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Surface perception in pictures
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Subjects adjusted a local gauge figure such as to perceptually "fit" the apparent surfaces of

objects depicted in photographs. We obtained a few hundred data points per session, covering

the picture according to a uniform lattice. Settings were repeated 3 times for each of 3 subjects.

Almost all of the variability resided in the slant; the relative spread in the slant was about 25%

(Weber fraction). The tilt was reproduced with a typical spread of about 10°. The rank correla­

tion of the slant settings of different observers was high, thus the slant settings of different sub­

jects were monotonically related. The variability could be predicted from the scatter in repeated

settings by the individual observers. Although repeated settings by a single observer agreed within

5%, observers did not agree on the value of the slant, even on the average. Scaling factors of

a doubling in the depth dimension were encountered between different subjects. The data con­

formed quite well to some hypothetical fiducial global surface, the orientation of which was

"probed" by the subject's local settings. The variability was completely accounted for by single­

observer scatter. These conclusions are based upon an analysis of the internal structure of the

local settings. We did not address the problem of veridicality, that is, conformity to some "real

object."

We addressed the problem of the internal consistency

of data structures generated via the visual inspection of
pictures, in the presence of these pictures. We used pho­
tographs of existing objects, but made no further refer­
ences to these objects.

Many previous investigators have used local probes to

measure the internal representation of three-dimensional
(3-D) surfaces from looking at pictures. For instance,

Biilthoff and Mallott (1992) have measured depth maps,
whereas Stevens (1983a, 1983b), Stevens and Brookes
(1987), and Todd and Akerstrom (1987) have developed

methods to probe the slant and tilt distribution. These
authors also address the important problem of conformity

to the real (3-D) object, on the basis of shape from shad­
ing, texture gradients, disparity, and so forth.

In the present study, we used a method related to that
proposed by Mingolla and Todd (1986). The aim here was
to test, by quantitative means, whether observers sample
some coherent surface. In order to do so, it was neces­
sary to obtain somewhat more extensive data than usual.

METHOD

Stimuli

The stimuli were photographs of rigid objects, displayed on a

CRT tube measuring 640 x 480 pixels (or less), displayed at 8 bits

of greytone. The objects were pieces of sculpture with clear-cut
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smooth shapes, as viewed under general room illumination. Pre­

sentation was on a screen (8-bit RGB monitor) attached to a Macin­

tosh IIfx. Another screen was used for user interactions and cuing
messages. The subject responded by using a mouse.

The picture used for this study depicts a marble piece ("The

Bird," finished in 1912by Constantin Brancusi, 1876-1957), which
is kept in the Philadelphia Museum of Art (see Figure I). The pic­

ture was chosen from Wittkower's (1977) book on sculpture.

Subjects

The subjects were the authors, who performed the settings with­

out a preliminary training period. All had normal, or corrected-to­

normal, binocular vision (A.K. was emmetropic, A.D. slightly my­

opic, and J.K. slightlypresbyopic). All hadhadextensiveexperience
with psychophysical experiments.

Procedure
The viewing distance was 500 mm. The full screen subtended

26° x 20° of visual angle. The picture itself was only part of the

screen. (The bounding box of "The Bird" measures 140 x 356

pixels.) The pixels were spaced at 2.5' of arc intervals. Viewing
was with the right eye only, from a centered and frontal position.

Maximum luminance of the screen was 10 cd/m
2

• For the experi­

ment, the room was darkened and the subject was constrained with
a head- and chinrest.

In a preliminary session, thesubject was told that only the smooth,

polished surface above the base ("The Bird" is feetless) and the

area up to the fractured-looking top surface (it has an unfinished
or fragmentary look) were relevant to the experiment. The subjects

were asked to move a cursor over the outline of this part and to

repeat this 3 times. The subjects agreed rather precisely (rrns devi­
ation of 0.6 pixels). We then predefined a grid consisting of

225 points in a regular hexagonal lattice on the area defined by the

common outline. All the subjects performed settings based upon

this same lattice, thus enabling intersubject consistency checks.
The subject was to adjust the shape of a "gauge figure," used

as a probe, which appeared overlaid in red over the greytone pic­

ture. The gauge figure was the orthographic projection of a thin
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Figure 1. Monochrome halftone pbotograpb of the piece of sculp­

ture "The Bird," finished in 1912 by Constantin Brancusi
(1876-1957), from the Philadelphia Museum of Art. Only part of

this picture is used in the experiment, showingaUof the smooth con­

tinuous surface of "The Bird," but only part of the "feet." The coor­
dinate origin is taken at the lower left, witb the x-axis running
horizontally toward the right, the y-axis vertically upward. We as­
sociate a z-axis ("depth dimension") witb the x- and y-axes: It is or­

thogonal to both the x-and y-axes, whereas the xyzsystemis Iefthand­

edly oriented.

circular disk, pierced orthogonally through the center with a straight­

line-shaped axle. The axle protruded a distance equal to one disk

radius from both sides of the disk. The radius of the disk measured

15' of arc (see Figure 2). The subject controlled the slant and tilt

of the projection of the gauge figure with the mouse. The instruc­

tions were to adjust the gauge figure in such a way that the disk

looked tangent to the surface of the depicted object. The question

asked was: "Could this be a red circle painted upon the surface?"

If the configuration "looked right," the mouse button was pressed

by the subject and the gauge figure disappeared. The task was an

easy one: Many naive subjects have tried it and, even on first try,

did as well as our experienced subjects. The subject was allowed

unrestricted time for the setting, but typically performed the task

well within 10 sec. The gauge figure was centered on one of the

fiducial locations. In the course of the experiment, all lattice points

were visited once in random order. In a number of different ses­

sions, this routine was repeated.

RESULTS

Experimental Paradigm
The settings were converted to slant and tilt angle. The

slant measured the degree of turnout of the frontoparallel

position and was specified as either an angle in the range
of 0° (frontoparallel orientation) to 90° (seen "edge on"),

or as the tangent of this angle. It will be clear from the

context which interpretation is being used at any time.

The tilt measured the orientation of the slant (compass

direction) and was specified as an angle in the range of

0° to 360° from a reference direction (e.g., left to right

direction). Alternatively, the setting was converted into

a depth gradient, which is a vectorial quantity. The modu­

lus of the gradient equals the tangent of the slant, whereas

the direction of the gradient specifies the tilt in a coor­

dinate independent manner.

The results ofa typical session are depicted in Figure 3.

For reasons of clarity, this figure depicts the results of a

pilot run with fewer settings than those used in the actual

experiment, in which a triangulation with 225 vertices was

used.
In the paradigm, the settings were interpreted as the

orientation of hypothetical surface elements of some fi­

ducial surface "perceived" by the subject on the basis

of optical data provided by the picture. The data struc­

ture produced by the subject is a sampled depth-gradient

field, which is described by 225 two-dimensional vectors.

Thus, the data structure has 3 x 450 degrees of freedom

and is completely specified by 1,350 numbers.

The internal-consistency check was simply a check of

whether the data structure represented a possible sampled

depth-gradient field.

tilt

sIant c:::::::::>

Figure 2. A collection of gauge figures used in the experiment.
(In reality, the apparent orientation is continuously variable.) Rows

depict comtant tilt, columns depictcomtant slant. This figure rougbIy
illustrates the response parameter space.
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Figure 3. Result of a session (Subject J.K.). For tbe sake of clar­
ity, this fJgUl'e applies to a triangulation with less tban one third
of the number of vertices used in the sessions reported in this paper.
The tilt direction is indicated by tbe tbin lines of fIXed lengtb, tbe
slant by tbe thick lines of varying length. The latter lines are pro­
jections of the axle of tbe gauge figure, tbus tbey become sborter
for larger slants. The outline may be compared to tbe pbotograpb
in Figure 1. It encloses all of the visiblesmoothsurface, but excludes
tbe "feet," tbe pedestal, and tbe roughened top area.

Internal Consistency
A local depth gradient specifies the spatial orientation

of a local surface element (its slant and tilt), a so-called

"contact element" (Burke, 1985). We introduce Carte­

sian coordinates (x,y) in the picture plane. Let z denote

a third dimension ("depth"), then a function z(x,y) speci­

fies a "surface," at least in a formal sense. At any point

(x,y) of the picture, we can imagine many different con­

tact elements (CJzICJx,CJzICJy). All of these contact elements

exist in the "contact bundle" (Burke, 1985), which is the

Cartesian product of picture space and orientation space.

The contact bundle is an abstract four-dimensional space

with coordinates (x,y,CJzICJx,CJzICJy).
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A surface z(x,y) naturally induces a field of contact ele­
ments, namely, one contact element (CJz/CJx,CJz/CJy) at every

point (x,y) of the picture. Such a field is referred to as

a "section of the contact bundle" (Burke, 1985). Our em­

pirical data are a (sampled) section of the contact bundle.

However, not every section of the contact bundle speci­

fies a surface: In order for an arbitrary vector field to rep­

resent a physically realizable depth-gradient field, the field

of contact elements has to be integrabLe.

An intuitive explanation of "integrability" is as follows:

If one sews local contact elements together to form a

"quilt" (moving them freely in depth as required), then

one should be able to piece together a surface. That this
is not necessarily possible for an arbitrary field of con­

tact elements can be understood from the following

reasoning: Consider a chain of contact elements, that is,

a string of contact elements located on a closed curve in

the projection. If these are pieced together, then one

should be able to close the chain in 3-D. If it turns out

that the initial and final elements are at different depths,

then the chain cannot be embedded in any surface (see

Figure 4). One must require that arbitrary chains can be

closed; otherwise, the vector field does not allow a con­

sistent interpretation as a depth-gradient field.

In mathematical terms, this can be framed on the local
level. The vorticity of a vector field vanishes identically

if the vector field allows interpretation as a depth-gradient

field; in that case, there can be no "eddies." Nonvanish­

ing curl indicates inconsistency, and the root mean square

of the curl is a convenient numerical measure of this in­

consistency.
That the curl has to vanish is evident from this sim­

ple reasoning: Let the function z(x,y) denote the depth at

a location (x,y) in the picture. Then the depth-gradient

field is composed of the two-dimensional vectors

[zx(x,y), z (x,y)], where the subscripted coefficients

denote pariial derivatives with respect to the coordi­

nates. The curl of this field is given by the expression

CJzx(x,y)/CJy - CJz (x,y)/CJx, which again equals z (x,y) ­

z x(x,y). Vanishihg of the curl thus implies e q ~ a l i t y of

~ x e d partial derivatives. This again guarantees that an

integral manifold, that is, a surface [x,y,z(x,y)] exists.

Because the data are specified on a discrete lattice of

points, we had to reformulate this a bit. Consider two ad­

jacent fiducial points. The contact elements will be at dif­

ferent depths. The least depth difference that allows us

to sew them together occurs when the seam bisects the

connecting segment. Then the depth difference equals the

scalar product of the average depth gradient and the con­

nection vector. In this way, we can easily find the depth

differences implied for every pair of adjacent fiducial
points.

Consider three pairwise adjacent fiducial points, A, B,

and C. Let the depth differences be denoted zAB' ZBC' and

ZCA' Consistency requires that one has ZAB+ZBC+ZCA = O.
This condition exactly guarantees that the chain of three

links closes. Only if this condition pertains, may one as­

sign three depths ZA' ZB' and Zc (up to a common addi-
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depth

Figure 4. Graphic illustration of the condition of nonclosure of surface elements
along a closed curve in the projection: The surface elements at the initial and final
points of the curve (identical in the projection!) are at difTerent depths. (This depth

difference is a measure of the constraint violation for the loop.) Such a chain ofcon­
tact elements cannot be found on a smooth surface.

tive constant) such that ZAB = ZA - za and so on. Other­
wise, one can't find a consistent triplet of depths and the

specification of the triplet (ZAB' Zac' Zc) doesn't permit
an interpretation in terms of a configuration of points on
a surface.

In general, one cannot expect to be able to assign a set
of depth values to the fiducial points in such a way that
the depth differences for all adjacent pairs are exactly
reproduced. Instead, we proceeded to find the unique set

of depth values that reproduced the depth differences in
the least squares sense. (Of course, the absolute depth
must remain undetermined.) The remaining root-mean

square deviation per fiducial point was a convenient mea­
sure of the degree of inconsistency. The analysis is
straightforward. We analyzed the data with the Mathemat­
ica (Wolfram, 1988) package. The fit was found immedi­
ately via the singular value decomposition of the set of
linear equations for the depth differences. (If z, denotes
the ith vertex, and oz. the estimated depth difference for

the vertex pair i.j, then the equations are Zj-Zj = aZij')

We arbitrarily set the average depth to zero in order to
fix the scale, and thereby resolved the remaining am­
biguity.

Surfaces Defined in the Experiment
The surfaces computed from the empirical data are the

best fits in the sense of the least squares deviation from
the depth differences based upon pairs of observed orien­
tations. The procedure defines surface perception for a
certain class of pictures in an operational sense.

The surfaces obtained in this manner had to be inter­
preted with due caution. For instance, were the computed
depth values to be referred to a polar coordinate system

centered on the subject's entrance pupil (or first nodal
point), or to a Cartesian system attached to the screen?

What about the focal length of the camera that took the
photograph in the first place? It isn't easy to resolve such
questions, nor is it a priori clear that such a resolution
is at all possible. We note that the problem is irrelevant

as long as the question of veridicality is not presented.
In this paper, we (arbitrarily) refer the depth values to

a Cartesian coordinate system attached to the screen.
An initial study should investigate the nature of the em­

pirically determined surfaces per se. The outcome might
be trivial (e.g., planar, frontoparallel patches, or spheri­
cal shells centered on the entrance pupil of the subject's
eye). Subsequent studies need to investigate these surfaces
in terms of dependence on the structure of the pictures
and, finally, in terms of the depicted objects. In this paper,
we restrict the discussion to the issue of internal con­
sistency.

Intrasubject Variability
Repeated observations by a single observer correlated

well. Figure 5 shows a scatterplot that contains data from
all points for two repeated experiments by Subject J .K.
The gradient magnitudes are plotted against each other.
The data are proportional with factors differing a few per­
cent from unity. These scale differences were small, but

sometimes statistically significant.
In order to quantify these scale differences,we studied

the distribution of the logarithms of the ratios of the mag­
nitude of the gradient to the average value for all sessions.
This variable turned out to be almost normally distrib­
uted. A t interval for the mean at 95 %confidence did not
always include the value zero. For the 3 subjects and three
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coordinate directions. A principal components analysis
revealed that the ratio of the eigenvalues were 15 (Sub­
ject A.D.), 19 (Subject A.K.), and 31 (Subject J.K.).

Clearly, the variance in the slant dominates; the tilt is
rather more precise if the slant is not too small. (When
the slant vanishes, the tilt is obviously undetermined.) The

spread in the slant alone took care of 94%-97 % of the
total variance.

We found that the scatter in the tilt direction was about

10° for average slant values (e.g., unit slant). Thus, the
tilt was comparatively well defined, whereas the slant was
rather uncertain.

Figure 5. Scatterplot of the gradient magnitudes (that is,

I 'Vz(x,y)I) for the settings of two different sessions for a single sub­

ject (J. K.). Such a plot offers a realistic insight into the variability

of repeated settings.

runs, we obtained a nonzero value four times out of nine.
Corresponding deviations of the depth scaling amounted
to zero (five times), 4% (twice) and 10% (twice) from

unity. We concluded from this that apparently random
deviations of the order of 5% were the rule. Apart from
these scale differences, the reproducibility was satis­

factory.
In Figure 6, the estimated variance as a function of the

magnitude of the gradient for binned data (gradient mag­
nitude range divided into bins with an equal number of
cases per bin) is shown for Subject J.K. A Weber law fits
the data (linear regression yields a fraction of 24%). The
same is true for the other observers, except for the fact
that Subject A.K., especially, had outliers that cor­
responded to vertices at the contour (a few percent of the

vertices). Such outliers spoil a linear regression analysis.
A robust estimate for the relative spread is the median of
the logarithms of relative spreads per vertex. (For Sub­
jects A.D. and J.K., the difference with a linear regres­
sion was slight; for Subject A.K., the robust estimate was
similar to a linear regression after discarding the vertices
with slant in excess of 4 depth pixels per picture-plane

pixel.) We obtained the following estimates: Weber frac­
tions were 29% (Subject A.D.), 26% (Subject A.K.), and
17% (Subject J.K.). We concluded that Weber fractions
of about 1/4 were the rule.

In order to study the nature of the deviations,we com­
puted the average gradient for all points and then plotted

the deviations in single settings paralleL to the average
gradient direction against the components orthogonal to
it. (see Figure 7, Subject J.K.). The resulting cloud was
close to normally distributed with principal axes along the

3
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Figure 6. The spread of repeated settings by a single subject (J.K.)

as a function of the average gradient magnitude. For the sake of

clarity, the data points have been coarse-grained through binning
of the magnitude scale. The line is the linear regression without con­

stant term.

•

0.4

Consistency of the Data
In order to judge the consistency of the data, we per­

formed the following analysis for every face (triangle) of

the triangulation:
1. For every edge, we found the average gradient for

the data on the vertices, then converted it into the depth
difference over the edge by taking the scalar product of

the average gradient with the (directed) edge vector. This
depth difference is expressed in terms of pixels.

2. The sum of the (signed) depth differences over the
boundary of the face should add up to zero. Instead, we
may expect a finite mismatch, or violation of surface con­

sistency. The constraint violation is expressed in terms
of pixels.

3. We computed the average gradient of the three ver­
tices of the face, then multiplied the modulus of this gra­
dient with the edge length in order to obtain a measure
of the depth variation over the face. This depth variation

is again expressed in terms of pixels.
Figure 8 shows the results obtained in this manner for

Subject A.D. The average amount of violation was zero
(95% confidence t interval for the mean was (-0.297,
0.342», whereas the spread increased with increasing
depth variation. A linear regression without constant term
on the absolute value of the violation versus the depth vari-
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Figure 7. Scatterplot of the components of the deviation from the mean gradient in repeated set­
tings by a single subject (J.K.) in the average gradient direction (horizontal axis) and orthogonally
to it (vertical axis). The scales are identical for both axes. Thus, the elongated impression of the
point cloud indicates the anisotropy of the settings realistically. The slant (gradient magnitude) is
much less precisely reproduced than the tilt (gradient direction).

Figure 8. Scatterplot of the closure violationsas a function of the
depth variation over a face of the triangulation for a single setting
for Suhject A.D.

ation yielded a Weber fraction of 10.0% ± 0.5%. A more

stable measure, the median of the relative modulus of the

violation, yielded a Weber fraction of 9.0%. The same

observation applies to the data of the 2 other subjects. The

data are well described with a Weber's law, with Weber

fractions of9.0% (Subject A.D.), 12.5% (Subject A.K.),

and 8.2% (Subject J.K.).

We did not derive the expected value of the violation

on the basis of the variances in repeated settings, taking

the anisotropic distribution into account analytically. In­

stead, we found this value through a Monte Carlo simu­

lation. This has the advantage that the sensitivity to vari­

ation in the assumptions can easily be studied. The value

used here was based on the following assumptions: (1) the
gradient is uniform over a face, (2) the corresponding sur­

face normal is distributed uniformly over all directions,
and (3) the variance is due to a relative spread of 25 %

in the slant direction. The amount of constraint violation

is convenientlyexpressed as a Weber fraction. We obtained

an estimate of this Weber fraction of 7 %; this value rises

to about 9% if the variance is assumed to be isotropic, and

depth variation

rises only insignificantly if the gradient field is assumed

to vary over the face.

The default hypothesis was that the constraint violation

is explained through the spread in repeated settings alone.

Then the empirically determined fields of contact elements

are integrable within the experimental tolerance. We

found that for none of the 3 subjects can we reject this

hypothesis at the 95 % level.

We conclude that the constraint violation for a face of

the triangulation is about 10% of the total depth variation

over the face. This inconsistency is primarily due to un­

certainties in the slant settings and is expected from the

variability of repeated settings by a single observer (see

above).

Nature of the Best-Fitting Surface
The surfaces produced by the subjects were smooth

ones; elliptical (in case of "The Bird," only convex) and

hyperbolical patches can be discerned. The surfaces were

articulated in depth, that is, the curvatures, for instance,

in the sagittal plane are comparable to the curvatures (as

apparent from the contour) in the frontoparallel plane.

, There appears to be a parabolic curve at the edge of the

"neck" of "The Bird," neatly meeting the contour at its

inflection points. Indeed, the data allow a variety of dif­

ferential geometrical properties of the surfaces to be

computed.

In Figure 9, we show a frontal view of the triangulated

surface produced by Subject A.D. This figure is trivial

in the sense that the frontal views for all the subjects were

identical and did not depend on the actual settings. We

only include the figure because it allows a good impres­

sion of the triangulation used in the experiment. Although

the probe only appeared on the vertices, the subjects were

never directly confronted with the triangulation and only

saw the picture.

That the surfaces produced in this way are 3-D entities
is brought out in profile views. In a side view, we obtain

a contour that is not unlike the contours in the frontal view.

In Figure 10, we present such a profile view for Sub-

... .

..
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constraint

violation

-10
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faces on the basis of a bare outline drawing remains to
be studied.

All 3 subjects agreed upon the vertices at which the slant
vanished (and thus the tilt becomes indeterminate). Such
points play an important role in the ordinal depth struc­
ture (Todd & Reichel, 1989).

The subjects detected two singular points in the field
of contact elements on "The Bird" -one at the center of
the convex "belly," and the other at the narrow "neck"

at the top (see Figure 14). These singularities are of dif­
ferent types (opposite topological index), which becomes

apparent when one studies the structure of the field of con­

tact elements in the immediate neighborhood of these
points. At one point, the surface is a local depth mini­
mum, at the other, a saddle of the depth map.

Intersubject Agreement
The internal consistency only quantifies how well the

data structure produced by the subject represents a sur­
face. The issue of veridicality, that is, how well such a
surface actually fits the object depicted, is not addressed
here. In this section, we examine to what degree the 3
subjects produced the same surface. If the various sur­

faces agree within a narrow tolerance, then intersubject
agreement is counted as high, even though such a high
degree of agreement need not imply veridicality.
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Figure 10. A profile view of the surface for Subject A.D. Note

that the depth dimension is immediately evident in this figure.

c=> Z(X,Y)

subject AD

y

ject A.D. In this view, the depth values implied by the
data are apparent.

In Figure 11, we present the profile view of the sur­

face produced by Observer A.K. The surfaces produced
by Observers A.D. and A.K. are very similar; the main
differences occur very close to the contour. At the con­
tour, the gradient magnitude is theoretically infinite, which
is why any small difference is strongly magnified. This
affects only a few percent of the data. On the interior

(almost all points), the surfaces are nearly identical up
to a depth scaling.

In horizontalcross section, the "perceived" photograph
turned out to be close to a circle for Subject J.K., was

somewhat more articulated for Subject A.D., and was
somewhat flatter for Subject A.K. Thus, the percepts are

close to surfaces of revolution. In Figure 12 (Sub­
ject A.D.) and Figure 13 (Subject A.K.), we depict the
extreme cases (the data for Subject J.K. were in-between)

of a view from below.
It is a priori very likely that the contour had an apprecia­

ble influence on the shape of these surfaces. Whether the
subjects would have produced the same or similar sur-

Figure 9. Frontal view of the fiducial surface by Subject A.D. Note

that this view was identical for all the subjects and doesn't even de­
pendon the settiJ¥, IJecaIL'Ie it is the view that WIL'l actually presented.

(Of course, the subjects never saw the triangulation, as in this fig­

ure, but lookedinstead at the picture of BraDCUSI"s "Ibe Bird." How­

ever, the probe appears only on the vertices of this triangulation.)
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Figure 12. Bottom view of the surface for Subject A.D. This al­
lows a fair appraisal of the fact that the surface is quite close to a
surface of revolution. (Of course, only one side is visible.)

Z(X,Y)

Z(X,Y)

relation between the intersubject settings is high, no mat­

ter how it is expressed. The Pearson product-moment cor­

relation and Spearman's rank correlation (rho) for the

three intersubject correlations were, respectively: 0.844

and 0.868 for Subject Pair A.D.-A.K., 0.792 and 0.784

for Subject Pair A.K.-J.K., and 0.819 and 0.870 for Sub­

ject Pair J.K.-A.D.

One way to state this is to say that the linear regression

between Subjects A.D. and A.K. explains 71% (Pearson's

product-moment correlation squared) of the variability

in each. The outliers in the data (due to points on the

boundary) are less troublesome in Spearman's p , which

is simply the correlation of the ranks. Clearly, the con­

cordance in the order of the data is very good. Thus, the

monotonic relationship between the settings of different

subjects is firmly established.

The 80% difference in depth for the surfaces produced

by Observers A.D. and A.K. is clearly visible in the pro­

file views.

In order to investigate whether the deviations are

isotropic or whether slant and tilt dimensions show up

differently, we repeated the analysis in terms of devia-

X~

5ubjectAK

Figure 13. Bottom view of the fiducial surface for Subject A.K.
This allows a fair appraisal of the fact that the surface is close to
a surface of revolution. (Of course, only one side is visible.) Note
that the surface is flatter than that for Subject A.D.

subject AK

Figure 11. A profile viewof the surface by Subject A.K. Note that
this surface is much Datter than that for Subject A.D. (Figure 10).
Notice also that at the very contour, the settings for Subject A.K.
were actua1Iy steeper than those for Subject A.D. (IIence the "shoots"

sprouting from the boundary, which have been clipped for this
figure.)

c::;::> Z(X.Y)

o
y

From scatterplots of gradient magnitudes for all points

of the triangulation for pairs of observers, it turns out that

there is invariably a nearly linear dependence, except for

a few percent of the points, particularly those belonging

to the vicinity of the contour. For this analysis, we omit

datapoints with a slant in excess of 4 depth pixels per

picture-plane pixel (about 7% of the points). Fitting the

regression line through the origin reveals a factor of

almost 2 between the data of Subjects A.D. and A.K. Fig­

ure 15 shows a histogram of the logarithms of the ratios

of gradient magnitudes for these observers. Notice that

the histogram is offset with respect to zero. Statistical anal­

ysis confirms this impression: A t interval at 95% confi­

dence for the mean yields values of the ratio within the

range 1.73-1.95. Subject J .K. has a ratio of 0.70-0.79

with respect to Subject A.D., and a ratio of 1.24-1.44

with respect to Subject A.K. (again, t intervals at 95%

confidence for the mean).

Apparently, only the depth of relief was different for

different observers, whereas the shapes were very simi­

lar. The scatter is as expected from the scatter already

found in repeated settings by a single observer. The cor-



tion components in the direction of the average gradient
(this time an average over observers) and orthogonally
to it. Again, the scatterplots revealed a very anisotropic

distribution-almost all of the variability was due to slant
differences. Of course, this is to be expected from the
variability already found in single-observer settings.

CONCLUSION

As mentioned, in this study we used a method related
to that proposed by Mingolla and Todd (1986). These
authors had their subjects judge slant and tilt angles for
13 points on pictures of surfaces (sequentially), indicated

by a small superimposed cross. Because they used very
constrained surfaces (triaxial ellipsoids), they were able
to reconstruct surfaces from the responses. The minor dif­

ference used in our study is that we required a judgment
of perceptual conformity, not an absolute judgment of
angles. Absolute judgments are very difficult to make:
Mingollaand Todd report that trained subjects find the task
difficult and often take over I min to respond. In contrast,

our subjects decided almost momentarily whether the gauge
figure "fits" or not. Usually, half a dozen settings were
tried in about 10 sec before the final decision was reached,
and the subjects found this task to be an easy one. Naive
subjects new to the task don't score differently or take a

•

Figure 14. Outline of Brancusi's "The Bird" with the vertices that
appear as singularities of the field of contac:t elements for all 3

subjects.
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Figure 15. Histogram of the log ratio of gradient magnitudes for
Subjects A.D. and A.K. Note that the histogram is offset from zero,
indicating a scalingdifferent from the identity. Indeed, a t interval
for the mean with 95% confidence is -0.29 to -0.23. Thus, the ra­
tio of gradient magnitudes is about 1.8 and is very significantly dif­
ferent from unity.

longer time than our subjects did. An advantage here was
that we could sample somewhat more finely.

We have used this method to study the problem of the
internal consistency of the data. Mathematically, a gra­

dient field implies that the curl of the field vanishes iden­
tically at all points. We found that the empirical viola­
tions of this constraint can fully be accounted for through
the scatter in repeated settings at single points. With

respect to repeatability, the data were consistent with the
notion of a sampled smooth surface. (Although this is
common knowledge, we know of no prior quantitative
checks.)

Stevens (1983a) has general theoretical reasons to ex­

pect slant estimates to be less precise than tilt estimates.
In our (very specific) case, we found that, although slant
and tilt estimates differed appreciably in their variability

over sessions, the slant direction was invariably the least
precise. The errors we found were smaller than those re­

ported by Mingolla and Todd (1986). Unfortunately, these
authors do not report differences in accuracy of tilt and
slant judgments. The differences between the paradigms

are sufficiently large that such inconsistencies are not sur­
prising.

Different subjects tended to agree in their tilt estimates;

the spread is accounted for by the variability already
present in single-observer settings. A significant scaledif­
ference exists in the gradient settings by different ob­
servers. Such scaling factors can be surprisingly large;
in one case, we found a factor of almost 2. These scale
differences are not explained by single-observer scatter.
Apparently, the observers agreed only up to some idio­
syncratic depth scaling. Such depth scalings also occurred
in repeated sessions for single observers, but were much
less pronounced (typically5%). Apparently, people differ
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appreciably in their depth scales. It seems a priori likely

to us that perceived object contours have an effect that

spreads well within their boundaries, an issue that deserves

further careful study.

In our present study, the "percept" of the surface is

defined in terms of the perceptually best-fitting gauge fig­

ure. When different observers disagree (as ours did), this

may, of course, be due to an idiosyncratic assessment of

the gauge figure, as well as to an idiosyncratic assess­

ment of the surface. The method itself cannot resolve this.

(In fact, in the present paradigm, the "problem" was

meaningless.) Arguments need to be derived from com­

parative studies using a spectrum of different response

tasks.

Different operational definitions of what will be the per­

ceptual outcome of experiments addressing surface shape

(e.g., depth maps, gradient fields, curvature fields, etc.)

will, in all likeliness, yield incompatible results (e.g., in

the mathematical sense that the gradient should equal the
spatial derivative of the distance). Quantitative studies will

become possible when detailed depth maps, gradient
fields, and so forth, become available. At the moment,

we consider it premature to compare our results to those

of Biilthoff and Mallott (1992).
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