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Abstract—RF performance of surface micromachined solenoid
on-chip inductors fabricated on a standard silicon substrate (10

� cm) has been investigated and the results are compared with
the same inductors on glass. The solenoid inductor on Si with a
15-�m thick insulating layer achieves peak quality (Q�) factor of
16.7 at 2.4 GHz with inductance of 2.67 nH. This peakQ-factor is
about two-thirds of that of the same inductor fabricated on glass.
The highest performance has been obtained from the narrowest-
pitched on-glass inductor, which shows inductance of 2.3 nH,
peakQ-factor of 25.1 at 8.4 GHz, and spatial inductance density
of 30 nH/mm2. Both on-Si and on-glass inductors have been
modeled by lumped circuits, and the geometrical dependence of
the inductance andQ-factor have been investigated as well.

Index Terms—High Q, integrated inductor, micromachining,
on-chip solenoid inductor, RF MEMS.

I. INTRODUCTION

A N on-chip inductor is the last passive monolithic compo-
nent that still needs active research for the improvement

of its performance such as accurate inductance with small de-
vice area, high-quality -) factor, and high peak- frequency.
Although discrete inductors are fabricated as a solenoid type,
on-chip inductors are usually fabricated as planar types such as
meander or commonly spiral type since the three-dimensional
(3-D) structure of the solenoid is difficult to realize by the
conventional integrated circuits (IC) technology. For high-
performance on-Si spiral inductors, reduction of substrate loss
and metal resistance have been the key areas for improve-
ment. For reducing the substrate loss, various methods have
been reported such as use of a high resistivity substrate [1],
etching the substrate underneath inductors [2], or insulating
the inductors from the substrate using a thick polyimide [3],
an oxidized porous silicon (OPS) layer [4], and high-dose
proton beams [5]. For reducing the metal resistance, thick
gold metallization [1], multiple metal layers in parallel [6],
or copper metallization [7] have been reported.

Recently, solenoid on-chip inductors have been proposed as
an alternative solution for high-performance inductors using
3-D laser lithography [8] or several micromachining technolo-
gies [9]–[11] to minimize both parasitic capacitive coupling
to the substrate and inductor area. In our previous works, we
proposed a novel method for fabricating monolithic solenoid
inductors using simple surface micromachining [10] and inves-
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Fig. 1. SEM photographs of the fabricated 20-turn, all-copper solenoid
inductor (upper: overview, lower: magnified view).

tigated the RF performance of the solenoid inductors fabricated
only on glass [11].

In this letter, we newly report experimental results for the
“on-Si” inductors, which are of more practical importance,
as well as on-glass inductors. Also, performance of on-glass
inductors has been improved by a slight modification of
the structural design, and geometrical dependence of the
inductance and -factor are substantially presented as well.

II. DESIGN AND FABRICATION

We have changed the solenoid design from the previous
inclined top and bottom conductor type [11] to the parallel type
(Fig. 1) to reduce the parasitic capacitance between the top
and bottom conductor lines. The bottom conductor has 10m
thickness, 14 m width, and the top conductor has 30m
thickness and 18 m width, respectively. The center-to-center
height of the solenoid inductor is 70m. We have fabricated
solenoid inductors on both Si and glass wafers for separat-
ing the inductor-only performance and the substrate effect.
The solenoid inductors have been monolithically fabricated
using only simply-modified conventional lithography and well-
established copper electroplating at a low process temperature
below 120 C The fabrication steps in detail were reported
previously [10], [11].
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Fig. 2. Comparison of inductor performances of the two identical on-Si
and on-glass solenoid inductors shown in Fig. 1. (a) Measured and modeled
RF characteristics and (b) equivalent lumped-circuit model and parameters.
The equivalent circuit parameters are extracted by EEsof Libra simulator.
Substrates: s (silicon) 540-�m thick p-type Si (10–23
� cm)/1-�m thick
thermal oxide/14-�m thick hard-cured photoresist, and g (glass) 560-�m thick
Corning #7740 glass.

III. RESULTS AND DISCUSSION

Fig. 1 shows a 20-turn, all-copper solenoid inductor
fabricated on both Si and glass substrates. The one-port

-parameters of the fabricated inductors were obtained from
their two-port -parameters which were measured in RF band
(1–10 GHz) by Wiltron 360B vector network analyzer and
Cascade on-wafer probes. Fig. 2 compares the performances
of two identical on-Si and on-glass inductors shown in Fig. 1.
The measured and modeled RF characteristics, the equivalent
lumped-circuit model and parameters are also shown in Fig. 2.
For the on-Si inductor, the pad-parasitics on the Si wafer were
de-embedded using the dummy pattern, which has only pad
patterns. The de-embedded on-Si inductor exhibits inductance
of 2.67 nH and peak -factor of 16.7 at peak- frequency
of 2.4 GHz. The on-glass inductor shows same inductance
and larger peak -factor of 24.2 at 6 GHz, which also
indicate substantial improvement over the results reported
earlier (2.5 nH, peak -factor of 19 at 5.5 GHz, [11]). Based
on the Greenhouse’s equation [12] applied to the micro-
scale solenoid structure [13], the calculated inductance value
was 2.53 nH (6% error). Other measured inductance values
(2.67–11.2 nH) were within 10% of the calculated values. By
comparing the equivalent circuit parameters in Fig. 2, it can
be easily understood that the inferior-factor performance of
the on-Si inductor originates from the relatively large increase
in the parasitic capacitance to the substrate.

Fig. 3 shows the geometrical dependence of the inductance
and peak -factor of the on-glass inductors. Unlike spiral
inductors, Fig. 3(a) exhibits a good linear relationship between
inductance and the number of turns (0.137 nH/turn). Mean-
while, the on-silicon inductors have shown 0.136 nH/turn.

(a)

(b)

Fig. 3. Geometrical dependence of the inductance and peakQ-factor of
the solenoid on-glass inductors (a) number-of-turns (N) variation and (b)
turn-to-turn pitch (P) variation. All the inductance values are obtained at
1 GHz and the height of all solenoid inductors is 70�m.

It should be noted that this linear relationship is very im-
portant and advantageous in designing accurate inductance
and this cannot be obtained from spiral inductors. Fig. 3(b)
shows the effect of the turn-to-turn pitch on the inductor
performance. We have obtained spatial inductance density as
high as 30 nH/mmfrom the on-glass inductor with narrowest
pitch of 42 m, and the inductor also shows highest peak-
factor of 25.1 at 8.4 GHz with inductance of 2.3 nH. The
on-silicon inductors have shown the same pitch-to-inductance
relationship within 2% difference in inductance values from
those of the on-glass inductors. It should be noted that a
narrower pitch is favorable for smaller device area, higher
peak -factor and higher peak- frequency in spite of a
little decrease in inductance. Also, we have observed that
inductance relates to the inductor width simply by a first-
order. Solenoid inductors with more than 68m in width were
fabricated using dummy posts [11].

IV. CONCLUSIONS

RF performance of surface micromachined solenoid on-chip
inductors fabricated on both Si and glass substrates has been
investigated. The fabricated on-Si and on-glass inductors show
high peak -factors of up to 16.7 and 25.1 at GHz ranges,
respectively and they are well modeled by lumped circuits. The
solenoid on-chip inductors fabricated here have many desirable
aspects, such as high performance even on a Si substrate,
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linear relationships between inductance and the number of
turns, scaling merits by reducing the turn-to-turn pitch, and
high-current capability by thick metallization. These solenoid
on-chip inductors can be used for various RF applications such
as RF power amplifiers requiring high-current inductor loads,
various RF filters and voltage-controlled oscillators (VCO’s).
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