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Surface Mosaics

Abstract This paper considers the problem of placing mazolor, careful placement of tiles is now necessary becaluse o
saic tiles on a surface to producesarface mosaicWe as- the curvature of the surface. Clearly, this problem is simil
sume that the user specifies a mesh model, the size of tihhéhe well-studied one of covering a surface with an orthog-
tiles and the amount of grout, and optionally, a few comnal parameter net. However, it is also different: the simk a
trol vectors at key locations on the surface indicating thehape of the tiles isonstantand, in addition, smatiapsare
preferred tile orientation at these points. From thesetsg)puallowed between them. Furthermore, it is desirable that lo-
we place equal-sized rectangular tiles over the mesh swetily, the tiling should follow ‘natural’ preferred diréohs

as to almost cover it, with controlled orientation. The alig in the surface. These may be determined by aesthetic choices
ment of the tiles follows a vector field which is interpolatedhade by an artist, or may e.g. be inferred from the principal
over the surface from the control vectors, and also forcéiections, from creases, or from color boundaries. Earlie
into alignment with any sharp creases, open boundaries, gagers have considergthnar mosaics, but as far as we are
boundaries between regions of different colors. Our methadiare, no-one has yet considered algorithmic production of
efficiently solves the problem by posing it as one of globallsurfacemosaics.

optimizing a spring-like energy in the Manhattan metric, us

ing overlapping local parameterizations. We demonsttege t

effectiveness of our algorithm with various examples.

Keywords surface mosaics, particle optimization, Manhal:—L'l Problem Statement

tan metric, overlapping local parameterizations . ) _
We assume the input given is: a mesh mddeto be cov-

ered with tiles, possibly with open boundary; the fixed size
of the tiles, which may be squares or rectanglgs: ly; a
factor giving the fractional areg of the surface to be filled

Mosai ; ithal hi ) Ib grout between the tiles (we typically uge-= 0.1); and a
osaics are an art form with a long nistory: many examp %_\all number of vectors on the surface indicating the pre-

1 Introduction

are known from Graeco-Roman times. The idea is simplg o orientation of the tiles at key locations on the stefa

an image is formed using small colored square tiles V‘.’hi ernatively, instead of specifying the tile size and dgrou
a!most touch, so as to COver Some area. Typically, t.h's ctor, the user may specify the desired numieof tiles
gion is planar, and the tiles are oriented to emphasise

distinction between important objects in the foregroun a the aspect ratig of the tiles; we may convert between
: these quantities usiny = (1 — g)A/lly, Ix = nly whereA
the background of the image. a Y = (1= g)A/Ldy, b = nly

| h h Jerlvi ‘ b is the surface area. We wish to fihdmesh sites at which to

n other cases, the underlying surtace may be CUrVeg, en tiles, so that all tiles are disjoint, and cover the input
e.g. a sculpture. In this case, even if all tiles are of theesa rface, less the amount left for grout. In addition to fol-
lowing user-specified orientation vectors, the method khou
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Fig. 1 Steps in surface mosaic generation: (a) control vectordesatdres, (b) vector field and initialization, (c) final réés(d) close-up.

part of the surface covered by the tile, producing richer r&ther work, however [5,8], uses equal-sized tiles, with ap-
sults. propriate orientation, to emphasise feature edges in some
The given geometric problem cannot be solved by sirmput image, with the aim of producing similar results to
ply computing a parameterization and putting one fixed-sizeal planar mosaics; they can also generalise the shape of
tile at each location of a regular parametric grid, becaudbe tiles.
for objects of arbitrary genus, equiareal orthogonal {$e- Photomosaicing [6,15] is another related technique. It
metric) global parameterizations do not in general exigt. Vifborms a target image using many small image tiles taken
solve the problem by posing it as a global optimization profrom a library. However, the tiles are always placed in a regu
lem based on a spring-like energy in the Manhattan méd way, with fixed orientation. Kim [10] extends this idea to
ric. Using the Manhattan metric naturally tends to give tilplacement of image tiles to fill a region of arbitrary shape;
centers on a rectangular grid, as desired—using a Euclidéangood results, however, small deformations of the tiles
metric would lead to a hexagonal grid instead, and wouldte necessary. Klein [11] extends photomosaics to videos.
be suitable for placing hexagonal tiles. However, we pref@n input video is decomposed into a collection of small
square (or rectangular) tiles because (i) square tiles are mvideo tiles taken from a library; efficient retrieval of opti
aesthetically pleasing, and (ii) are usually used in trad@&l mized video samples from the library is of most importance
mosaics; furthermore (iii) square tiles can be placed nafun-this problem.
rally with edges aligned along sharp curves or other bound- Work with more similar aims to ours concerns feature-
aries, and hence can better draw attention to features afigned quad-dominated remeshing. Alliez [1] shows how to
global geometric shapes. remesh a mesh model using quads locally aligned with the
To efficiently compute distances in the Manhattan meprincipal directions on the surface. Marinov [12] improves
ric, which needs to be done frequently, we use overlappitige approach by working directly on the 3D surface, so that
local parameterizations and local charts. This simplities tmodels of arbitrary topology can be handled. The periodic
distance computation and provides significantly improveglobal parameterization proposed in [14] can be used to gen-
performance and robustness compared to simply tracing ogeate a quad-dominated remeshing aligned with a specified
the mesh. vector field (e.g. the principal directions). By using a glbb
Related work is discussed in Section 2. Section 3 oytarameterization, this approach can produce a more even
lines our algorithm. The optimization method used for tilplacement of quads than greedy tracing approaches. Other
placement, and handling of singularities and feature Jinggmrameterization methods [7], and methods for texture syn-
are discussed in Sections 4 and 5. Experimental results #iresis on surfaces [18,19] are also relevant.
presented in Section 6 and conclusions are given in Sec- Clearly, the requirement to tile a mesh model rather than
tion 7. a planar region leads to a different problem than is adddesse
by work on planar mosaics. Furthermore, none of the surface
processing ideas above can be directly used to cover a sur-
2 Related Work face with rectangles of a fixed size, with global optimisatio
of distribution of grout.
Various earlier work has considered production of mosaics
for computer graphics; in some cases the definition of a mo-
saic is more general than the one we gave earlier. Kaplan Algorithm Overview
solves a particular kind of mosaicing problem caliesther-
ization, in which a perfect tiling of the plane is achieved he key problem in mosaicing is positioning of the tiles. For
using repeating shapes with complicated boundaries. Givdgrorative mosaics, Hausner [8] useseatroidal Voronoi
some input image, of say a head, it is distorted somewlthagram and theManhattan metrico solve this problem.
to produce the nearest such shape which can tile the pladewever, this approach cannot easily be extended to mesh
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models of arbitrary topology, because general mesh maubntrol; relatively smalt is used to provide stable conver-
els are not homeomorphic to a disk and so a 2-dimensiogaince, and it is set to 0.1 in all our experiments. A second
Voronoi diagram is generally not applicable. Instead, waebavector field orthogonal to the first can be determined locally
our approach on a particle optimization method proposes taking the cross-product of the first vector field and the
in [20], adapted to use the Manhattan metric. We use therface normal.
particles to represent the tile centers. This considers non
oriented particles attached to underlying implicit suefsc
which leads to simple constraints. Oriented particles hage2 Initial distribution of tiles
also previously been used in [17], as a tool for surface mod-
eling. This method can be adapted to mesh models, by pwe use an iterative global optimization method to find the
jected gradient descent optimization of the energy funetio final positions of tiles. Good initial tile placement is im-
we must take into account the different metric. The optportant, both to achieve results of high quality, and for ef-
mization method spreads the particles evenly across the sigiency. Ideally, each tile should occupy an identical area
face with respect to the Manhattan metric by means of ren the surface, so we use error diffusion initializationt2]
pulsive forces between them. evenly distribute theéN starting positions over the surface.
The main steps of our algorithm are (see Fig. 1) vegach triangle is assigned a real number indicating its allo-
tor field generation, initial tile placement, and tile plagant cated initial number of tiles according to its area. Thestile
optimization, as outlined next. are added in a region-growing process: when considering a
triangle, an integer number of tiles closest to the real remb
is placed inside the triangle, at random locations. Thediff
3.1 Vector field generation ence between the integer used and the real number desired
(either positive or negative) represents an error whiclifis d
A vector field is used to guide the local orientation of tiledused to its neighbors. Thus, each sufficiently large neigh-
Thus, at each position of the mesh, we determine a local é@rhood contains a number of tiles proportional to its area.
ordinate frame comprising the surface normal plus two or-
thogonal tangent directions in the surface. One way of doing
this (except for planar and spherical regions) would be &0 u3.3 Tile optimization
the principal directions plus the surface normal; for mdtho
for estimating these, see [4,21]. Using this approach in-praAfter initialization, the positions of the tiles are optired
tice generally requires a prior smoothing operation [1,18sing a spring-like energy defined in terms of the Manhat-
14], to reduce the number of umbilics (singularities) whetan metric. Details are given in Section 4 and special cases
the orthogonal net nature of the vector field breaks dowaxe considered in Section 5. After optimization, a tile af th
Local frames based on principal directions have the dedilesired size is placed at each position; its orientationns-c
able property that they are naturally orthogonal to featupaited by averaging the vector field in its neighborhood. (Us-
lines such as sharp edges or lines of symmetry. ing such an average, rather than the vector field at the po-
However, both to provide user control, and to avoid hagition itself, tends to give better results overall at |omad
ing too many singularities, we propose as an alternativewdere the vector field is changing rapidly.)
allow the user to specify the vector field at various key point  The next two Sections, together with the problem state-
of the surface, which we then interpolate to provide a vectorent, contain the main new ideas in the paper.
field over the whole surface, as in [18]. This is done by ini-
tially setting the vector field at all unspecified points toge
and then iteratively updating the vector field at each pointTile position Optimization
until convergence. The update is determined as a weighted

difference between the current vector field at each point, ajjie now discuss the optimization framework, and the key

a weighted sum of the vector fields at its 1-ring neighborgsye of how the necessary Manhattan distances within it are
Thus, the updated value is given by efficiently computed.

k

X =Xo+t' S W(X; — Xo), 1
0 ° i; (X ) @ 4.1 Optimization framework

whereX is the vector field at some point being consideredhe basic framework used is similar to that in [20], and is
andX; are the values of the vector field in its 1-ring neighbased on energy minimization. The energy leads to a repul-
borhood, projected onto the tangent plane at the given pasite force between tiles, which in equilibrium gives the ffina
to ensure the updated vector field lies in the tangent pl&ne positions of the tiles. The energy between any two filies

is a weight, proportional to the reciprocal of the edge langandT; is defined as

and normalized to have sum one, so that vertices closer to the

vertex being considered have larger weighis.a step-size Ej = exp(—d('l’i,Tj)z/Zoz), 2
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whered(T;, Tj) measures thdanhattan distancdetween

the centers of the tiles (as explained later), arid theinter- o ° . ¢ o ¢ °
action radiusthat controls the range of the repulsive force. e o o
Because Manhattan distances are generally larger than cor- e o o o

responding Euclidean distancesalso needs to be larger; in
practice we seb = 0.9,/A/N, whereA is the surface area
andN is the desired number of tiles. Note that the interaction

radiuso only controls the the fall off of potential energy, ang > Computation of Manhattan distance
hence interactive forces, with increasing distance, ard do

not affect the final inter-tile distances in equilibrium. 4.2.1 Defining Manhattan distance

Fig. 2 Points with equal Manhattan distance

The energy for a single til§ is the sum of the interaction _ _ .
energies with its neighbour; = 3_, E;;. In principle, the Using the Euclidean distance fa(i, j) tends to produce
negative gradient of this energy produces the repulsiaeforhexagonally distributed tile centers, corresponding terzsdl
However, the energg is defined in terms of the Manhattarest circle packing in the Euclidean metric; this is unsuit-
distance, and is only defined on the surface, and not in tele for placing rectangular tiles which should be placed on
embedding space, and thii€ itself must be computed by something similar, locally, to a rectangular grid. To agkie
restricting it to the tangent plane. The computation iseyuithis, we use théMlanhattan distancénstead. In the plane,
involved and does not have a simple closed-form solutidiie Manhattan distance between poiRisat (x1,y1) and
Thus, following [20], we define a suitable force on tife P2 at(xz,y2) is defined agx; — x| + |y1 — Y|, i.e. the dis-
tile based on Euclidean distance, by analogy with sprikg-litance ‘across’ plus the distance ‘up’. On a mesh, we may
forces: also measure distances in the two preferred directiong-dete
mined by the interpolated vector field. However, there is a
small complication—unlike the planar case, summing dis-
tances in a curved surface ‘across’ then ‘up’ generallygjive
a different result to going ‘up’ then ‘across’. We simply ¢ak
(pi — Pj)Eij, (3) the minimum of these two possibilities.

In a grid, using the Manhattan metric, each point (e.g. the
red one in Fig. 2) has 8 equidistant nearest neighbors (the
blue ones), and simply placing tiles at such points would
lead to a grid rotated by 45rom the desired orientation.

wherep; is the position of tilei; this approach is found to Thus, we use preferred directions af 46 the local vector
work well in practice. field orientation. If the user wishes to have non-squars tile

Note that the sum above should be taken over all tile p8f— aspect ratiay, we furt_her compensate by muItipIying dis-
sitions, in principle, but our energy function is designed fancesin the two directions given by the local vector field by

have almost local support, so in practice it is sufficient ljo/\/ﬁ and/n.
consider thek-nearest neighbors of tilie Typically we use _ _
k = 20 in our implementation. The required nearest neigh-2.2 Computing Manhattan distance

bor queries can be accelerated using an approximate nearest ) )
neighbor algorithm [13]. To compute Manhattan distance, we need to measure dis-

tances in the surface in preferred directions relative & th
ocal vector field. Tracing the vector field, as done in some
remeshing work, is neither efficient nor robust. Instead, we
use overlapping local parameterizations as a basis for mea-
suring distances. An approach similar to that in [16] is used
to maintain a set of local parameterizations. When we need
To prevent the optimization process becoming stuck o compute the distance between two points, we consider
some local minimumteleportationof tiles may be used. the currently available local parameterizations to sead o
This can be done by waiting until optimisation has proceedexiists which covers both points. If so, we simply use it,
far enough, and then periodically checking for ‘large’ l®leotherwise, a new local parameterization is built and stored
(i.e. of at least one tile size). Suppose a nuntbexist. We for later reuse. For our specific problem, we use extra con-
then also determine theclosest pairs of tiles, and fill eachstraints when building charts (to help us parameterize Yhem
hole with one tile from one of the pairs. Going further, if th@nd a new parameterization method; these are detailed in the
exact number of tiles does not need to be preserved, direekt Section.
insertion of extra tiles into holes is also possible, redgci  Finally, we compute the Manhattan distance using the
the amount of grout. Using these techniques usually slighflarameterization to measure distances. For efficiency, we
improves the results for most examples, but the differencagproximate the parameterization by a piecewise linear map
are quite small. ping across each triangle. Given two points, and a chart with

m
1
™M 2

Optimization is carried out using projected gradient d
scent. At each step, the new positigrfor each tile is found
by updatingp; usingp; = pi +tFi, and then projecting back
the resulting position onto the megtgontrols step size and
is usually set to 1.
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parameterizatioX (u, v) that covers both of these points, thevhere X is the vector field, and¥ is an orthogonal vec-
distances along a preferred direction on the surface cantbefield on the surface. However, we adapt this approach
calculated by integrating the norm of the appropriate direto finding alocal parameterization by solving the following
tional derivative in the parameter domain. For point paidiscretized functional

that appear in more than one chart, we use the smallest dis-

tance in any chart, which amounts to choosing the shortest F* = ZFr = Z(HDU—XT||2+ ||DV—YT||2) Ar, (5)
path if more than one exists. We efficiently keep track of

which points are in which charts by simply using flags toh Td . ianal d val

indicate whether a face belongs to a specific chart; such jihereT denotes summing over triangles, and values aver-

formation is recorded when the chart is constructed. aged over triangles, W'”"F‘ agven chart, . .
Each local parameterization has low distortion and can

be efficiently computed by solving a sparse linear system,

o having chosen some arbitrary vertex as the parameter origin
4.3 Charts and Parameterization

4.3.1 Adding a chart ) — ,
5 Singularities and feature lines

When a new local chart is constructed for parameterization, L i
we start at one of the two points between which we wid§inor modifications to the above algorithm are needed to

to measure the distance, and grow a region in breadth-f gtndleﬁingu_laritiesin the vector field a_mdbature linesThe

manner, until either the region gets too large (forces becofAter comprise any of: open boundaries of the surfacepshar

negligible for points far apart from each other—in practic&€'€ases in Fhe surface, and boundaries betwee_n differently

the size can be set to say5as the energy between twocolored regions of the surface; aII.are handled in the same

such tiles is< 4 x 1079 ) or until the accumulated changgManner, as they can be characterized by some curve in the

in vector field is above a certain threshold (this is to ensuftface. Creases can be extracted using automatic or semi-

that the chart can be reliably parameterized in a planar gtomatic methods [3], or they may be manually marked by

main while following the specified vector fields). The lattei€ USer; the same is true for segmentation to find boundaries

criterion is defined as follows: the vector field at the cent@f colored regions.

of each face can be computed by averaging the vector field

at its constituent vertices. During region growth, the g&an

in vector field direction between two adjacent triangles cénl Handling singularities

be computed by isometrically mapping these two triangles

(along with corresponding directions) onto a planar domafingularities are where the direction of the vector field is

(by unfolding along the edge between the two triangles), andt well-defined. Singularities interior to a triangle, oran

measuring the absolute angular differences between thegdge, can bédetectedy interpolating the vector field from

two mapped vectors. The accumulated vector field changéttsvalues at each vertex of the mesh [1].

found by accumulating such values along a path in the dual To handlea singularity, we place wirtual tile at the lo-

graph of the mesh. The growth of a chart is stopped if theption of each singularity; it does not move in later optianiz

exceed a threshold independent of mesh curvaturéa;is tion, nor do we place a tile at this location in the final tiling

used in our experiments to make sure that such a mappingigthermore, we compute the force it exerts on nearby tiles

possible. using theEuclideanmetric, rather than the Manhattan met-
ric, which gives a more natural radial distribution of tiies

4.3.2 Local parameterization its neighborhood.

We need a parameterization method which specifically fings . .
a parameterization of the surfa8e- S(u, v) aligned with the °-2 Handling feature lines
vector field, allowing us to measure Manhattan distances by
making a corresponding measurement in the planar par
eter domain. It is sufficient to make sure the reconstruct X .
vector field follows the prescribed directions. Howevee tHO P€ parallel or perpendicular to each feature line.
vectorsDu and v cannot be expressed linearly in terms of, Secondly, tiles adjacent to each feature line should be
the parameter values at the vertices. To make the compdiced so that their centers draif their width from the fea-
tion easier and more efficient, we use a similar approachtt§€ line, allowing for grout. Thus, during optimizationew
the one in [14]. We formulate the problem in terms of mini@PPly an additional force to all points within a region of in-
mizing the following functional over the mesh: flyence adjacent to each featur_e line, of wu_jth 3 times tiee til
size. This force correspondstisicethe Euclideandistance

9 9 between the point and the feature line, resulting in tilésdpe

F= /S(”DU* X[[*+|Ov=Y[]%)dS (4)  placed half the normal grout width from the feature line.

stly, we require tiles adjacent to each feature line to be
gligned with it, so we additionally constrain the vectordiel
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Fig. 3 Top left to bottom right: knot, horse, fish, and cube examples

6 Experimental Results which clearly distinguishes the different principal ditieas.
On the horse example, the tiling works well, except that it is

W tvari it duced usi thr her ragged around the ears. However, it is fairly obvious
€ now present various resufts produced using our me tno method can produce an entirely satisfactory result

As discussed earlier, rectangular tiles can be handled s we 5y region small compared to the tile size, especially if
as square tiles. However, as square tiles are used in most (eging complex shape or boundaries. For the fish and cube
rgoszlcs,r\]/yehprifer t‘? USE thte?_’; '8 m(.)tf]t of c;ur ex:lalmrzllles. mples, the original models had several regions each of a

9. 5, Which Shows. a knot tied with rectanguiar les, fiterent color; the cube also has sharp edges. Featur® line
horse tiled with square tiles, a colored fish with featuresin were extracted using simple color segmentation, and by de-
?Io?g ”‘I? bour|1dar|esh of coijored re?;%ns, 3nd_ a Cl:,be |W ting geometric features. User control was then used to

eature |_r|1_(ra]s along s atlrplt_a gtﬁs and boun arltes_ o Icg 0 'f‘)%cifywhetherthe vector field was parallel or orthogooal t
regions. The user control in these expernments INCIUAEG, goh teatyre edge in turn. No additional control vectorewer
few user specified vectors to guide the orientation Of tlS o b cified for these examples—in such cases they are gener-
the knot and horse models, and the specification of whet 9 not needed, although they can be used if desired. The
the vector fle_Id is or_thogonal or parallel to each boundary Qlibe example shows how the approach copes with a combi-
_feature loopin th? fish and qube e_xamplt_as. Suph user conffisn of colored regions and geometric features. Notdtthat
is necessary to give the basic desired orientation of tites 0 shows how our method produces an ideal result on a simple
the model. regular face.

Generally good results are obtained, as can be seen. TheFig. 4 shows the result of tiling a model of genus 2. The

knot example shows that our approach works well with redeft figure shows the initial tile positions computed by erro
angular tiles; one potential use is to tile a surface in a waljffusion [2]. Although an even distribution is obtained on
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Tiles generated by our algorithm are generally evenly
distributed with respect to the vector field. However, due to
the nature of our optimization approach and the underlying
model, a perfectly even distribution is not usually possibl
Although our method generally produces visually accept-
able results, with no visible overlaps (given a sensibleaho
of grout factor), an overlapping-free tiling cannot be guar
teed by our current algorithm; to provide this, it seems that
a rather different approach would be required.

Our work could be extended in various ways. To improve
tiling quality, a limited number of smaller or triangulalets
could be added, using a postprocessing step after the cur-
rent algorithm. Other tiling elements with more complichte
shapes could also be of interest.
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