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MoCN coatings have been formed by cathodic arc evaporation using the mixture of acetylene and nitrogen
and pure molybdenum target. The surface structure, in conjunction with x-ray data, was analyzed by
atomic force microscopy (AFM). The AFM results show differently shaped grain forms on the surface of
coatings investigated. The increase in carbon in chemical coatings composition results in the reduction in
surface grain size and the increase in roughness of the coatings.
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1. Introduction

One of the ways to improve mechanical and tribological
tools� and machine parts properties is surface�s modification by
a thin hard coating deposition. The properties of two-compo-
nent coatings are often not able to meet the users� requirements.
They can be improved, for example by changing the chemical
composition (adding the third or more elements to two-element
system) or by changing the coating structure by the choice of
process parameters. In the latter case, for example, grain
refinement (Ref 1) or forming the nanostructured composite
coatings may occur (Ref 2). Such coatings may show low
coefficient of friction, high wear resistance and high hardness.

Transition metals nitrides and carbides formed using PVD
methods show good tribological and mechanical properties,
including high hardness, low coefficient of friction, excellent
wear and corrosion resistance, as well as characteristic color.
For this reason, they are widely used as protective and
decorative coatings (Ref 3-6). One of them is molybdenum
nitride. High hardness and good adhesion, low coefficient of
friction especially at higher temperature (Ref 7) and low wear
rate make the coating a good candidate for the wide range of
tribological applications.

Dependent on the chemical composition in Mo-N system,
the existence of the following phases can be expected: space-
centered cubic lattice of molybdenum Mo [JCPDS 42-1120],
tetragonal-centered cubic phases: b-Mo2N [JCPDS 24-0768],
b¢-Mo2N [JCPDS 25-1368], b¢¢-Mo2N [JCPDS 75-1150], cubic
c-Mo2N [JCPDS 25-1366], hexagonal d-MoN [JCPDS 25-
1367] and cubic phase marked B1 MoN (Ref 8). The tetragonal
phases b-Mo2N are low-temperature variations of the c-Mo2N

cubic phase. Due to different crystallographic structures, the
phases exhibit different physical properties.

Studies on the effects of small amounts of elements such as
C, Si, Cu, B, and others on the mechanical and tribological
properties of CrN and TiN coatings have shown that such
coatings have higher hardness and lower coefficient of friction
(Ref 9-11). Carbon as a further component of the coating causes
the change in morphology of the coating, but also affects the
sliding behavior due to its low-friction properties.

Molybdenum carbide except for high hardness (Ref 12),
corrosion resistance and high thermal stability also show
catalytic properties (Ref 13). Zhao et al. (Ref 14) reported that
carbon addition to MoCN enables to obtain nanomaterials with
reduced grain size, dense active sites and high surface area.
Some of above findings were confirmed by Liu et al. (Ref 12).

The properties of Mo-C-Si-N quaternary compositions (Ref
15) depend on carbon concentration. With the increase in C
concentration, the average coefficient of friction and grain size
decreases, while the hardness increases. Authors conclude that
carbon atoms substitute nitrogen atoms in the nano-sized
crystalline Mo2N to form Mo2N(C) solid solution phase. They
also suggest that in the amorphous SiNx and CNx phases nano-
sized crystalline Mo2N(C) may be embedded.

The investigations of MoCN-Ag coatings (Ref 16, 17)
indicate that the self-lubricating coatings significantly reduce
the coefficient of friction, especially at elevated temperature,
above 400 �C due to formation of molybdenum oxide and
silver molybdate. A free amorphous carbon phase is responsible
for low coefficient of friction up to 100 �C.

The properties of materials depend on their structure and
microstructure determined by the chemical composition, the
atomic structure of constituent phases. The microstructure can be
modified by the technologies of production and the material
processing. Therefore, the design and the production of new
materials should be in control with their microstructure in order
to assess the requirements compatibility with the result of the
manufacturing process. This allows to detect both their formation
mechanism and their behavior during operation. The method of
atomic force microscopy (AFM) meets high requirements for
investigation of thin vacuum coating deposited on polished
substrates (Ref 18, 19). It allows not only to investigate
topography of coating surface with nanometer resolution but
also to detect heterogeneity in tribological surface properties
caused by the presence of different phases in the coating.
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The aim of this work was to study the surface microstructure
of Mo(C)N coatings using AFM technique. To the best of our
knowledge, Mo(C)N coatings have not been investigated using
mentioned technique.

2. Experimental Details

Molybdenum carbonitride coatings were formed by introduc-
ing acetylene (C2H2) in the vacuum chamber of deposition system
TINA 900M, using cathodic arc evaporation. All technological

Table 1 Relationship between acetylene flow rate, carbon

concentration in the coatings (Ref 16) and denotation of

the coatings

C2H2 flow rate,

sccm

Carbon

concentration, at.%

Coating

notation

0 0 Mo0.68N0.32

5 7.1 Mo0.64C0.07 N0.29

10 13.5 Mo0.56C0.14 N0.30

15 16.2 Mo0.54C0.16 N0.30

20 18.5 Mo0.53C0.19 N0.28

Fig. 1 Comparison of SEM and AFM microstructure of Mo(C)N coatings: (a) 7.1 at.% C, SEM, magnification 95000; (b) 7.1 at.% C, AFM,

scanning area 409 40 lm; (c) 18.5 at.% C, SEM, magnification 95000; (d) 18.5 at.% C, AFM, scanning area 409 40 lm
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Fig. 2 Comparison of SEM and AFM microstructure of Mo(C)N coatings on the area 79 7 lm: (a) 0 at.% C, AFM; (b) 7.1 at.% C, SEM; (c)

7.1 at.% C, AFM; (d) 18.5 at.% C, SEM; (e) 18.5 at.% C, AFM
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details and results of chemical composition investigations are
shown in (Ref 20). The thickness Mo(C)N coating deposited on
HS6-5-2 steel substrates is about 3 lm. The relationship between
the flow of C2H2 in vacuum chamber and the carbon concentra-
tion in Mo(C)N coatings is presented in Table 1.

The investigation of topography of Mo(C)N coating using
atomic force microscopy (AFM) was provided on NT-206
device (produced by MTM Belarus). As a result of scanning the
surface in contact regime, two types of data are recorded in two
different files: a normal deflection of cantilever and a cantilever
twist. The normal deflection arises because of the surface relief.
The twist of cantilever arises because of present forces between
the surface and the tip (Ref 21). The normal deflection forms
the topography image. The lateral projection of cantilever twist
forms the image of lateral forces named ‘‘Torsion.’’ The main
part of the lateral forces is friction force. Friction force is joined
effect of elasticity, adhesion, viscosity, capillary forces, surface
chemistry, electrostatic interaction and so on. The first or the
second phenomenon occurs dependent on the conditions and
material dominated. So the cantilever twist is caused by surface
properties. This ‘‘Torsion’’ regime can be used for a distinction
of different phases in Mo(C)N as a phase is a region of space in
which all physical properties of a material are uniform. The
phase according to AFM is a region of the surface with a
boundary which has the same color. One color means one angle
of cantilever twist. The value of cantilever twist depends on
cantilever stiffness. The silicon cantilevers of CSC 38 type
(Micromasch, Estonia) with stiffness coefficient k = 0.08 N/m
were used in this research. The phases recorded using AFM
were compared with phases recorded and identified in x-ray
diffraction (XRD). AFM gives a map of the surface with
particles and regions of different colors (white, gray, dark).
x-ray analysis helps to choose the possible chemical formula of
the phase. As the silicon cantilever is very sensitive, it is
possible to discriminate more phases on the thin coating surface
than according to XRD. The roughness measurements were
conducted on five randomly selected areas.

Preliminary tests of wear using AFM equipped in diamond
tip with radius about 200 nm were performed on selected
coatings on the scan area 59 5 lm2 with load about 2 mN, 3
scans at the same place, 128 lines in scan and average scan
velocity about 14.89 10�6 m/s. The specific wear rate was
calculated according to Archard�s formula.

Surface microstructure was investigated using scanning elec-
tron microscope ‘‘Mira’’ produced by Tescan (Czech Republic).

3. Results and Discussion

The high-resolution method of scanning electron micro-
scopy (SEM) does not allow significant differentiation in the

microstructure of the Mo(C)N coatings obtained with different
volume of acetylene in the vacuum chamber. The main
structural features of these coatings at the magnification of
95000 are microdroplets, craters after chipping of microdrops,
spherical particles of oxides (Fig. 1).

The fraction of microdroplet phase in Mo(C)N coatings
amounts to several percent, and it does not manage to
determine the differences according to this criterion. When
assess the microstructure of coating surface according to SEM
images with magnification of 925000, it is only possible to
make conclusion that protruding borders of cells are the most
developed and have the smallest cells size about 600 nm for the
coating with 7.1 at.% of carbon. In coating with 13.5 at.% C,
the borders are poorly visible. The developed borders in this
coating are very rare. In coating with 18.5 at.% C, the borders
achieve the biggest size of about 1 lm (Fig. 2).

The use of AFM on the scanning field with size from
209 20 lm till 409 40 lm enables to assess only the depth of
craters after chipping of microdrops (Fig. 1b and d). It is 50-
120 nm. Like in SEM images, in AFM images the largest crater
diameters of about 5 lm are in the coating obtained with 5
sccm acetylene flow. The smallest crater diameters of about 2
lm are in coating with 20 sccm C2H2 flow. The coatings
obtained with 10 and 15 sccm acetylene flow have irregular
distribution of craters (Fig. 1b and d).

The values of roughness Mo(C)N coatings obtained by
AFM on areas 409 40 lm are in Table 2. It should be noted
that roughness determined using AFM technique for Mo(C)N
coating deposited without acetylene flow rate in the same
technological conditions is similar. For Mo0.68N0.32 Ra was
determined using contact recording instrument (Hommel Werke
T8000) and amounts to about 0.04 lm (Ref 22).

But in the case of AFM, undetected features of the coating
which is formed under C2H2 flow are only the problem of the
right size scanning area selection. The use of the scanning area
59 5 lm enabled to register the difference in the microstructure
of Mo(C)N coating formed at different acetylene flow rate in
vacuum chamber (Fig. 3). That difference reflects the influence
of the main deposition parameters and mainly the energy of
bombardment on the coating formation. Two competing
processes occur—deposition and resputtering of the coating.
As an effect of resputtering are well-shaped cavities. The border
of grain as a more harder material is resputtered slower than the
softer body of grains. During the ion bombardment, the atoms
from horizontal surfaces are resputtered easier than the atoms
from vertical surfaces. Therefore the surface obtained by AFM
as 3D images is interpreted as a multi-cell structure in which
lowered bottom of the cells (core grain) and elevated vertical
grain boundaries are visible.

The microstructure of MoN coating obtained without
acetylene consists of ‘‘cells’’ characterized by relatively large
size—about 2 lm (Fig. 3a), completely randomly arranged. In
coating deposited at 5 sccm C2H2 flow, the cells with smaller
size, about 700 nm (Fig. 3b), are formed. The increased flow
rate of the acetylene in the vacuum chamber results in
additional carbon atoms which give rise in the number of
crystallization nuclei on the surface of the formed coating. The
density of the crystallization centers grows, and the formation
of ridges is faster than without acetylene. The growing ridges
form ordered cells of smaller size than without carbon. Around
one cell, there are usually about six other cells. As a result,
grains in size of about 100-200 nm appear in the microstructure
of the coatings deposited with 10, 15, 20 sccm of acetylene

Table 2 Roughness of Mo(C)N coatings investigated by

AFM on the scanning area 403 40 lm

Flow of C2H2, sccm Roughness, nm

0 27± 3

5 35± 5

10 31± 8

15 32± 2

20 38± 13
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Fig. 3 AFM microstructure of Mo(C)N coatings, scanning area 59 5 lm: (a) 0 % at. C; (b) 7.1 at.% C; (c) 13.5 at.% C; (d) 16.2 at.% C; (e)

18.5 at.% C
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flow. The carbon content increase in the coating leads to more
ordered microstructure. In coating deposited at 10 sccm C2H2

flow, the grains are located randomly (Fig. 3c), but in coating
deposited at 15 sccm C2H2 flow the fragments of linear chain of
grains can be seen, Fig. 3(d). In coating obtained with 20 sccm
C2H2 flow, small grains with diameter of 100-200 nm are
located into border of grains sized in a range 0.5-1.5 lm
(Fig. 3e). In this coating, the grains are ordered into the
honeycomb-like structure.

The usage of AFM regime ‘‘Torsion’’ (or Lateral Forces)
allows to visualize different phases on the surface of Mo(C)N
coatings. The comparison of AFM data in ‘‘Torsion’’ regime
with XRD data allows to get a distribution map of different
phases in Mo(C)N coating (Ref 20).

According to the phase diagram and XRD results, the
coating without carbon is characterized by cubic Mo2N phase.
But in the range of angles 72�-82�, some diffraction lines exist,
which are broadened, shifted and overlay themselves (Fig. 4).

Despite the fact that according to the diffraction pattern on
the surface of coating there are not any other phases, in AFM
images (Fig. 5a) in the structure of MoN coating three types of
phases can be visible: gray phase (indicator 1, Fig. 5a), which
is both the background for white phase in size of about 100-400
nm (indicator 2, Fig. 5a) and dispersed black phase in size of
about 50 nm (indicator 3, Fig. 5a). It can be supposed that the
black phase is MoN. The white phase can be not quite
stoichiometric phase or can be formed by some individual parts
in the coating with the main cubic Mo2N phase.

Based on the results (Ref 19) in which it was found that
during nitriding of molybdenum in terms of saturation with
nitrogen to temperature of 940 �C two layers: the outer layer of
MoN and inner of Mo2N were formed on the surface, we
assume that fine black grains (phase) can be attributed to MoN.
The same effect occurs in case of tungsten (Ref 23).

The existence of different phases on the coatings surface can
be confirmed by findings of Yuan et al. (Ref 15) who suggest
that carbon atoms substitute nitrogen atoms in the nano-sized
crystalline Mo2N to form Mo2N(C) solid solution phase.

In fact the C2H2 flow of 5 sccm during deposition does not
change the phase composition of the coating. It leads to the

increase in formation of all nitride phases. Based on the
intensity of the diffraction lines such as (111) expected at
33.38� for Cu-Ka radiation, (200) at 43.45� or (220) at 63.11�
according to ICDD 25-1366 it can be stated that this coating
consists mainly of the cubic Mo2N phase. In contrast, the next
diffraction line (311) positioned at 75.73� is more interesting.
Its intensity increases and slightly broadens. It may be caused
by the formation of MoC and/or MoN phase, but the amount of
these compounds could be insufficient to be register by XRD.
Such an increase in formation of nitride phases with the
addition of small amount (5 sccm C2H2 flow) of carbon is
reflected in the structure in form of grain size decrease, what is
apparent in AFM image. The increase in carbon concentration
in Mo(C)N coatings leads both to the appearance of larger
crystallization centers quantity on the surface and to the
decrease in grains size. In the microstructure of the surface, the
grain size decrease is visualized in form of cells size decrease
from 3 to 5 lm for molybdenum nitride coating without carbon
(Fig. 3a) to 1-2 lm for molybdenum nitride coating with
carbon amount of 7.1 at.% (C2H2 flow rate of 5 sccm),
Fig. 3(b). There are also more developed ridges of grains in this
coating. The quantity of ridges increases, and it leads to surface
roughness rise from 29.3 to 46.5 nm on the area of 409 40 lm2

(Table 1). In AFM ‘‘Torsion’’ regime, the quantity of phases,
which are contrasted with the main phase, increases. Moreover,
their size also decreases and the main phase is Mo2N. In AFM
image, the phase has gray contrast and consists of nanosized
subgrains with diameter of 20-50 nm (indicator 1, Fig. 5b). As
it was mentioned above, the diffraction lines are broadened and
shifted to lower angles from their positions. It can be associated
with the nanosized structure of coating. They are different in
forms and color types of particles from the others phases in the
background of main Mo2N phase as dispersed dark particles
with diameter of 20-50 lm so as lamellar bright particles with
diameter 300-500 nm (indicator 2, Fig. 5b). They confirm the
possibility of the existence of MoN and MoC phases (Fig. 4b).
For the lamellar bright particles determined as MoC phase, the
increase in size is more significant.

The addition into vacuum chamber 10 sccm C2H2 flow leads to
the formation of significant quantity of MoC phase, which reaches
the quantity of nitrogen phases. The deconvolution of complex and
broadened diffraction lines in 2H angle range 70�-87� revealed the
existence of MoN and MoC phases except for present Mo2N
phase. The quantity of the phases is approximately equal.

The ridges are visible (Fig. 3) for Mo0.68N0.32 and
Mo0.64C0.07N0.29 coatings which do not show carbon phases
in XRD diffraction pattern, Fig. 5. The increase in carbon in
Mo(C)N coatings decreases the grain size to about 100-200 nm
(Fig. 3c). Such surface microstructure means that acetylene
(source of carbon) introduced into the vacuum chamber has not
only distributed on the surface in the form of crystallization
nuclei, but its quantity is sufficient for stoichiometric MoC
phase. In ‘‘Torsion’’ regime, there are dark particles dispersed,
probably MoN (indicator 2, Fig. 5c) and white lamellar
inclusions presumptive MoC phase (indicator 3, Fig. 5c). The
first phase particles dimension is about 20-50 nm, and the white
phase is about 400-600 nm. Based on observation of the
microstructure in the lateral force regime, it can be noted that
the number of phases in both colors increased. They are
uniformly distributed on the surface.

The increase in the acetylene flow rate in the vacuum
chamber to 15 sccm results in achieving the maximum intensity
of MoC phase diffraction lines in the diffraction pattern. The

Fig. 4 XRD patterns of Mo0.68N0.32 and Mo0.53C0.19N0.28 coatings

formed using cathodic arc evaporation
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Fig. 5 Microstructure of Mo(C)N coatings with carbon obtained with AFM in ‘‘Torsion’’ regime, left side, compared with XRD dates, right

side. Acetylene flow rate: (a) 0 sccm, (b) 5 sccm, (c) 10 sccm, (d) 15 sccm, (e) 20 sccm
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further rise of the acetylene flow rate to 20 sccm does not
change intensity in MoC diffraction lines. Probably, the
formation of MoC phase could be finished. A transformation
of the main Mo2N phase to mixture of Mo2N, MoN and MoC
phases takes place. The structure type is changing drastically
(Fig. 5c). The dispersed phase appears fast in the coating with a
uniform grain size of 100-200 nm (indicator 1, Fig. 5c). Bright
and dark particles (indicator 2, Fig. 5c) are uniformly dis-
tributed on the surface. We suppose that lamellar bright

particles of MoC phase compared with one shown in Fig. 5(b)
have more developed surface. Their size decreased significantly
to 100-400 nm (indicator 3, Fig. 5c).

In the Mo0.53C0.19N0.28 coating formed in vacuum chamber
in acetylene flow rate of 20 sccm, the surface microstructure
type, that is dispersed, grains do not change (Fig. 5e) and are
the same as for coating formed in 15 sccm of acetylene. The
difference is in grain size—in this coating they were decreased.
The size of dark, probably MoN, dispersed phase is 50-100 nm

Table 3 Size of phases observed in AFM measurements

Coating

The size of phases

Mo2N
MoC MoN

Grains, lm Sub-grains, nm Grains, nm Grains, nm

Mo0.68N0.32 2-5 100-200 … 20-50

Mo0.64C0.07 N0.29 0.5-1 50-100 … 20-50

Mo0.56C0.14 N0.30 0.1-0.2 … 400-600 20-50

Mo0.54C0.16 N0.30 0.1-0.2 … 100-400 30-50

Mo0.53C0.19 N0.28 0.1-0.2 … 100-200

Size of cells 1-2 lm

50-100

Fig. 5 continued

Journal of Materials Engineering and Performance Volume 25(12) December 2016—5457



(indicator 1, Fig. 5e). The other particles MoC (indicator 2,
Fig. 5e) and Mo2N (indicator 3, Fig. 5e) have similar
size—100-200 nm. The main structure of dispersed particles
is ordered. The grains are arranged into a honeycomb structure
with a cell size of about 1 lm. The size of phases observed in
AFM measurements in all coatings is gathered in Table 3.

Due to refinement of grains and for proper assessment of
grain dimensions, the AFM measurements on the square
109 10 lm ought to be taken. The roughness resulted from
these tests reflects the features of coating formation correctly.
The features of microstructure of Mo(C)N coating like
microdrops significantly affect the value of roughness on
square 209 20 lm or more. Its surface distribution has a
random nature. The smaller size of square causes incorrect cells
structure. So the coating with 7.1 at.% C shows 19 nm
roughness, while the common MoN coating is only 10 nm. This
confirms an idea that at acetylene flow rate of 5 sccm in
vacuum chamber, MoC phase does not form. Instead of that,
the grain refinement of nitriding phases occurs and as an effect
the more shaped grain boundaries are formed and the additional
ridges appear on the surface. Therefore, the value of roughness
decreases to 11.2 nm for coatings deposited at C2H2 flow rate of
10 sccm and to 9.4 nm at 15 sccm. The MoC phase formed as
the rounded nanosized grains smoothes the coating surface. The
further increase in roughness to 15.2 nm is connected with the
appearance of chains and ridges from grains.

Hard coating shows usually high wear resistance, and as
consequence the depth of wear tracks was several nanometers.
The relief of the surface and craters were more apparent than
the depth of obtained wear tracks. The results of wear tests on
Mo2N (acetylene flow rate—0 sccm) and Mo(C)N deposited
using acetylene flow rate of 10 sccm are presented in Fig. 6.
Below images of worn surface of the coatings the profiles of
wear tracks are added.

The depth of wear (volume of material removed from the
surface) was 56 nm (9.09 10�19 m3) for Mo2N coating and 16
nm (2.69 10�19 m3) for Mo(C)N coating deposited using 10
sccm of acetylene. Specific wear rate calculated according to
Archard�s formula is 14.69 10�14 m3/N m and 4.29 10�14 m3/
N m, respectively. It means that MoCN coatings can present
better wear resistance compared to Mo2N coating.

4. Conclusion

The presence of MoC phase is not observed for low carbon
concentration in Mo(C)N coatings corresponding to acetylene
flow rate of 5 sccm in vacuum chamber. This phase starts to
form with higher than 5 sccm C2H2 flow rate and appears as the
grain structure instead of cells structure. With further increase
in the acetylene flow rate, the grain size in Mo(C)N coating
decreases. In coatings deposited at C2H2 flow rate of 20 sccm,
the grains form the ordered cell structure with the grain size of
100-200 nm and the cell size of 1 lm.

The phase composition of coatings changes with the increase
in carbon concentration in Mo(C)N. The initial Mo2N phase,
which is characterized by cubic lattice, is replaced by hexagonal
MoN and MoC phases. It seems the coatings with carbon have a
better view tribological application. However, in-depth studies
must be carried out to confirm this conclusion.

Fig. 6 Results of the wear and wear profile using AFM of: (a)

Mo0.68N0.32 and (b) Mo0.56C0.14N0.30 coatings. The dashed line (1-2)

indicates the position of wear profile in wear area
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