently determined by taking the partial
derivatives of D̃(x, y, σ) and setting them to zero:

∂D̃(x, y, σ)
∂x

= 2Ax + Dy + E = 0

∂D̃(x, y, σ)
∂y

= Dx + 2By + F = 0

∂D̃(x, y, σ)
∂σ

= 2Cσ + G = 0 (8)

Accordingly, the extremal value is given by D̃(x̂, ŷ, σ̂)
as well. In very rare situations, the Equation (7) may
be an underdetermined system. Then, this procedure
is simply skipped. The candidate is collected as a final
salient keypoint directly.

In some cases, the extrema analytically derived from
D̂(x, y, σ) may be located closer to the surrounding
vertices, other than the originally detected vertices. In
this case, the vertex that is closest to the extremum,
among the vertices used as sample points, is selected
for a new round of extremum location refinement.
The pre-detected pseudo-keypoint is discarded. This
iterative process terminates when no closer vertex is
found.

Removal of Unstable Keypoints

The GSS-based saliency detection as described in
Sections “GSS-Extrema Detection” and “Location Refine-
ment of Keypoints” is capable of detecting any scale
change of the signal, but not sensitive to the magnitude.
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Figure 3. Geometric attributes for saliency detection. (a) Mean curvature (b) Raw (230 pts) (c) Thresholded (171 pts) (d) Refined
(106 pts).

Hence, some salient regions with small contrast will
be detected. These regions are not stable under noise.
Even small amount of add-on noise will change the
location of the local extrema. For this reason, in the first
step, the local extrema with small magnitudes should be
removed. Moreover, DoG has stronger response along
the grooves and ridges. Although grooves and ridges can
also result in important visual attentions, unfortunately,
the automatic scale selection cannot identify their scales
correctly.7 Hence, it is necessary to remove those salient
points as well for better surface matching.

Low contrast extrema. Besides the geometry, a number of
accidental factors can also produce small perturbations of
D(v, σ), scattering unpredictably over the GSS. Besides,
since the degree of saliency directly depends on the
magnitude of D(v, σ),8 the extrema with low contrast
within the adjacent scales are not as significant as other
keypoints. Thus, the keypoints below a certain threshold
are discarded. Suppose that the maximum of the absolute
value of D(v, σ) is ‖D‖m. The threshold is empirically
set to ‖D‖m · 0.1, for all the experiments in this paper.
Figure 3 shows the effects of keypoint selection on a
3D face model with 10 000 mesh faces. Keypoints are
rendered as uniform spheres over the associated vertices.
Scale information of each keypoint is visualized by a
local patch approximating the geodesic neighborhood
{q|�(v, q) < σi}, where v is the keypoint at scale σi.
Furthermore, color mapping is used to differentiate
keypoints with different scales. The scale values in the
range [σmin, σmax] are logarithmically mapped.

Strong groove/ridge response. In the same manner as
described in Reference [7], some keypoints detected
along the grooves and ridges of surfaces are also not
stable, thus need be rejected. This class of extrema in
the difference-of-Gaussian function are usually poorly
defined and have a large ratio between the principal
curvature across the groove/ridge and the small one
in the perpendicular direction. Since we have fitted the

analytic form of the difference-of-Gaussian function at
each keypoint, this measure can be easily computed from
the 2 × 2 Hessian matrix, H, at the specific location and
scale:

H =
[

Dxx Dxy

Dxy Dyy

]
=

[
2A D

D 2B

]
(9)

The derivative of H are proportional to the principal
curvatures of D. Let α and β be the larger eigenvalue
and the smaller one, respectively. Then, we have:

Tr(H) = Dxx + Dyy = α + β,

Det(H) = DxxDyy − (Dxy)2 = αβ

Let α = rβ. Keypoints with α > rβ are removed. Instead
of computing α and β, we can simply check if

Tr(H)2

Det(H)
= (α + β)2

αβ
<

(r + 1)2

r
(10)

Figure 3(a) shows the mean curvature map of the
original surface; Figure 3(b) shows the all the 230
keypoints detected as extrema of the Difference-of-
Gaussian function; after removal of low contrast extrema,
the 171 keypoints are retained as shown in Figure 3(c).
The final result after eliminating edge responses is shown
in Figure 3(d).

Curvature Denoising

The aforementioned salient keypoint detection method
works on arbitrary geometric properties. Maps of
attribute vectors are also supported within our
framework. Curvature maps such as mean curvature,
gaussian curvature, and maximal/minimal curvature,
and surface normal map, are widely used to describe the
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local geometry of shapes. Surface normals are generally
more robust to noises than curvatures as they are the
first-order partial derivatives of the raw data. However,
curvature-based features are more salient, with proofs
from psychophysical experiments that the human visual
system decomposes complex shapes into parts based on
curvature. Hence, in this paper, we mainly use curvature
maps in our experiments. Moreover, since we compute
local shape representation over a local neighborhood,
the curvature descriptors are not sensitive to noise
as demonstrated by the experiments in Experimental
Results and Applications section.

There are a number of techniques available that can
be used to estimate discrete curvatures on meshes.19

Generally, techniques based on local fitted patches are
more robust to the noise and meshing quality than
the ones using discrete differential geometry operators,
with a larger expenditure of time and computation.
For all experiments here, we calculate the curvature
data according to the unified framework proposed in
Reference [20]. In order to handle mesh degeneracy, a
preprocess of denoising needs to be performed on the
surface. Based on the observation that mesh degeneracy
always results in extremely high/low estimation of
curvatures, we simply clamp the curvatures to 5–95%
of the original range.

Surface Matching with
Keypoints

After salient keypoints are detected, it is very important
to construct local descriptors based on these keypoints
and their associated scales.

Local Shape Descriptors

A lot of work has been focused on the search of
effective local shape descriptors for determining shape
similarity14,15,22,23 since local shape properties are usually
the distinctive features of a certain class. In general, these
approaches first define a set of uniformly distributed
points on the surface, around which a radial portion
of the shape is used as a local support for computing
the shape descriptors. A drawback of these approaches
is that, since they do not discriminate the degree
of distinctiveness (saliency) from region to region of
the surface, a large portion of the computation spent
on the shape descriptor and subsequent matching is
unnecessary. For instance, shape descriptors locating

on the flat areas will be almost always matched to
multiple flat locations of the target shape and thus can
not distinguish shapes since this kind of structure is
trivial among most shapes. In addition, these methods
are sensitive to the distribution of the points and the pre-
defined size of radial support.

In contrast, our method detects the salient keypoints
along with their intrinsic scales of the underlying
features. Therefore, local shape descriptors only need to
be computed at selected salient locations for the purpose
of shape matching. More importantly, since the support
sizes are set to be the automatically detected scales of
the features, the descriptors are scale-invariant based
on the accordingly scaled local frames. Therefore, better
performance can be achieved at a mush less cost.

Given a mesh M = {V, E, F } and a set of keypoints with
their respective scale and normal {v, σ, 	n}, we define a
local descriptor which is adapted from the spin image22

to the setting of our framework. First, an orthogonal local
frame (	u, 	v, 	n) is defined for each keypoint. The choice of
	u and 	v is not unique, all of which, however, result in
the same spin image. Within this frame, two cylindrical
coordinates can be defined in the same manner as shown
in Reference [22]: Suppose � is the tangential plane of
keypoint P and � is the line through P in the normal
direction. Given a point Q in 3D, the two coordinates are
α, the perpendicular distance between Q and �, and β,
the signed perpendicular distance between Q and �. A
spin image is created as a 2D accumulator indexed by
α and β. For each bin, bilinear interpolation is used to
distribute the contribution of the sample point.

Next, different from the original spin image genera-
tion, the support size is determined based on the detected
scale, σ, of the keypoint, because the optimal coverage of
the spin image should be consistent with the intrinsic
scale of a specific feature structure. Let Rs denote the
radius of the sampling disc centered at P in the tangential
plane �, which is computed as

Rs = max(	n × (Q − P)), Q ∈ {q|�(q, P) < σ} (11)

Given a sampling resolution M × N, we cast rays from a
set of points in the disc around P:

Skl = P + lRs

M

(
cos

(2πk

N

)
· 	u + sin

(2πk

N

)
· 	v

)
(12)

where k = 1, . . . , N and l = 1, . . . , M. Let S̃kl be the
intersection point of the local neighborhood and the ray
casted from Skl. The cylindrical coordinates (αkl, βkl) of
S̃kl is used to generate the spin image of P. Empirically,
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we set the sampling resolution to 32 × 8 and the size
of the spin image to 8 × 8, for experiments shown in
this paper. In order to maximize the descriptiveness of
the spin image signature, we do not further filter {S̃kl}
with the support angle.22 Because the sampling frame is
already adaptively scaled according to specific salient
features, this descriptor is very robust in our setting as
demonstrated in the experiment section.

Keypoint Matching

Since each geometric feature has a spin image represen-
tation, matching surface features is actually the matching
of the image signatures. In order to establish the
correspondence, we compute the correlation coefficient
between spin images of the source and the target models:

corr(X, Y ) =
∑

i
(xi − x̄)(yi − ȳ)√∑

i
(xi − x̄)2

√∑
i
(yi − ȳ)2

(13)

where X and Y are two spin images, x̄ and ȳ are the
mean values of the image pixels {xi ∈ X} and {yi ∈ Y},
respectively. When two images are highly correlated, we
consider that the corresponding features are likely to be
matched.

Moreover, because we have reduced the number
of points in the matching stage by only comparing
salient keypoints with already-detected scales, the
computational efficiency is dramatically improved.
Suppose A and B are two sets of keypoints from the
source and target objects, respectively. The two maps can
be formulated as fA→B(·) and fB→A(·). A successful match
is established if and only if, for a certain point a from the
source, the following condition is met:

fB→A(fA→B(a)) = a (14)

The matched two set of keypoints are bijective, thus
symmetric.

Experimental Results and
Applications

In this section we analyze the robustness of our proposed
3D surface matching method using salient keypoints on
real face data with noise and different facial expressions.
Furthermore, we demonstrate the performance of our
method through an application in surface alignment and
stitching. Our method is implemented on a PC with

3.8 GHz CPU and 2 GB RAM. Computing the restricted
geodesic neighbors of each vertex takes most of the
time spent through the whole process of salient keypoint
detection, which has a complexity of O(N log N) where N
is the number of vertices. For a mesh with modest 5 000
faces, the computation for the geodesic neighborhood
costs about 3 minutes, while other steps almost give
immediate outputs.

Repeatability of Saliency Detection

Stability of salient keypoints and associated scales is
a very important factor in surface matching task. As
inferred from the methodology, rotation and scaling will
not change the saliency detection. We mainly evaluate
the stability of saliency detection under noise. We first
add random noise on each vertex of the mesh along
the normal direction. Let r denote the average edge
length of the mesh. The noise ranges from −c · r to c · r,
where we set c to be 0, 5, 15, and 25%, respectively, for
each case. The percentage of detected common keypoints
only decreases slightly, which depends on a pre-assigned
theshold. This shows that our method is very robust
to the noise in terms of the repeatability of keypoints’
locations and scales. Figure 4 shows the actual repeated
keypoints on surfaces with different extents of noise.

Face Matching with Expressional
Changes

We present experiments in which 3D face matching is
performed under expressional changes. In this section
we use real faces’ scans (10 subjects) to analyze the
performance of our proposed 3D shape matching
method. For all the subjects with different expressions,
our method can correctly match the same subject
with different expressions while differentiating different
subjects solely based on the number of matched
keypoints. Figure 5(a–b) shows a portion of the matched
same subject with different expressions and Figure 5(c–
d) shows the differentiation between two different
subjects, where the number of matched keypoints is
nearly null. Note that only matches with high confidence
(high correlation coefficients of the corresponding scale-
invariant spin images) are selected. A small number of
keypoints are descriptive enough to differentiate models
from different subjects and, meanwhile, cluster distinct
expressions of the same person. The experiments indicate
that our method is efficient for shape retrieval and shape
recognition. Figure 6 shows the extensive experiments
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Figure 4. Examples of keypoint detection to random noise. (a)–(d) visualize the noise perturbation by the mean curvature rendering;
(e)–(h) show the detected keypoints on each mesh, respectively.

Figure 5. Face matching between inter-expressions and inter-subjects. (a) Express 1 (b) Express 2 (c) Subject 1 (d) Subject 2.

Figure 6. Statistics on face matching between inter-expressions and inter-subjects.
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Figure 7. Surface alignment and stitching based on keypoint correspondences. (a) Piece 1 (b) Piece 2 (c) Registered piece (d)
Completed model.

that we performed on over 2 000 face scans of 10 subjects
with different expressions. The horizontal axis denotes
the number of matched salient keypoints, while the
vertical axis denotes the number of pairs of different faces
on the left and the number of pairs of correctly matched
faces on the right, respectively. The statistical results
show that for different subjects the number of average
matched salient keypoints is only around 5 but for the
same subject with different expressions the number of
average matched salient points is about 35. There is
clear threshold that we can use for recognition under
expressional changes. If the number of matched points
is smaller than 10, the face scans are estimated as being
from different subject. If larger, they are considered being
from the same subject.

Surface Alignment and Stitching

In this section, we apply the salient surface keypoints
for surface alignment and stitching. A very important
property of our method, which supports surface
alignment and stitching, is that the salient surface
keypoints detected in GSS can directly establish point
correspondences for the 3D surfaces. The duplicated
regions in the original 3D surfaces can be detected and
removed by removing the overlapping areas. After that,
we can stitch the 3D surface patches by connecting the
exclusive regions directly on the surface. After simple
mesh optimization around the joint regions, a complete
3D surface model is obtained. As an example, Figure 7
demonstrates the alignment and stitching of several
pieces of 3D surfaces together to form a complete model.

Conclusions

In this paper, we have presented a non-parametric
method based on geodesic scale-space processing, which

can directly and automatically compute representative
salient features on a surface. The scale-invariant
keypoints identified in the geodesic scale space make
it possible to construct salient features with derived
scales, leading to a scalable, compact representation
of large-scale surface models for shape matching and
comparison. The experiments have demonstrated our
feature detection technique and salient shape descriptors
are robust and stable to noisy input and insensitive
to resolution change. In addition, visual features
other than shape characteristics can also be overlaid
to the shape representation uniformly, providing a
scalable, unified abstraction of multimodality geometric
data.

In the future, we plan to use the selected salient
keypoints for the construction of Shape Attribute
Relational Graph (SARG),24 in the hope of lifting the
local shape descriptors proposed in this paper to a global
shape representation based on the geometric saliency.
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