
Received July 28, 2020, accepted August 8, 2020, date of publication August 12, 2020, date of current version August 21, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3015976

Surface Optimal Path Planning Using an Extended
Dijkstra Algorithm

MIN LUO 1,2, XIAORONG HOU 1, AND JING YANG1
1School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
2School of Electrical Engineering and Information, Southwest Petroleum University, Chengdu 610500, China

Corresponding author: Xiaorong Hou (houxr@uestc.edu.cn)

ABSTRACT Extensive studies have been conducted on the Dijkstra algorithm owing to its bright prospect.

However, few of them have studied the surface path planning of mobile robots. Currently, some application

fields (e.g., wild ground, planet ground, and game scene) need to solve the optimal surface path. This

paper proposes an extended Dijkstra algorithm. We utilize the Delaunay triangulation to model the surface

environment. Based on keeping the triangle side length unchanged, the triangle mesh on the surface is

equivalently converted into a triangle on the two-dimensional plane. Through this transformation, we set

up the two-dimensional developable passable channel of the surface and solve the optimal route on this

channel. Traversing all the two-dimensional developable and passable paths of the surface, we can get the

shortest route among all the optimal paths. Then the inverse transformation from the two-dimensional plane

coordinates to the corresponding surface coordinates obtains the surface optimal path. The simulation results

show that, compared with the traditional Dijkstra algorithm, this method improves the accuracy of the surface

optimization path in single-robot single-target and multi-robot multi-target path planning tasks.

INDEX TERMS Dijkstra algorithm, path planning, surface, Delaunay triangulation, mobile robots, opti-

mization methods.

I. INTRODUCTION

Dijkstra algorithm is a classical well-known shortest path

routing algorithm in 2D mobile robots’ path planning

researches. It is a simple algorithm for the single-source

shortest path problem, which can effectively calculate the

shortest path to all destinations [1]–[4].

The Dijkstra algorithm was introduced by Dutch computer

scientist Edsger Wybe Dijkstra in 1959. It has been success-

fully applied in fields like mobile robot 2D path planning,

computer science, geographic information science, and trans-

portation, etc. Some recent research based on the Dijkstra

algorithm is shown below [5]–[18].

Wolfgang Fink et al. adopted a multi-objective variant of

the Dijkstra algorithm based on terrain data to achieve the

overall optimal traversal in the 3D surface (2019) [5]. The

gained results were employed in the Global Rover Hori-

zontal Optimization Planner (GRTOP) automation system to

quickly and accurately set up optimized routes for multiple

The associate editor coordinating the review of this manuscript and

approving it for publication was Christopher Kitts .

constraints at the same time. This research enabled GRTOP

to reprogram traversal/task frequently, and optimized traver-

sal and task security. The authors exploited the diamond

square algorithm to create realistic terrain in the surface

environment. Theweight between two consecutive points was

taken as the Euclidean distance between them. The Dijkstra

algorithm was extended to consider multiple targets, and the

weights between adjacent nodes were set as a linear combina-

tion of multiple weights. Each weight corresponded to a spe-

cific target. Through these methods, the Dijkstra algorithm

was applied to the calculation of a three-dimensional optimal

path and could be extended to multi-objective tasks.

Dong Guo et al. improved the traditional Dijkstra algo-

rithm and combined it with the vehicle fuel consumption

and emission measurement model to reduce vehicle fuel

consumption and emissions effectively during driving (2019)

[6]. This method employed a rectangular area (the smallest

bounding rectangle of the ellipse) to limit the search area,

thereby improving the efficiency of the Dijkstra’s algorithm.

According to the time of one day, the Dijkstra’s algorithm

and an established database were used to identify the traffic

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 147827

https://orcid.org/0000-0002-3154-1657
https://orcid.org/0000-0001-8217-8491
https://orcid.org/0000-0001-8078-9360


M. Luo et al.: Surface Optimal Path Planning Using an Extended Dijkstra Algorithm

situation at the same time. The improved Dijkstra algorithm

could not only reduce vehicle fuel consumption and emis-

sions but also avoid time congestion. This method could

be used for vehicle path planning based on dynamic traffic

networks, reducing fuel consumption and emissions during

driving, and improving urban environmental pollution.

Felipe Ribeiro Souza et al. applied the Dijkstra’s method

to tree diagram analysis, using mining blocks as nodes of the

tree for analysis, and used to calculate the lowest cost route

to transport mining blocks to their destination (2019) [7].

The transportation cost was reflected in the arc of the graph,

and it could use Euclidean distance or transportation time to

calculate theminimum path. The results obtained by the Dijk-

stra algorithm provided a non-operational path, to overcome

this problem, adjustments weremade through non-parametric

equations. In this way, the transportation cost of each block

of the model could be determined. Paths based on Euclidean

distance and transit time tended to increase for deeper mines.

Identifying the areas with the largest growth and quantifying

their value correctly could improve the efficiency of mining

planning.

Afonso Henriques Moreira Santos et al. used graph theory

and the Dijkstra’s shortest path algorithm for vertex location,

completed tower positioning based on dynamic programming

to find the optimal vertex set along the route (2019) [8]. This

solution was used to solve the expansion planning problem

of the new Transmission Line (TL), and its goal was to find a

design solution with minimum cost. This method utilized the

Dijkstra’s shortest path algorithm to optimize the transmis-

sion line vertices and calculate the total cost from the source

node to the sink node. The results showed that this method

has a lower design cost than the original TL.

Jesús Balado et al. applied the Dijkstra pathfinding algo-

rithm to the developed urban scene graph, and realized the

task of directly using point clouds in the urban environ-

ment for pathfinding (2019) [9]. The method proposed in

the paper could automatically set up a graph representing

pedestrian navigable urban space, on which the safe and real

routes of pedestrians under different movement skills could

be calculated. The Dijkstra algorithm was utilized to develop

safe routes in real-time graphics. The generated paths could

be employed to make valid obstacle avoidance routes for

pedestrians and wheelchairs.

Jinchuan Tang et al. studied the optimal path selection

method based on the Dijkstra algorithm and combined with

three probabilistic results for the design of Mission-Critical

Push-To-Talk (MCPTT) system for 5G public safety disaster

relief network (2019) [10]. The Dijkstra algorithm was used

to select the best connection, delay, and trust routing. Aiming

at the MCPTT system, the thesis proposed a routing method

based on connection, delay, and trust to provide the best

connection delay trust performance.

Based on the ArcGIS analysis tool, the Dijkstra algorithm

was employed by Lingli Yu et al. for global path plan-

ning to accomplish the path planning and navigation con-

trol system design of 12 meters long driverless electric bus

(2018) [11]. Based on the path planning and driving strategy,

the optimal trajectory was generated by curve fitting technol-

ogy, which fully considered the safety and dynamics of the

driverless bus. This method could improve control accuracy,

reduce the computational complexity, and promote driving

efficiency.

Zheng Zhang et al. adopted an improved Dijkstra algo-

rithm to determine the initial path of each task in the

environment diagram describing the Automatic Guided

Vehicle (AGV) in the grid method (2018) [12]. These authors

proposed a collision-free routing method for AGVs in an

automated warehouse based on collision classification. This

method could deal with possible collisions in automated

warehouses.

Feristah Dalkilic et al. used the Dijkstra’s algorithm to

reduce search space and runtime by applying stage-specific

rules and utilized the algorithm in an intelligent itinerary

planning system to assist passengers in itinerary planning

(2017) [13]. The paper introduced a progressive path search

algorithm to settle this problem, taking into account the num-

ber of transmissions and travel time. This method obtained

a trip planning system by integrating route and timetable

information from different transportation agencies. The sys-

tem was managed to help users make better use of public

transportation to simplify trip planning.

Sai Shao et al. applied a dynamic Dijkstra algorithm to

determine the shortest path between any two adjacent nodes

on the path (2017) [14]. The paper designed an electric vehi-

cle routing scheme with variable charging time and travel

time. Its purpose was to solve the dilemmas of electric vehicle

mileage limitation and charging demand.

Georgios K.D. Saharidis et al. combined the Dijkstra’s

algorithm with a Mixed Integer Linear Programming (MILP)

model to gain the optimal trip (2017) [15]. This multi-mode

path solution could make people prefer to accept the mini-

mum GreenHouse Gas (GHG) emission in various modes of

transportation when traveling. This method could be used in

the construction plan of the public transportation operation

platform to achieve the best travel route for cutting emissions.

Tan Zhi et al. presented an improved ant colony algorithm

to balance the energy consumption of wireless sensor net-

works by studying the theory of Dijkstra’s algorithm (2015)

[16]. The improved ant colony algorithm could increase the

life cycle of wireless sensor networks.

W. C. Lu et al. used the Dijkstra’s algorithm to settle

the feasible air route planning issue, and the shortest path

between the earned airport and the training area could min-

imize the impact on the crowd and the threat to the aircraft

(2013) [17]. This paper aimed to explore the feasible air

routes for light sports aircraft to minimize the impact on

residential areas and the threat of terrain obstacles to the

aircraft.

Deepak Gautam et al. applied the Dijkstra’s algorithm to

bypass obstacles and locate the shortest path from a given

initial position to the final position (2013) [18]. The pur-

pose of the paper to select the Dijkstra’s algorithm was

147828 VOLUME 8, 2020



M. Luo et al.: Surface Optimal Path Planning Using an Extended Dijkstra Algorithm

to study the path planning of quadrotor helicopters in a closed

known environment.

The earlier improved Dijkstra algorithm mainly focused

on the improvement of the time complexity of the traditional

Dijkstra algorithm and the promotion of the Dijkstra algo-

rithm to different fields [19]–[26].

There are three main ways to improve the traditional Dijk-

stra algorithm. One is to analyze and improve the space

complexity of the algorithm to improve storage efficiency and

save space. The second is to analyze and improve the time

complexity of the algorithm. The traditional Dijkstra algo-

rithm has low efficiency and long running time. To improve

operating efficiency and reduce time complexity, many doc-

uments have done a lot of work to improve this. The third

aspect is to apply the algorithm to different fields, open up the

application space of the algorithm and enrich the application

field of the algorithm [5]–[26]. This article is to research

in the third aspect, extending the Dijkstra algorithm to the

optimal path on the curved surface to obtain a more accurate

shortest path.

All the above studies are based on the Euclidean distance

between neighbor nodes in the Dijkstra algorithm path plan-

ning [6]–[26]. The above papers rarely involve the optimal

path of the surface [5]. Wolfgang Fink et al. utilized the

Dijkstra algorithm to solve the 3D surface path planning task,

they still used the Euclidean distance between the two nodes

to calculate the optimal path, and their improvement was to

take the weight as a composite factor, which comprehen-

sively considered the effects of three-dimensional Euclidean

distance, smoothness, roughness, height change, and other

factors.

Many practical problems can be abstracted and trans-

formed into the optimal surface path issue of mobile robots,

such as the field rescue and material transportation route

planning, the planetary ground exploration and development

path planning, 3D game ground travel and war path planning,

etc. The disadvantage of employing the traditional Dijkstra

algorithm directly in surface path planning is that the cal-

culation of each intermediate path weight is based on the

Euclidean distance between adjacent nodes, which will bring

about errors that cannot be ignored in the surface path plan-

ning. Because the optimal path obtained by calculating the

Euclidean distance between nodes may not be on the surface,

it is one of the most fundamental reasons for the optimal

path error of the surface. All of these represent that new tools

and methods are required to improve the surface optimal path

planning process based on the traditional Dijkstra algorithm.

The purpose of this paper is to establish a new general solu-

tion method with a higher precision, which is more suitable

for the solution of the optimal path of the surface than the

traditional Dijkstra model.

The main contributions of this paper are as follows:

1. Propose an approach for calculating the optimal path on a

curved surface; 2. Improve the traditional Dijkstra algorithm

for calculating the optimal path on a curved surface; 3. When

compared with the traditional Dijkstra algorithm, the optimal

path attained by the method proposed in this paper is more

accurate, shorter, and smoother when calculating the optimal

path of the surface. Especially for the case of a large number

of nodes, a large per-unit scale, and a large surface rugged-

ness, the optimal path obtained by the method proposed in

this paper has obvious advantages.

This article first presents the basic principle of the tra-

ditional Dijkstra algorithm (Section 2). Second, it explains

the improved Dijkstra algorithm theory (Section 3). In this

part, we utilize the Delaunay triangulation method to con-

struct the surface map. The key to extending the classical

Dijkstra algorithm is the invariance of the triangle side length

when transforming a triangle on a surface into an equiva-

lent triangle on a 2D plane. We convert the undevelopable

surface channel into an equivalent two-dimensional passable

channel, then solve the best path on the all two-dimensional

passable channels, and finally obtain the best path of the

surface through equivalent inverse transformation. We com-

pare the simulation results of different surface examples to

verify the effectiveness of the extended Dijkstra algorithm

(Section 4). At the end of this paper, a conclusion is given

(Section 5).

II. THE TRADITIONAL DIJKSTRA ALGORITHM

The initial work of the Dijkstra algorithm is only dealing

with the shortest path between two points. Mathematically,

these points must be represented by nodes in the graph net-

work. Bellman Ford implemented the possibility of fixing a

point and determining the shortest path to all other points in

the graph. Paul carried out a common practical application,

using this algorithm to figure out the shortest path between

two cities, considering the street and highway to the destina-

tion. Sniedovich proposed a clear and structured step division

to determine the minimum path between two points in a node

network [1]–[4].

The Dijkstra algorithm (Algorithm 1) has a simple proce-

dure. The essence of the traditional Dijkstra algorithm is to

find out the shortest path between two nodes on a digraph

D = (N ,W ), whereN is the set of all nodes andW is the set of

weighted edges of connected nodes. The Dijkstra algorithm

separates N into two sets, Ne and Nu. Ne is a set of all the

end nodes of the determined shortest path to source node ns.

In the first step, Ne contains only ns. Nu is the set of nodes

to ns with the undetermined shortest path. The nodes in Nu
will be moved to Ne in ascending order of the shortest path

length of the source node ns until there are no nodes in the

set Nu. The path that sequentially connects the source node

ns to all edges of any node nti is the shortest path from ns to

nti. The sum of the corresponding weights is the length of the

Dijkstra algorithm’s shortest path. So, the shortest path from

the source node ns to the target node nt can be won.

From Algorithm 1, we can see that the logic of the tra-

ditional Dijkstra algorithm is to find the Euclidean distance

between nodes, so it can be used to obtain the shortest path

from the start point to the endpoint of a two-dimensional

graph. However, when Algorithm 1 is directly applied to

VOLUME 8, 2020 147829



M. Luo et al.: Surface Optimal Path Planning Using an Extended Dijkstra Algorithm

FIGURE 1. Surface Delaunay triangulation model. (a) The original surface. (b) 169 nodes Delaunay triangulation model. (c) 625 nodes
Delaunay triangulation model.

calculate the shortest path between two points on a curved

surface, the greater the curvature of the surface, the greater the

error. The Euclidean distance between nodes and the distance

between two points on the surface are two different issues.

III. THE EXTENDED DIJKSTRA ALGORITHM

In this section, the extended Dijkstra algorithm is intro-

duced to resolve the surface optimal path planning task.

The extended Dijkstra algorithm is an algorithm to transfer

surface terrain map into a 2D map along the passable paths

based on the invariance of the triangle side length for surface

Delaunay Triangulation grid map.

The first step we shall do is to model a surface map by

the Delaunay triangulation method. Delaunay triangulation

is one of the most commonly used triangular mesh modeling

methods. Compared with the square grid map, the Delaunay

triangulation algorithm can provide more accurate surface

information, and generate a smoother path [27], [28]. Com-

pared with the digital point cloud method, it is simpler and

more convenient.

The expression of the Delaunay triangle mesh subdivision

algorithm makes each triangle unit has 12 adjacent units.

Therefore, one non-boundary node can provide 12 feasible

motion directions, thus this method can provide a smooth

motion planning of the path. The Delaunay triangular grid

map method [29], [30] is a map representation method using

the triangular mesh as the cartographic unit, which can well

express the fluctuation characteristics of the surface.

The accuracy and resolution of the surface map depend on

the size of the triangle mesh. The smaller the mesh, the higher

the accuracy. The choice of mesh size depends on the needing

resolution requirement, as shown in Fig. 1.

For a particular deterministic surface map, choosing a

larger mesh size map grid cell means fewer nodes and less

resolution. Fig. 1 (a) shows an original surface map. And

Fig. 1 (b) shows an example of the large mesh size surface

map model of Fig. 1 (a), Fig. 1 (b) has 169 nodes to repre-

sent the surface characteristics information. Similarly, Fig. 1

(c) shows an example of the small mesh size surface map

model of Fig. 1 (a), Fig. 1(c) has 625 nodes. Fig. 1 (c) has

a higher resolution and can better represent the fluctuation

characteristics of the surface of Fig. 1 (a). Fig. 1 (b) has fewer

nodes, less mathematical complexity, and less program cost

time. Therefore, in the actual design, the mesh size can be

reasonably selected according to the required accuracy and

time cost.

In Fig. 2 and Fig. 3, the red polygons are the obstructions

that the robot cannot travel, and the other areas inside the map

boundary are passable. The robot is R and the target is T. The

numbers denoted in the Figs are the node serial numbers.

Fig. 2 (a) shows an original surface map example.

The side length of each square (per-unit scale) is taken

as 0.25 in Fig. 2. Using the traditional Dijkstra algo-

rithm logic (Algorithm 1), we can get the black color

curve optimal path lts(1,6,11,16). Because the traditional

Dijkstra algorithm is based on the Euclidean distance

147830 VOLUME 8, 2020



M. Luo et al.: Surface Optimal Path Planning Using an Extended Dijkstra Algorithm

FIGURE 2. The extended Dijkstra algorithm theory diagram. (a) The original surface. (b) 16 nodes Dijkstra algorithm optimal
path (black color) and the extended Dijkstra algorithm equivalent 2D passable path (green color). (c) 16 nodes the extended
Dijkstra algorithm optimal path (magenta color).

FIGURE 3. Four algorithms optimal path length comparison diagram. (The extended Dijkstra algorithm proposed in this paper is
magenta solid line. The traditional Dijkstra algorithm is black solid line. The extended Dijkstra algorithm proposed in literature [5] is
green dotted line. The A* algorithm is blue dotted line.) (a) 169 nodes example. (b) 196 nodes example. (c) 225 nodes example.

between adjacent nodes, the optimal path obtained is

lts(1,6,11,16) =
√

(x1 − x6)2 + (y1 − y6)2 + (z1 − z6)2 +
√

(x6 − x11)2 + (y6 − y11)2 + (z6 − z11)2 +
√

(x11 − x16)2 + (y11 − y16)2 + (z11 − z16)2. Obviously, we

can see from Fig. 2 (b), the black color curve optimal path

lts(1,6,11,16) maybe above, below, or on the surface. This

causes errors in the optimal path of the surface.

Next, we showed the extended Dijkstra algorithm logic

theory in Algorithm 2. The core idea of the extended Dijkstra

algorithm is to find out the shortest path on a surface digraph

Dsg = (Nsg,Wsg), where Nsg is the set of all nodes and Wsg

is the set of weighted edges of connected nodes.

Then, we are going to introduce how to apply the invariant

principle of triangular side length to convert a surface triangle

into a triangle on the two-dimensional plane.

Shown in Fig. 2 (b), the surface nodes 1, 2, 5, 6 are

forming two three-dimensional triangulations 1s(1,2,5) and

1s(2,5,6) in white color. Keeping the invariance of the triangle

side length, using Algorithm 2, the equivalent triangulation

1p(1,2,5) and 1p(2,5,6) in green color on the 2D plane can be

VOLUME 8, 2020 147831



M. Luo et al.: Surface Optimal Path Planning Using an Extended Dijkstra Algorithm

Algorithm 1 The Traditional Dijkstra Algorithm Framework

Input:

A bidirected graph with weights D = (N ,W ), the set

of all nodes N , the set of weighted edges of connected

nodes W .

The source node ns.

The target node nt .

Output:

Shortest path and the length from the source node ns to

the target node nt .

1: Initialization.

Visited nodes Ne = ns.

d(ns) = 0,

where d(nti) is the minimum cost of the shortest path

from ns to nti.

Nu = N − Ne,

where Nu is the set of nodes to ns with the undetermined

shortest path.

d(nti) = min(W (ns, nti)), if nti is a successor to ns, or else,

d(nti) = ∞,

where W (i, j) is the cost between node i and node j.

2: Repeat the following steps until there are no nodes in the

set Nu.

2.1 Put the node in Nu that have the minimum cost to the

old ns as the new source ns. Move the new source node

ns to Ne;

2.2 Set d(nti) = d(ns) + min(W (ns, nti)).

3: Find the shortest path from the source node ns to the

target node nt .

4: return d(nt ), Ne.

found. In this way, the two-dimensional equivalent triangle

adjacent to the two-dimensional equivalent triangle obtained

in the previous step continues to travel along the passable

passage from R to T until the last triangle with T node as

the vertex of the triangle is obtained.

According to Algorithm 2, holding the length of each side

of the triangle unchanged, the triangular meshes of the curved

surface can be sequentially transformed into triangles on the

two-dimensional plane one by one, to achieve an equivalent

passable channel on the two-dimensional plane. Solve the

best path of the two-dimensional equivalent passable tri-

angular channel, and then traverse all the two-dimensional

passable channels to attain the optimal path from the starting

point to the endpoint of the equivalent two-dimensional plane.

Finally, a simple inverse conversion of equivalent coordinates

can secure the optimal path of the equivalent surface.

Ndgpi is the set of all 2D nodes and Wdgpi is the set of

weighted edges of connected nodes on the 2D passable pas-

sage. Then, we separate Ndgpi into two sets, Nedgpi and Nudgpi.

Nedgpi is a set of all the end nodes of the determined shortest

path to the equivalent 2D source node ndsg. In the first step,

Nedgpi contains the only ndsg. Nudgpi is the set of nodes to ndsg
with an undetermined shortest path. The nodes in Nudgpi will

Algorithm 2 The Extended Dijkstra Algorithm Framework

Input:

A surface graph Dsg = (Nsg,Wsg), the set of all nodes

Nsg, the set of weighted edges of connected nodesWsg.

The source node nssg, R. The target node nstg, T.

Output:

Shortest surface paths and their lengths from the source

node nssg to the target node nstg.

1: Convert the triangle which has the R robot’s start point

on the surface into an equivalent triangle on a 2D plane

based on keeping the triangle side length unchanged.

Continue this process to find a two-dimensional equiv-

alent triangle adjacent to the two-dimensional equivalent

triangle obtained in the previous step along a passable

path from R to T until the last one tirangle with T node

as the triangle vertex found.

2: Get the 2D equivalent passable passage graph Ddgpi =

(Ndgpi,Wdgpi), where Ndgpi is the set of all nodes and

Wdgpi is the set of weighted edges of connected nodes

on the 2D equivalent passable passage graph.

3: Get the 2D source node ndsg, and the 2D target node ndtg.

4: Compute Wdgpi on the passable path in the two-

dimensional plane.

4.1 Initialization.

Visited nodes Nedgpi = ndsg.

d(ndsg) = 0, where d(ndtgpi) is the minimum cost of the

shortest path from ndsg to ndtgpi.

Nudgpi = Ndgpi − Nedgpi, where Nudgpi is the the set of

nodes to ndsg with the undetermined shortest path.

d(ndtgpi) = min(W (ndgpi, ndtgpi)), if ndtgpi is a successor

to ndsg, or else, d(ndtgpi) = ∞, where Wdgpi(i, j) is the

cost between the node i and j.

4.2 Repeat the following steps until there are no nodes in

the set Nudgpi:

Set the node in Nudgpi that have the minimum cost to

the old ndsg as the new source ndsg. Move the new

source node ndsg to Nedgpi. Set d(ndtgpi) = d(ndsg) +

min(W (ndgpi, ndtgpi)).

5: Find the other passable passage from R to T in a different

order, and repeat Step 1 - Step 4 until find the shortest

paths for all passable passages.

6: Compute d(nstg) and Nesg of the surface by equivalent

inverse coordinate transformation from the shortest 2D

path.

7: return d(nstg), Nesg.

be moved to Nedgpi in ascending order of the shortest path

length of the source node ndsg until there are no nodes in

the set Nudgpi. The path that sequentially connects the source

node ndsg to all edges of any node ndtgpi is the shortest path

from ndsg to ndtgpi. The sum of the corresponding weights

is the length of the 2D passable passage’s shortest path. So,

the shortest path from the source node ndsg to the target node

ndtg can be won.

147832 VOLUME 8, 2020



M. Luo et al.: Surface Optimal Path Planning Using an Extended Dijkstra Algorithm

Employing this method and by extension, we can eas-

ily take the 2D equivalent expansion channel of a surface

passable path from the robot R’s initial position to the tar-

get T’s position. Thus, we can adapt the extended Dijkstra

algorithm (Algorithm 2) to work out the optimal path on

the acquired equivalent green 2D path below in Fig. 2 (b).

A graph may have multiple passable channels. Computing

all passable equivalent path on the 2D plane, we can get the

shortest optimal path, the magenta color curve lp(1,6,11,16)
shown in Fig. 2 (b). Finally, we use the equivalent coordinate

transformation to get the surface optimal path from the robot

R’s initial position (nssg) to the target T’s position (nstg ),

the magenta color curve les(1,6,11,16) shown in Fig. 2(c). And

the magenta color curve is on the surface, not above or below

the surface.

From Algorithm 2, we can see utilizing the extended Dijk-

stra algorithm, the surface smooth optimal path can be gotten.

Therefore, in principle, the surface optimal path solved by this

proposed method is more accurate and shorter than the sur-

face optimal path solved by the traditional Dijkstra algorithm

with the same nodes number.

Furthermore, the traditional Dijkstra algorithm optimal

path is not a true path that falls on a triangulation mesh, and

may often have path segments above or below the triangula-

tion mesh. When the robot tracks along with the traditional

Dijkstra algorithm optimal path, it cannot travel higher or

lower than the curved surface and must travel against the

curved surface (Refer to the detailed diagram in Fig. 2 (b),

lts(6,11) is the Euclidean space distance between node 6 and

node 11, which is higher than the equivalent triangle blocks

1s(6,7,10) and1s(7,10,11), not on these two triangles). Accord-

ingly, the actual path length with the traditional Dijkstra

algorithm optimal path will be much larger than the theory

or simulation path length. The further the path is traveled or

the greater the curvature of the curved surface, the greater

the actual travel path is larger than the theoretical simulation

path. And this path error is caused by a sharp bump or a

large depression on the map, which may cause malfunctions

such as the robot loses the direction of travel or walks on the

wrong route. The improved Dijkstra algorithm optimal path

is a true path that falls on an equivalent angulation mesh, so it

is only slightly little different from the surface path of the real

robot. On the same surface with the same number of nodes,

the extended algorithm proposed in this paper can get a more

accurate and smoother optimal path.

To further illustrate the characteristics of the extended

algorithm in this paper, here is a comparative analysis of

four algorithms, as shown in Fig. 3 and Table 1. The

four algorithms for comparative analysis are the extended

Dijkstra algorithm presented in this paper (magenta solid

curve), the traditional Dijkstra algorithm (black solid curve),

the extended algorithm introduced in literature [5] (green

dotted curve), and the A* algorithm (blue dotted curve). For

the extended algorithm proposed in [5], we comprehensively

compared the simulation results of various factor parameter

schemes proposed in the article [5], and finally selected the

factor parameters α = 1/3, β = 1/3, γ = 1/3 that can

obtain a shorter path. For the A* algorithm, we compared the

simulation results of a variety of heuristic functionsH (n) and

selected the H (n) that can obtain a shorter path, taking the

Euclidean distance and the Manhattan distance into account.

TABLE 1. Four algorithms optimal path length comparison.

It can be seen from Fig. 3 that only the optimal path

obtained by the extended algorithm proposed in this paper

is smooth and the optimal paths obtained by the other three

algorithms are all non-smooth paths composed of polyline

segments. The optimal path obtained by the algorithm pro-

posed in this paper is based on a triangular mesh surface,

while the optimal path obtained by the other three algo-

rithms is the space Euclidean distance or Manhattan distance

between the nodes. Therefore, the paths obtained by the other

three algorithms all have line segments higher or lower than

the triangle surface. On the one hand, it causes errors in path

calculation, and on the other hand, it will cause problems

such as malfunction or loss of direction when the robot is

walking. More accurate paths have practical significance and

value for occasions with higher precision requirements, such

as surgical operations on fine surfaces or finishing on surfaces

and other occasions with high error requirements.

From Fig. 3 and Table 1, the optimal paths acquired by the

extended Dijkstra algorithm introduced in this paper are the

shortest. As the number of nodes and the distance per-unit

length increase, the path difference between the traditional

Dijkstra algorithm and the algorithm proposed in this paper

also increases, and the maximum error is about 4.91%. The

maximum error of the path difference between the algorithm

proposed in [5] and the algorithm in this paper is about

7.77%, and the maximum error of the path obtained by the A*

algorithm and the algorithm in this paper is about 4.92%. The

side length of each square (per-unit scale) is taken as 0.25 in

Fig. 3 (a). In Fig. 3 (b), the side length of each square is 0.5,

and in Fig.3 (c), it is 1.5.

When comparing these four algorithms in this paper,

we can see that the purpose of the traditional Dijkstra algo-

rithm is mainly to find the shortest path between nodes based

on the Euclidean space distance. Literature [5] introduces

the extended Dijkstra algorithm to select a flatter optimal

path based on factors such as the shortest path, elevation

difference, and ground smoothness. The A* algorithm is

based on a reasonable selection of heuristic functions, and the

search time for the shortest path is shorter than the traditional

Dijkstra algorithm. And the extended algorithm proposed in

this paper can get a smoother and shorter optimal path of

VOLUME 8, 2020 147833



M. Luo et al.: Surface Optimal Path Planning Using an Extended Dijkstra Algorithm

FIGURE 4. 1089 nodes example. (a) The extended Dijkstra algorithm
method. (b) The traditional Dijkstra algorithm method.

the surface than the shortest path obtained by the traditional

Dijkstra algorithm. Both the curves in Figure 3 and the data

in Table 1 confirm the effectiveness of the algorithm in this

paper.

IV. MATLAB SIMULATION VERIFICATION

In this section, the MATLAB examples will further verify

the effectiveness of this extended Dijkstra algorithm. First, 1-

robot 1-target surface path planning simulation experiments

with large numbers of nodes by the extended Dijkstra algo-

rithm are conducted and compared the simulation results with

the traditional Dijkstra algorithm simulation optimal path

solutions. Furthermore, the simulation experiments of multi-

robot and multi-target path planning are carried out. After

many experiments, the results show that the improved Dijk-

stra algorithm introduced in this paper can provide smoother

and shorter paths in 1-robot 1-target and multi-robot multi-

target path planning tasks compared with the traditional Dijk-

stra algorithm.

In the Figs in this section, the red polygons are obstructions

where the mobile robot cannot travel, and the other areas

inside the map boundary are passable. The robot is R and

the target is T in the Figs. The extended Dijkstra algorithm

surface optimal path curve is in magenta, the black curve

indicates the traditional Dijkstra algorithm surface optimal

path.

A. 1-ROBOT 1-TARGET SURFACE PATH PLANNING

Firstly, we perform 1-robot 1-target surface path planning

Matlab simulation experiments with large numbers of nodes.

We use the Delaunay Triangulation Algorithm to build the

surface environment with the required resolution in this

section. And Algorithm 2’s logic theory is employed to solve

the surface optimal path.

In Fig. 4, we do a 1089 nodes surface simulation example

experiment. The robot initial position is [0, 1, 0.120], and the

target coordinate position is [8, 9, 1.190], as shown in Table 2.

TABLE 2. 1-robot 1-target surface optimal path comparison.

FIGURE 5. 2401 nodes example. (a) The extended Dijkstra algorithm
method. (b) The traditional Dijkstra algorithm method.

The magenta color curve in Fig. 4 (a) shows the optimal path

calculated by the extended Dijkstra algorithm. It is smoother

than the black curve shown in Fig. 4 (b) obtained by the

traditional Dijkstra algorithm. And the optimal path length

in magenta color is about 11.812, it is shorter than the black

color optimal curve length 12.582.

We do a 2401 nodes surface simulation example exper-

iment in Fig. 5. The robot’s initial coordinate position

in Fig. 5 is [0, 1, 1.133], the target position is [6, 7, 1.142],

shown in Table 2. The magenta color optimal path length

by the extended Dijkstra algorithm is about 8.798, and it is

shorter than the black color optimal curve length 10.818 by

the traditional Dijkstra algorithm, too.

A 4225 nodes surface path planning example is in Fig. 6.

Table 2 exhibits the data of the simulation experiment. A con-

clusion drawn from the comparison of experimental data

in Table 2 is that the extended Dijkstra algorithm is superior

to the traditional Dijkstra algorithm in solving the 1-robot

1-target shortest path of the surface with large numbers

of nodes, the extended Dijkstra algorithm optimal path is

smoother and shorter. From Table 2, the maximum differ-

ence rate between the traditional Dijkstra algorithm and the

extended Dijkstra algorithm is about 22.96%. The side length

of each square (per-unit scale) is 0.25 in Fig. 4 and Fig. 6, and

the per-unit scale is 0.125 in Fig. 5.

B. MULTI-ROBOT MULTI-TARGET SURFACE PATH

PLANNING

Next, we perform multi-robot multi-target surface path

planning Matlab simulation experiments. We extend

147834 VOLUME 8, 2020



M. Luo et al.: Surface Optimal Path Planning Using an Extended Dijkstra Algorithm

FIGURE 6. 4225 nodes example. (a) The extended Dijkstra algorithm
method. (b) The traditional Dijkstra algorithm method.

FIGURE 7. 625 nodes 2-robot 1-target example. (a) The extended dijkstra
algorithm method. (b) The traditional Dijkstra algorithm method.

Algorithm 2 to multi-robot multi-target surface path planning

tasks and carry out MATLAB simulation experiments in this

section, keeping the simulation experiment settings consis-

tent with the previous subsection.

In Fig. 7, we do a 625 nodes 2-robot 1-target surface

path planning example experiment. The R1 robot’s ini-

tial position is [0, 1, 0.569], the R2 robot’s initial posi-

tion is [2, 5.25, 0.789], and the target coordinate position is

[6, 7, 0.742], as shown in Table 3. The magenta color curve

length in Fig. 7 (a) from R1 to T is about 8.956, the magenta

color curve length in Fig. 7 (a) from R2 to T is about 4.398.

And, the black color curve length in Fig. 7 (b) from R1 to T is

about 11.853, the black color curve length in Fig. 7 (b) from

R2 to T is 4.732. So, according to the experimental curves and

data in Figure 7 and Table 3, the optimal paths obtained by

the extended Dijkstra algorithm are shorter than the optimal

paths calculated by the traditional Dijkstra algorithm.

FIGURE 8. 289 nodes 1-robot 3-target example. (a) The extended Dijkstra
algorithm method. (b) The traditional Dijkstra algorithm method.

FIGURE 9. 625 nodes 1-robot 2-target example. (a) The extended Dijkstra
algorithm method. (b) The traditional Dijkstra algorithm method.

Fig. 8 shows a 289 nodes 1-robot 3-target surface path plan-

ning example. The R robot’s initial position is [0, 1, 0.12],

the T1 position is [8, 9, 1.190], the T2 coordinate position is

[5, 4.5, 0.897], and the T3 position is [1.5, 3.5, 0.589], shown

in Table 3. The magenta color curve length in Fig. 8 (a) from

R to T1 is about 11.858, the magenta color curve length from

T1 to T2 is about 5.615, and the magenta color curve length

from T2 to T3 is about 4.224. The black color curve length

in Fig. 8 (b) from R to T1 is about 14.626, the black color

curve length from T1 to T2 is about 6.398, and the black

color curve length from T2 to T3 is about 4.572. According

to the experimental curves and data in Figure 8 and Table 3,

the optimal paths obtained by the extended Dijkstra algorithm

are always shorter and smoother than the optimal paths cal-

culated by the traditional Dijkstra algorithm, too.

Fig. 9 shows a 625 nodes 1-robot 2-target surface path

planning example. Fig. 10 is a 289 nodes 3-robot 2-target

surface example. Fig. 11 is a 441 nodes 3-robot 2-target sur-

face example. The experimental data are all filled in Table 3.

VOLUME 8, 2020 147835



M. Luo et al.: Surface Optimal Path Planning Using an Extended Dijkstra Algorithm

TABLE 3. Multi-robot multi-target surface optimal path comparison.

FIGURE 10. 289 nodes 3-robot 2-target example. (a) The extended
Dijkstra algorithm method. (b) The traditional Dijkstra algorithm method.

According to the experimental curves in these three fig-

ures and the simulation data in Table 3, it is easy to prove

that the extended Dijkstra algorithm proposed by this subsec-

tion can obtain a more accurate and shorter surface optimal

path than the traditional Dijkstra method. From Table 3,

the maximum difference rate between the traditional Dijkstra

algorithm and the extended Dijkstra algorithm is 32.35%.

The per-unit scale is 0.25 in Fig. 7, Fig. 9, and Fig. 11, and

in Fig. 8 and Fig. 10, the per-unit scale is 0.5.

The above simulation results show that the improved

Dijkstra algorithm can still effectively calculate the optimal

path of the surface in multi-robot and multi-target scenarios.

Moreover, compared with the traditional algorithm, the curve

is smoother and the path is always shorter.

The simulation research in this section finds that whether

it is a single-robot single-object path planning task or a

FIGURE 11. Comparion graph of 4225 nodes example. (a) The extended
Dijkstra algorithm method. (b) The traditional Dijkstra algorithm method.

multi-robot multi-object path planning task, the extended

algorithm can obtain a more accurate and smoother optimal

path than the traditional algorithm, and usually, the path

obtained by the extended algorithm is shorter.

V. CONCLUSION

To improve the error of the traditional Dijkstra algorithm

when studying the surface optimal path task, we introduce

the extended Dijkstra algorithm. The reason for the error of

the traditional Dijkstra algorithm in researching the optimal

path task of the surface is that it uses the Euclidean dis-

tance algorithm to calculate the path length between adjacent

nodes. This is not a problem for the optimal path of a two-

dimensional plane, but it will produce errors for the optimal

path of a surface. Nowadays, more and more application

147836 VOLUME 8, 2020



M. Luo et al.: Surface Optimal Path Planning Using an Extended Dijkstra Algorithm

scenarios want to find the optimal path of the surface. There-

fore, it is necessary to expand the research on the traditional

optimal path algorithm to meet the needs of the new era.

In this paper, we first introduce an improved Dijkstra

algorithm approach to solve the optimal path of the surface.

We utilize the Delaunay triangulation method to model the

surface environment. On the Delaunay triangulation map,

we keep the triangular side length unchanged when trans-

forming the triangular mesh on the surface into the corre-

sponding triangle in the two-dimensional plane. Through the

previous transformation, we attain the robot’s accessible pas-

sages of the two-dimensional plane. Solve the shortest path in

the two-dimensional plane, and then find the corresponding

shortest path on the surface through equivalent coordinate

inverse transformation.

Compared with the traditional Dijkstra algorithm, this

approach extended the Dijkstra algorithm’s research scope

to the surface path planning field. The improved algorithm

is suitable for the single-robot single-target project and the

multi-robot multi-target project. And, compared with the tra-

ditional Dijkstra algorithm, the extended Dijkstra algorithm

can acquire more accurate and shorter surface optimal path,

which is demonstrated by the different MATLAB simulation

examples in complex surface environments.

The smoother and shorter path obtained in this paper comes

at the expense of increased time cost. In the future, we will

combine the work of reducing time cost in the literature [31]

to further study the method of reducing the time cost of

this algorithm, so that the algorithm can be used in practical

research more conveniently and quickly.

REFERENCES

[1] K.Wei, Y. Gao,W. Zhang, and S. Lin, ‘‘AmodifiedDijkstra’s algorithm for

solving the problem of finding themaximum load path,’’ inProc. IEEE 2nd

Int. Conf. Inf. Comput. Technol. (ICICT), Kahului, HI, USA, Mar. 2019,

pp. 10–13, doi: 10.1109/INFOCT.2019.8711024.

[2] A. Alyasin, E. I. Abbas, and S. D. Hasan, ‘‘An efficient optimal path

finding for mobile robot based on dijkstra method,’’ in Proc. 4th Sci-

entific Int. Conf. Najaf (SICN), Al-Najef, Iraq, Apr. 2019, pp. 11–14,

doi: 10.1109/SICN47020.2019.9019345.

[3] Yujin and G. Xiaoxue, ‘‘Optimal route planning of parking lot

based on dijkstra algorithm,’’ in Proc. Int. Conf. Robots Intell. Syst.

(ICRIS), Huai’an, China, Oct. 2017, pp. 221–224, doi: 10.1109/ICRIS.

2017.62.

[4] M. A. Djojo and K. Karyono, ‘‘Computational load analysis of dijk-

stra, A, and floyd-warshall algorithms in mesh network,’’ in Proc.

Int. Conf. Robot., Biomimetics, Intell. Comput. Syst., Jogjakarta, IN,

USA, Nov. 2013, pp. 104–108, doi: 10.1109/ROBIONETICS.2013.

6743587.

[5] W. Fink, V. R. Baker, A. J.-W. Brooks, M. Flammia, J. M. Dohm, and

M. A. Tarbell, ‘‘Globally optimal rover traverse planning in 3D using

Dijkstra’s algorithm for multi-objective deployment scenarios,’’ Planet.

Space Sci., vol. 179, pp. 1–9, Dec. 2019, doi: 10.1016/j.pss.2019.

104707.

[6] D. Guo, J.Wang, J. B. Zhao, F. Sun, S. Gao, C. D. Li,M. H. Li, and C. C. Li,

‘‘A vehicle path planning method based on a dynamic traffic network that

considers fuel consumption and emissions,’’ Sci. Total Environ., vol. 663,

pp. 935–943, May 2019, doi: 10.1016/j.scitotenv.2019.01.222.

[7] F. R. Souza, T. R. Cámara, V. F. N. Torres, B. Nader, and

R. Galery, ‘‘Mine fleet cost evaluation–Dijkstra’s optimized path,’’

REM—Int. Eng. J., vol. 72, no. 2, pp. 321–328, Jun. 2019, doi: 10.1590/

0370-44672018720124.

[8] A. H. M. Santos, R. M. D. Lima, C. R. S. Pereira, R. Osis,

G. O. S. Medeiros, A. R. D. Queiroz, B. K. Flauzino, A. R. P. C. Cardoso,

L. C. Junior, R. A. D. Santos, and E. L. C. Junior, ‘‘Optimizing routing and

tower spotting of electricity transmission lines: An integration of geograph-

ical data and engineering aspects into decision-making,’’ Electr. Power

Syst. Res., vol. 176, pp. 1–12, Jul. 2019, doi: 10.1016/j.epsr.2019.105953.

[9] J. Balado, L. Díaz-Vilariño, P. Arias, and H. Lorenzo, ‘‘Point clouds

for direct pedestrian pathfinding in urban environments,’’ ISPRS

J. Photogramm. Remote Sens., vol. 148, pp. 184–196, Feb. 2019,

doi: 10.1016/j.isprsjprs.2019.01.004.

[10] J. Tang, G. Chen, X. Li, and J. P. Coon, ‘‘Route selection based on

connectivity-delay-trust in public safety networks,’’ IEEE Syst. J., vol. 13,

no. 2, pp. 1567–1576, Jun. 2019, doi: 10.1109/JSYST.2018.2813929.

[11] L. Yu, D. Kong, X. Shao, and X. Yan, ‘‘A path planning and navigation

control system design for driverless electric bus,’’ IEEE Access, vol. 6,

pp. 53960–53975, 2018, doi: 10.1109/ACCESS.2018.2868339.

[12] Z. Zhang, Q. Guo, J. Chen, and P. Yuan, ‘‘Collision-free route plan-

ning for multiple AGVs in an automated warehouse based on col-

lision classification,’’ IEEE Access, vol. 6, pp. 26022–26035, 2018,

doi: 10.1109/ACCESS.2018.2819199.

[13] F. Dalkäç, Y. Doäan, D. Birant, R. A. Kut, and R. Yälmaz, ‘‘A grad-

ual approach for multimodel journey planning: A case study in izmir,

turkey,’’ J. Adv. Transp., vol. 2017, pp. 1–14, 2017, doi: 10.1155/32017/

5656323.

[14] S. Shao, W. Guan, B. Ran, Z. He, and J. Bi, ‘‘Electric vehicle rout-

ing problem with charging time and variable travel time,’’ Math. Prob-

lems Eng., vol. 2017, Jan. 2017, Art. no. 5098183, doi: 10.1155/2017/

5098183.

[15] G. K. D. Saharidis, D. Rizopoulos, A. Fragkogios, and C. Chatzigeorgiou,

‘‘A hybrid approach to the problem of journey planning with the use of

mathematical programming and modern techniques,’’ Transp. Res. Proce-

dia, vol. 24, pp. 401–409, Oct. 2017, doi: 10.1016/j.trpro.2017.05.094.

[16] T. Zhi and Z. Hui, ‘‘An improved ant colony routing algorithm for WSNs,’’

J. Sensors, vol. 2015, pp. 1–4, Dec. 2015, doi: 10.1155/2015/438290.

[17] W. C. Lu, M. T. Lee, and M. W. Wang, ‘‘Route planning for light-sport

aircraft in constrained airspace,’’ Procedia Eng., vol. 67, pp. 140–146,

2013, doi: 10.1016/j.proeng.2013.12.013.

[18] D. Gautam and C. Ha, ‘‘Control of a quadrotor using a smart self-

tuning fuzzy PID controller,’’ Int. J. Adv. Robotic Syst., vol. 10, pp. 1–9,

Aug. 2013, doi: 10.5772/56911.

[19] T.-H. Kim and I.-C. Park, ‘‘High-throughput and area-efficient MIMO

symbol detection based on modified Dijkstra’s search,’’ IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 57, no. 7, pp. 1756–1766, Jul. 2010,

doi: 10.1109/TCSI.2009.2034235.

[20] Z. Pan, L. Yan, A. C. Winstanley, A. S. Fotheringham, and J. Zheng,

‘‘A 2-D ESPO algorithm and its application in pedestrian path planning

considering human behavior,’’ in Proc. 3rd Int. Conf. Multimedia Ubiqui-

tous Eng., Qingdao, China, Jun. 2009, pp. 485–491, doi: 10.1109/MUE.

2009.86.

[21] A. Chen, A. K.-S.Wong, and C.-T. Lea, ‘‘Routing and time-slot assignment

in optical TDM networks,’’ IEEE J. Sel. Areas Commun., vol. 22, no. 9,

pp. 1648–1657, Nov. 2004, doi: 10.1109/JSAC.2004.833832.

[22] Bast, Mehlhorn, Schäfer, and Tamaki, ‘‘A heuristic for Dijkstra’s algorithm

with many targets and its use in weighted matching algorithms,’’ Algorith-

mica, vol. 36, no. 1, pp. 75–88, May 2003, doi: 10.1007/s00453-002-1008-

z.

[23] M. Noto and H. Sato, ‘‘A method for the shortest path search by

extended Dijkstra algorithm,’’ in Proc. IEEE Int. Conf. Syst., Man

Cybern., Nashville, TN, USA, Oct. 2000, pp. 2316–2320, doi: 10.1109/

ICSMC.2000.886462.

[24] D. Cavendish and M. Gerla, ‘‘On routing with QOS constraints in ATM

networks,’’ in The International Federation for Information Processing,

A. Tantawy, Ed. Boston, MA, USA: Springer, 1994.

[25] R. V. Helgason, J. L. Kennington, and B. D. Stewart, ‘‘The one-to-one

shortest-path problem: An empirical analysis with the two-tree dijkstra

algorithm,’’ Comput. Optim. Appl., vol. 2, no. 1, pp. 47–75, Jun. 1993,

doi: 10.1007/BF01299142.

[26] R. B. K. Dewar, S. M. Merritt, and M. Sharir, ‘‘Some modified algorithms

for Dijkstra’s longest upsequence problem,’’ Acta Inf., vol. 18, no. 1,

pp. 1–15, Feb. 1982, doi: 10.1007/BF00625277.

[27] M. Liu, ‘‘Robotic online path planning on point cloud,’’ IEEE Trans.

Cybern., vol. 46, no. 5, pp. 1217–1228, May 2016, doi: 10.1109/TCYB.

2015.2430526.

VOLUME 8, 2020 147837

http://dx.doi.org/10.1109/INFOCT.2019.8711024
http://dx.doi.org/10.1109/SICN47020.2019.9019345
http://dx.doi.org/10.1109/ICRIS.2017.62
http://dx.doi.org/10.1109/ICRIS.2017.62
http://dx.doi.org/10.1109/ROBIONETICS.2013.6743587
http://dx.doi.org/10.1109/ROBIONETICS.2013.6743587
http://dx.doi.org/10.1016/j.pss.2019.104707
http://dx.doi.org/10.1016/j.pss.2019.104707
http://dx.doi.org/10.1016/j.scitotenv.2019.01.222
http://dx.doi.org/10.1590/0370-44672018720124
http://dx.doi.org/10.1590/0370-44672018720124
http://dx.doi.org/10.1016/j.epsr.2019.105953
http://dx.doi.org/10.1016/j.isprsjprs.2019.01.004
http://dx.doi.org/10.1109/JSYST.2018.2813929
http://dx.doi.org/10.1109/ACCESS.2018.2868339
http://dx.doi.org/10.1109/ACCESS.2018.2819199
http://dx.doi.org/10.1155/2017/5656323
http://dx.doi.org/10.1155/2017/5656323
http://dx.doi.org/10.1155/2017/5098183
http://dx.doi.org/10.1155/2017/5098183
http://dx.doi.org/10.1016/j.trpro.2017.05.094
http://dx.doi.org/10.1155/2015/438290
http://dx.doi.org/10.1016/j.proeng.2013.12.013
http://dx.doi.org/10.5772/56911
http://dx.doi.org/10.1109/TCSI.2009.2034235
http://dx.doi.org/10.1109/MUE.2009.86
http://dx.doi.org/10.1109/MUE.2009.86
http://dx.doi.org/10.1109/JSAC.2004.833832
http://dx.doi.org/10.1007/s00453-002-1008-z
http://dx.doi.org/10.1007/s00453-002-1008-z
http://dx.doi.org/10.1109/ICSMC.2000.886462
http://dx.doi.org/10.1109/ICSMC.2000.886462
http://dx.doi.org/10.1007/BF01299142
http://dx.doi.org/10.1007/BF00625277
http://dx.doi.org/10.1109/TCYB.2015.2430526
http://dx.doi.org/10.1109/TCYB.2015.2430526


M. Luo et al.: Surface Optimal Path Planning Using an Extended Dijkstra Algorithm

[28] A. Stumpf, S. Kohlbrecher, D. C. Conner, and O. von Stryk, ‘‘Super-

vised footstep planning for humanoid robots in rough terrain tasks

using a black box walking controller,’’ in Proc. IEEE-RAS Int. Conf.

Humanoid Robots, Madrid, India, Nov. 2014, pp. 287–294, doi: 10.1109/

HUMANOIDS.2014.7041374.

[29] C.-C. Sun, G. E. Jan, S.-W. Leu, K.-C. Yang, and Y.-C. Chen, ‘‘Near-

Shortest path planning on a quadratic surface with O(n log n) time,’’ IEEE

Sensors J., vol. 15, no. 11, pp. 6079–6080, Nov. 2015, doi: 10.1109/JSEN.

2015.2464271.

[30] Z. Shiller and J. C. Chen, ‘‘Optimal motion planning of autonomous

vehicles in three dimensional Terrains,’’ in Proc. Int. Conf. Robot.

Autom., Cincinnati, OH, USA, 1990, pp. 198–203, doi: 10.1109/

ROBOT.1990.125972.

[31] M. Luo, X. Hou, and S. X. Yang, ‘‘A multi-scale map method

based on bioinspired neural network algorithm for robot path plan-

ning,’’ IEEE Access, vol. 7, pp. 142682–142691, 2019, doi: 10.1109/

ACCESS.2019.2943009.

MIN LUO was born in Sichuan, China, in 1978.

She received the B.S. degree in automation from

Chongqing University, in 2001, and the M.S.

degree in electrical engineering and information

from Southwest Petroleum University, in 2009.

She is currently pursuing the Ph.D. degree in

automation engineering with the University of

Electronic Science and Technology of China,

Sichuan.

Since 2001, she has been a Lecturer with the

School of Electrical Engineering and Information, Southwest Petroleum

University. Her research interests include robot path planning and control

theory and application.

XIAORONG HOU was born in Shanxi, China,

in 1966.

He is currently a Professor with the School of

Automation Engineering, University of Electronic

Science and Technology of China. He has pub-

lished over 90 research articles and two mono-

graphs. His research interests include control

theory, intelligent systems, symbolic computation,

and real algebraic geometry.

JING YANG was born in Sichuan, China, in 1989.

She is currently a Postdoctoral Researcher with

the School of Automation Engineering, University

of Electronic Science and Technology of China.

Her research interests include nonlinear control

theory and fractional-order systems.

147838 VOLUME 8, 2020

http://dx.doi.org/10.1109/HUMANOIDS.2014.7041374
http://dx.doi.org/10.1109/HUMANOIDS.2014.7041374
http://dx.doi.org/10.1109/JSEN.2015.2464271
http://dx.doi.org/10.1109/JSEN.2015.2464271
http://dx.doi.org/10.1109/ROBOT.1990.125972
http://dx.doi.org/10.1109/ROBOT.1990.125972
http://dx.doi.org/10.1109/ACCESS.2019.2943009
http://dx.doi.org/10.1109/ACCESS.2019.2943009

