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Abstract. As a response to public demand for a well-

documented, quality controlled, publically available, global

surface ocean carbon dioxide (CO2) data set, the interna-

tional marine carbon science community developed the Sur-

face Ocean CO2 Atlas (SOCAT). The first SOCAT product

is a collection of 6.3 million quality controlled surface CO2

data from the global oceans and coastal seas, spanning four

decades (1968–2007). The SOCAT gridded data presented

here is the second data product to come from the SOCAT

project. Recognizing that some groups may have trouble

working with millions of measurements, the SOCAT gridded

product was generated to provide a robust, regularly spaced

CO2 fugacity ( f CO2) product with minimal spatial and tem-

poral interpolation, which should be easier to work with for

many applications. Gridded SOCAT is rich with information

that has not been fully explored yet (e.g., regional differences

in the seasonal cycles), but also contains biases and limita-

tions that the user needs to recognize and address (e.g., local

influences on values in some coastal regions).

Data coverage and parameter measured

Repository-Reference:

doi:10.3334/CDIAC/OTG.SOCAT V1.5 GRID

Available at: SOCAT project page and data access:

http://www.socat.info

Coverage: 80◦ S to 80◦ N; 0◦ E to 180◦W

Location Name: Global Ocean

Date/Time Start: February 1970

Date/Time End: December 2007

1 Introduction

Human industrial and agricultural activities have caused the

global atmospheric carbon dioxide (CO2) concentration to

increase from about 280 parts per million (ppm) prior to

the industrial revolution to a 2011 value of about 390 ppm

(Tans and Keeling, 2013). Atmospheric CO2 concentrations

are now higher than experienced on Earth for more than

800 000 yr and are expected to continue increasing in the

foreseeable future (Lüthi et al., 2008). The rate of CO2 re-

lease into the atmosphere is also thought to be unprecedented
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in Earth’s history (Kump et al., 2009). As of the mid-1990s,

the oceans had absorbed approximately half of the CO2 re-

leased from fossil fuel use and cement manufacturing over

previous 200 yr (Sabine et al., 2004). As a consequence of

ocean CO2 uptake, the chemistry of the oceans is presently

changing at a rate exceeding any believed to have occurred

for at least the past 20 million years (Feely et al., 2004).

Although the magnitude of the CO2 uptake by the ocean

presently is reasonably well constrained by models and ob-

servations (e.g., Gruber et al., 2009), the inter-annual vari-

ability of the CO2 flux is still poorly known. Knowledge of

variability is of particular importance to predict changes in

the ocean-atmosphere fluxes in response to global change,

and lack of this knowledge currently limits our ability to ac-

curately verify the partitioning of fossil fuel CO2 between the

ocean and the terrestrial biosphere and to realistically esti-

mate future atmospheric CO2 levels. To document the chang-

ing patterns of air-sea CO2 exchange requires an extensive

observational program.

The ocean CO2 research community has responded by ini-

tiating internationally organized observation programs and

the number of annual surface CO2 observations has been

growing exponentially since the 1960s, such that today well

over one million observations are reported to data centers

each year (Sabine et al., 2010). The latest published global

flux map, based on a compilation of approximately three mil-

lion measurements collected between 1970 and 2007, pro-

vides information on the monthly patterns of air-sea CO2

fluxes during a “normal” non-El Niño year taken to be 2000

(Takahashi et al., 2009).

The tremendous increase in the number of annual observa-

tions provides exciting opportunities to look at the patterns of

air-sea CO2 fluxes in greater detail and to understand the sea-

sonal to inter-annual variations and the mechanisms control-

ling them. As a complement to Takahashi’s work to update

the CO2 climatology, there is an ongoing international effort

to synthesize all the available surface CO2 data into a quality

controlled database, along with uniform metadata that can be

used to examine surface CO2 variability over a range of tem-

poral and spatial scales (SOCAT; http://www.socat.info/).

The core Surface Ocean CO2 Atlas (SOCAT) data set (ver-

sion 1.5) is a global compilation of underway surface water

CO2 data with 7.8 million measurements (6.3 million with

f CO2 values) from 1851 cruises run between 1968 and 2007

by more than 10 countries (Fig. 1). SOCAT brings together,

in a common format, all publicly available surface ocean

CO2 data, including the Arctic and the coastal seas. All mea-

surements are evaluated for data quality using methods that

are transparent and fully documented (Pfeil et al., 2013). The

observations in the core SOCAT data set are sparse and un-

evenly distributed in time and space. To simplify exploration

of the information from the collection of observations, a stan-

dard gridded representation of the SOCAT data with mini-

mal interpolation was generated. The gridded product con-

tains mean and extreme f CO2 (CO2 fugacity) values for ev-

ery 1◦ × 1◦ grid cell (¼◦ ×¼◦ for coastal regions) that had

measurements in a given month. Grid cells with no measure-

ments in a given month and year were left blank. Reducing

the original data down to 1◦ × 1◦ average values will facilitate

comparisons with models and analyses of large scale patterns

of variability.

2 Core data set construction

The construction of the core SOCAT data set is described

in detail by Pfeil et al. (2013), so only a basic description is

given here. The SOCAT data set was compiled from data sets

of surface CO2 measurements made through 2007, which

were either publically available or obtained upon request.

These include measurements from research ships, volunteer

observing ships and CO2 moorings. Once collected, all files

had to be put into a common format. This involved not only

restructuring the data columns, but recalculating the f CO2

values using standardized approaches (Pierrot et al., 2009).

Missing parameters like salinity and atmospheric pressure

were extracted from standard global datasets (WOA 2005

– Antonov et al., 2006 and NCEP/NCAR – Kalnay et al.,

1996), in addition to bathymetry added from ETOPO2. To

ensure that each cruise was given a unique identifier in the

database, all cruises were given an EXPOCODE that identi-

fies the vessel, country, and date of the first cruise measure-

ments (e.g., 06MT19910903 = German cruise on the Meteor

starting 3 September 1991).

An initial set of quality control checks were performed to

identify any unrealistic information (e.g., sample locations

on land, dates and times that do not exist), any large “fliers”

in the data and any duplicated data or cruise information.

Where problems were discovered, the initial quality control

checks resulted either in the removal of entire cruises (e.g.,

in the case of a duplicated cruise) or in the flagging of indi-

vidual data points with a bad or questionable value. Although

the flagging of individual data points can be somewhat sub-

jective, we made an effort to be very conservative and only

flag observations that were well beyond realistic values. Flag

numbers 2, 3, and 4 were used to indicate good, questionable,

and bad values, respectively.

For the second level quality control checks, the database

was divided into regions: North Atlantic (including Arc-

tic), Tropical Atlantic, North Pacific, Tropical Pacific, Indian

Ocean, Southern Ocean, and coastal. Small groups of carbon

scientists that specialize in each region were given respon-

sibility for examining the data quality in each region. Stan-

dardized procedures and tools were used for the 2nd level

quality control (2nd QC) in each of the regions. These eval-

uations included a careful assessment of the metadata to de-

termine if the best practice methods (Dickson et al., 2007,

http://cdiac.ornl.gov/oceans/Handbook 2007.html) were fol-

lowed and properly documented. The f CO2 data were also

examined for consistent patterns and reasonable or expected

www.earth-syst-sci-data.net/5/145/2013/ Earth Syst. Sci. Data, 5, 145–153, 2013
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Figure 1. Map of the mean unweighted surface water f CO2 (µatm) based on data in SOCAT database (1970–2007) as generated by the

online Live Access Server.

thermodynamic relationships when compared to measured

temperature and salinity. Data consistency was also assessed

by comparing measurements from multiple cruises in the

same area at about the same time. The regional groups used

their scientific experience in the area to determine the appro-

priate temporal and spatial scales for the consistency evalua-

tions.

Cruises were categorized as A–D, F, S or X based on the

evaluations by the regional groups (Olsen and Metzl, 2010).

There are four categories of generally acceptable data that

range from A (followed approved methods, metadata docu-

mentation complete, 2nd QC performed and deemed accept-

able, and comparison with other data performed and deemed

acceptable) to D (unsure whether approved methods were

completely followed, metadata documentation was incom-

plete, but 2nd QC was performed and deemed acceptable).

There are three categories of data that were not deemed ac-

ceptable in their current form. Category F is for data where

the 2nd QC revealed problems with data quality. Category

S is for cruises that are temporarily suspended because the

data contains unacceptable problems but are in the process

of being updated by the data provider. The intent is that these

cruises will be included in the next version of SOCAT. Cat-

egory X is for data that have been excluded, for example if

they are a duplicate of an existing SOCAT data set.

Because of the extensive amount of work involved in for-

matting and carefully checking data quality, no data collected

after December 2007 were added to this (first) release of the

database. After each of the regional groups had categorized

all of the cruises, a global group examined the entire database

for consistency and resolved occasional conflicts between re-

gional assessments of cruises that crossed regional bound-

aries.

3 Mapping procedures

The gridded SOCAT product was derived by combining all

SOCAT v1.5 data collected within a 1◦×1◦ box during a spe-

cific month (e.g., between 60–61◦ N, 30–31◦W, for January

2007). Data within 400 km of a significant land mass were as-

signed to the coastal region and were grouped into ¼◦ ×¼◦

boxes. Only data with a secondary quality flag between “A”

and “D” were included. Grid cells that had no measurements

in a given month were not assigned a value. Given the very

limited data in the first two years of the core data set, the

gridded product starts in 1970.

The primary purpose of the gridding is to provide regularly

spaced f CO2 values that can be used for mapping, creating

comparisons to models, or in other applications where highly

structured values would be useful. The choice of grid size and

temporal resolution was intended to stay within the average

correlation length scale for surface ocean CO2 and provide

a product that could be directly combined with other routine

gridded products available at the same resolution (e.g., World

Ocean Atlas).

Two types of f CO2 values are reported: an unweighted

mean and a cruise-weighted mean. Measurements collected

from different ships can have very different temporal resolu-

tions. Some ships record values every minute and others only

Earth Syst. Sci. Data, 5, 145–153, 2013 www.earth-syst-sci-data.net/5/145/2013/
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Figure 2. Histogram of all grid cells (1970–2007) with non-zero

standard deviations of the (A) cruise-weighted f CO2 values (µatm)

and (B) unweighted f CO2 values (µatm).

take a reading once per hour. If two cruises pass through the

same grid cell, one with one minute resolution and another

with one hour resolution, the mean of all the measurements

would be strongly biased toward the higher resolution data

set. In some cases this biasing may not be appropriate. There-

fore, the cruise-weighted mean first averages all the data ob-

tained on a given cruise within a grid cell, and then averages

the cruise means within the grid cell. This gives equal weight

to all the cruises regardless of the original temporal resolu-

tion. Generally these values are very similar, but in some grid

cells there are significant differences (e.g., some cells in the

North Pacific).

Other diagnostic information is also included to help the

user understand any implicit biases in the data. For example,

the total number of cruises and the total number of observa-

tions within a grid cell are provided. Technically, only one

measurement is required to produce a value in a grid cell.

One could argue that one measurement cannot adequately

represent an entire 1◦ × 1◦ area over a whole month. With

the cruise and total number of observations, one could desig-

nate a minimum number of cruises or data required to make

an acceptable average and filter the data accordingly.

The minimum, maximum, and standard deviation of the

f CO2 values within each grid cell are also provided. These

values can supply useful information on the distribution of

data within a grid cell. For example, Fig. 2 shows the distri-

bution of the non-zero standard deviations of the weighted

and unweighted f CO2 values. The average standard devi-

ation of all the non-zero unweighted mean f CO2 values

is 5.0 µatm. The average standard deviation for the cruise-

weighted mean is only slightly lower at 4.9 µatm. The rela-

tively low standard deviations suggest that the average values

are reasonably robust.

Figure 3. Histogram of the mean degree offset from grid center for

all grid cells with values. The solid line shows the mean offset and

the dashed bars show the standard deviation of the mean offset over

all time.

Another potential issue with the mean f CO2 values is

whether the cruises adequately cover the grid cell area. To

assess the area covered, the average latitude and longitude

offset from cell center was calculated. If the maximum devi-

ation from the center point is 0.5 in latitude and longitude,

then a triangle with a hypotenuse of m gives the maximum

possible offset (m = (0.52 + 0.52)0.5 = 0.7071). The average

combined offset for all grid cells was 0.34± 0.14, represent-

ing a standard Gaussian distribution of cruise locations in the

cells (Fig. 3).

4 Spatial and temporal coverage

The number of CO2 measurements made in the surface

ocean annually has increased dramatically over the past

40 yr. Between the early 1990s and the early 2000s, approx-

imately 900 000 new measurements in total were added to

the database. Today, nearly a million measurements are col-

lected every year. Figure 4 shows a map of the total number

of surface f CO2 values per grid cell over the observational

period and the percentage of surface ocean grid cells per lat-

itude band sampled over this time. At ∼ 30◦ N, nearly 100 %

of the surface ocean grids have been sampled at least once

within the nearly 40 yr time period covered in this data set.

The North Atlantic and North Pacific have at least some mea-

surements in the majority of grid cells. The best coverage

appears to be in the high latitude North Atlantic and in the

Equatorial Pacific. A much smaller percentage has been cov-

ered in the Southern Hemisphere (generally around 50 %).

The map reveals some very significant areas in the South

Pacific, Indian and even Atlantic that have no observations

over this time period (white spaces in Fig. 4). Breaking the

www.earth-syst-sci-data.net/5/145/2013/ Earth Syst. Sci. Data, 5, 145–153, 2013
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Figure 4. (A) The percentage of ocean grid cells that have been sampled for each latitude band and (B) map showing total number of

observations in each grid cell over the full time period of the data set (1970–2007). White spaces indicate no data.

Figure 5. The number of unique months with f CO2 observations

in each grid cell between 1970 and 2007. White spaces indicate no

data.

data down into seasons or months shows even more sporadic

coverage.

The monthly and seasonal variability can be explored in

the 12 month climatology data product. This product aver-

ages all f CO2 values in a given grid cell for each month re-

gardless of the year. Figure 5 shows the number of unique

months out of the year that a grid cell has observations in

the nearly 40 yr database. While spatial coverage has in-

creased dramatically over the last few decades, a majority

of the surface ocean has only been sampled for f CO2 during

one month out of the year (blue colors in Fig. 5). The volun-

teer observing ship (VOS) effort to put underway CO2 instru-

ments onto commercial ships has dramatically increased total

number of observations each year and the monthly coverage

along certain shipping lines (red colors in Fig. 5); however,

the figure also illustrates the need for even more observa-

tions, particularly in the Southern Hemisphere.

5 Decadal trends

To facilitate the exploration and use of the temporal richness

of SOCAT, the monthly gridded data have also been binned

into annual and decadal averages. Figure 6 shows histograms

of the decadal mean f CO2 values for each decade globally

as well as broken down into the Northern Hemisphere and

Southern Hemisphere. As atmospheric CO2 increases with

time so do the peak histogram f CO2 values. This increase

is expected since globally the surface water CO2 is thought

to track the atmospheric increase (Takahashi et al., 2009).

However, one must be careful to remember that since there is

essentially no interpolation in this data set, there are spatial

and temporal biases inherent in these gridded products. For

example, the data from the 1970s appear to show a bimodal

distribution but this is likely an artifact of the limited data

coverage at that time.

6 Comparison to previous work

This product is meant to complement the similar products

available to the community (e.g., Takahashi et al., 2009; Key

et al., 2004). This is the most comprehensive collection of

surface CO2 data available as it is compiled with all publicly

available data using transparent quality control procedures.

There is no explicit interpolation in time or space during grid-

ding, which keeps the gridded product as close to the origi-

nal data as possible. The only other data set with comparable

quantity and quality control checks is the pCO2 climatology

of Takahashi et al. (2009).

To generate the well-known Takahashi climatology, all

data had to be normalized to a common non-El Niño year

and interpolated in space to fill the entire grid (Takahashi

et al., 2009). While these steps were important to generate

a robust fully covered map, much of the temporal richness

of the data was lost and uncertainty was introduced with the

temporal and spatial interpolation approaches. The SOCAT

product has many of the same original data as the Takahashi

data set, but the objective was not to generate a climatology

representing a single year. The SOCAT gridded product can

be used to further investigate the seasonal, inter-annual and

decadal variability in the data set. It also allows the commu-

nity to explore alternative ways of making the time and space

interpolations required to generate global flux maps.

The grid cell structure was selected to coincide with the

World Ocean Atlas and GLODAP gridded products (e.g.,

Garcia et al., 2010; Key et al., 2004). This will allow direct

comparison of synthesis products that can be used to investi-

gate controls on surface CO2 and drivers of variability. Care
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Figure 6. Histograms of the decadal mean f CO2 values (µatm) for four different decades. (A)–(D) show the global values, (E)–(H) show

the Northern Hemisphere, and (I)–(L) show the Southern Hemisphere values. The mean atmospheric CO2 (ppmv) at Mauna Loa, HI for

each decade is indicated by the blue bar (values from Pieter Tans, NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/) and Ralph Keeling,

Scripps Institution of Oceanography (www.scrippsco2.ucsd.edu/).

must be taken, however, when comparing products from dif-

ferent sources that may represent different temporal and spa-

tial scales.

The grid is also easily adapted for direct comparison with

a range of numerical model products. The hope is that these

data will provide important initialization and validation fields

for a range of carbon cycle models. The use of standardized

formatting and consistent approaches for compiling the data

and making standardized calculations should make the data

more accessible to those that do not work with carbon data

every day.

7 Online access to SOCAT gridded data and

services

The gridded fields of Table 1 are available in a variety of

formats (e.g., NetCDF) from the SOCAT project page at

http://www.socat.info, with guidance on using and citing the

data. The project Web page also features an online grid-

ded data viewer based upon the NOAA/PMEL Live Access

Server (LAS) (Hankin et al., 2002). The viewer provides cus-

tom visualizations of the data such as maps and time series

plots, and performs simple analyses such as averages com-

puted over time ranges or spatial areas. A short instructional

video is available on the SOCAT project Web page. Figure 1

is an example product of this system – a time average of the

12-month gridded climatology product.

8 Conclusions

The SOCAT gridded data is the second data product to come

from the SOCAT project. The first was a quality controlled

data set at the originally collected time and space resolution

with 6.3 million f CO2 observations collected between 1968

and 2007. Recognizing that some groups may have trouble

working with millions of measurements, the SOCAT gridded

product was generated to provide a robust regularly spaced

f CO2 product with minimal spatial and temporal interpola-

tion, which should be easier to work with for many applica-

tions. Gridded SOCAT is rich with information that has not

been fully explored yet (e.g., regional differences in the sea-

sonal cycles), but also contains biases and limitations that the

user needs to recognize and address (e.g., local influences on

values in some coastal regions).

Despite this synthesis effort, understanding surface CO2

variability is still a data-limited problem. More data are be-

ing collected every day. Plans are in the works to update the

current SOCAT with more data. As future SOCAT data sets

become available, the SOCAT gridded product will also be

updated. Further automation of data submission and qual-

ity control in SOCAT will enable future, prompt SOCAT re-

leases. To keep abreast of the latest developments in SOCAT,

please visit www.SOCAT.info.
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Table 1. Gridded products and available parameters for SOCAT (v1.5).

Product 12 month

Climatology

Decadal Average Annual Average Monthly Average Monthly ¼◦ × ¼◦

Coastal

Parameter [#] # of Cruises # of Cruises # of Cruises # of Cruises # of Cruises

Parameter [#] # of Observations # of Observations # of Observations # of Observations # of Observations

Parameter [µatm] f CO2 mean

unweighted

f CO2 mean

unweighted

f CO2 mean

unweighted

f CO2 mean

unweighted

f CO2 mean

unweighted

Parameter [µatm] f CO2 mean

by cruise

f CO2 mean

by cruise

f CO2 mean

by cruise

f CO2 mean

by cruise

f CO2 mean

by cruise

Parameter [µatm] f CO2 max f CO2 max f CO2 max f CO2 max f CO2 max

Parameter [µatm] f CO2 min f CO2 min f CO2 min f CO2 min f CO2 min

Parameter [µatm] – – – f CO2 st. dev.

unweighted

f CO2 st. dev.

unweighted

Parameter [µatm] – – – f CO2 st. dev.

by cruise

f CO2 st. dev.

by cruise

Parameter [◦ N] – – – Lat. average offset

from cell center

Lat. average offset

from cell center

Parameter [◦ E] – – – Lon. average offset

from cell center

Lon. average offset

from cell center
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