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SUMMARY

This paper studies the potential and gravity changes caused by dislocations in
spherically symmetric earth models. We define dislocation Love numbers to describe
the elastic deformation of the earth raised by point sources. We discuss the shear
and tensile dislocations, which can be expressed by four independent components: a
vertical strike-slip, a vertical dip-slip, a tensile opening on a horizontal plane, and a
tensile opening on a vertical plane.

The results for a homogeneous earth model agree very well, at least within 1°,
with those predicted from flat-earth theory. The far-field results indicate no larger
than 10 per cent difference within 10°. It makes little difference whether we use the
theory on a sphere or that for a flat earth in the near field, while it is reasonable to
use the spherical theory for global calculation. We proceed to calculations with a
radially heterogeneous earth model (Model 1066A). The results are as a whole
similar to those for a homogeneous sphere. In some cases, however, the difference
between the two becomes significant. For example, the locations of the nodal lines
of the gravity change differ significantly between the two models. This indicates that

the vertical layering can cause considerable effects on the deformation fields.
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1 INTRODUCTION

Since Steketee (1958) introduced dislocation theory to
seismology, numerous theoretical formulations have been
developed to describe the deformation of an isotropic
homogeneous earth model caused by a variety of
dislocations. Many scientists (Maruyama 1964; Press 1965;
Okada 1985) studied surface displacements, tilt and strain,
due to dislocations buried in a semi-infinite medium.

Efforts to develop the formulations in a more realistic
earth model have also been advanced through numerous
studies (Ben-Menahem & Singh 1968; Ben-Menahem &
Israel 1970; Smylie & Mansinha 1971). These studies
revealed that the effect of the earth curvature is negligible
for shallow events at an epicentral distance less than 20°,
while vertical layering or lateral inhonregeneity may have
considerable effects on the deformation fields.

Saito (1967) presented a theory to calculate amplitudes of
free oscillations caused by a point source in a spherically
symmetric earth model. He expressed his results in terms of
normal mode solutions and source functions. Kagan (1987a
and b) gave the source functions of elementary sources in
general form for both static and dynamic displacements.

*On leave from: Center for Analysis and Prediction of State
Seismological Bureau, Beijing, 100036, China.

It was only in the late 1970s when gravity change caused
by dislocations was studied by researchers. Hagiwara (1977)
first investigated the elevation and gravity changes due to an
explosive source. Savage (1984) gave the gravity changes in
several special cases: strike—slip faulting on a vertical plane,
slip on an infinitely long fault, and so on. Sasai (1986, 1988)
studied the surface displacement, gravity and magnetic
changes associated with multiple tensile cracks of the
Gaussian distribution. Okubo (1991, 1992) completely
studied the problem on potential and gravity changes caused
by point dislocations and by faulting on a finite plane in a
semi-infinite homogeneous medium. He derived all sets of
expressions in closed form. They also enable us to evaluate
coseismic changes in surface gravity and geoid height.

All of the above studies except Saito (1967) assumed a
homogeneous semi-infinite medium or a homogeneous
non-gravitating sphere. No one has ever succeeded in
computing the displacement, strain, tilt and change in
gravity field of a spherically symmetric and self-gravitating
earth model owing to numerical difficulties.

The objective of this paper is to study global gravity
changes caused by dislocations in a spherical earth. We give
formulae and numerical results of the radial displacement,
potential and gravity changes, due to point dislocations in a
spherical earth model. We examine the effects of the
spherical curvature and the radial heterogeneity by
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comparing results for a flat earth, a homogeneous sphere
and a radially stratified spherical earth. We may check the
consistency between Okubo’s (1991) flat-earth theory and
our spherical theory.

2 EXCITATION PROBLEM AND
RECIPROCITY THEOREM

We discuss two kinds of excitation sources—shear and
tensile dislocations. We show that they can be expressed by
four independent components: a vertical strike-slip, a

vertical dip-slip, an opening of a horizontal crack, and an -

opening of a vertical crack. We introduce the reciprocity
theorem (Okubo 1993) to get our solutions of equations of
equilibrium with an arbitrary point dislocation in a SNREI
model. We define dislocation Love numbers in Section 2.4.

2.1 Equations of equilibrium for spheroidal deformation

Let us consider a spherically symmetric, non-rotating,
perfectly elastic and isotropic, i.e. the SNREI model
(Dahlen 1968). For convenience, we assume a point
dislocation located on the polar axis at radial distance r =r;
the deformation field due to a source at an arbitrary position
can be obtained by simply using the rotational transforma-
tion. The geometry of such a dislocation can be uniquely
determined by a vector n to the infinitesimal fault and by a

€1

x

Figure 1. Dislocation model. The upper figure shows the location of
an earthquake within a sphere. The lower figure indicates the fault
geometry in spherical coordinates.
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Figure 2. Dislocation U and its normal n defined on a fault plane.

Burgers vector Au:
n=ne +n,e,+nye, (H
Au=U-v=U(v,e, + voe, + vies), (2)

where we take unit vectors e, and e, in the equatorial plane
in the direction of ¢ =0 and 7/2, respectively, and e along
the polar axis (Fig. 1). The sign convention is such that if the
sides of an infinitesimal surface dS are labelled dS™ and
dS™, the normal vector n points from dS~ to dS™ and A, is
the displacement on dS™ minus the displacement on dS~
(Fig. 2).

Spheroidal displacement wu, stress 7, and potential change
 are conveniently described as

u(r, 8, )= 2, [y,(r;n, m)R(6, $)

n,m

+ys(rin, m)S7(6, é)] 3)

Tee,(r, 8, )= 2 [y(r;n, mR(6, $)

byt m)SO, 9) @
W(r 6,6)= 2 ys(rm m)Y;i(6, ¢) )
R0, 6) =€, Y76, 6) ©)
706, 8)= €0 00 g | VH60.9) 0

where e, e, e, are unit vectors in the spherical
coordinates, and

Y7(6, ¢) = P7(cos ). (8)
P is the associated Legendre’s function and
P, "(cos 8)=(—1Y"P7(cos 8). (9)

The linearized first-order equations of equilibrium, stress—
strain relation and Poisson’s equation for a spheroidal
deformation can be written as (Saito 1967)

dy

—=AY +
" s (10)

where Y=(y,,...,¥,), A is a matrix coefficient which

220z 1snBny /| uo Jssn aoisnr Jo Juswipedaq 'S'N Aq Z 1 1 269/69S/€/7 L L/81o1e/IB/woo  dnoojwepeoe/:sdjy Woly peapeojumoq



depends on density p, on the elastic constants A, x and on n.
In eqs (3)-(10), we strictly follow the notation and
formulation by Takeuchi & Saito (1972) which conforms to
Alterman, Jarosch & Pekeris (1959) except y,. A
modification has been made for the definition of y, as

jd_)ﬁ+n+1

ys —4nGpy,. (11)
dr

Yo =
G denotes Newton’s gravitational constant. The source
function § is discontinuous across r = r:

S=(5,55,..-,8,)8(r—r,)
=[Y(r, +0) = Y(r, = 0)]8(r —1,). (12)

Notice that s5 and s, always vanish because the potential ¢
and (dy/dr —4nGpu,) must be continuous across any
boundary surfaces. The continuity persists even if the radial
displacement «, has a jump at the interface (Saito 1967).

The source functions of spheroidal degree n and order m
for the point dislocation are given by Takeuchi & Saito
(1972) as

2n+1
si(n, m) = W Vi +

¥

A
m; (vin, + Vznz)}(SmOUdS

(13)
2n + 1 p(BA +2u)

sy(n,m)=— 27"3 A+ 2p (viny + von3)8,,,UdS  (14)
2n+1 1
s3(n, m) = a1 2 [(vins + van ) (8,my — 8, 1)
~i{vyn, + v2n3)5|m|1]UdS (15)
2+ 1(3A +24)
s4(n, m)= { 4”? W(Vlnl +v,13)6,,.0
2n+1  pu
pr—— [(—viny +v212)8)p
iy B, = 5, IfUAS (16)
ss(n,m)=0 (17)
sg(n,m)=0 (18)

where &, is the Kronecker delta. Notice that only the
spheroidal orders |m| =2 are involved in (13)-(16) because
we take the source on the polar axis.

2.2. Four independent solutions

Let Z¥ denote either vertical displacement u, or potential
change i due to the slip Au=e; on an infinitesimal plane
normal to e;. A deformation field caused by a dislocation Au

on a plane normal to n is written as
Z(r, 6, )=Z"(r, 0, ¢)v,n,UdS;  i,j=1,2,3 (19)

because § in (10) is expressed in terms of v;n,UdS [see
(13)-(18)]. Z7 is symmetrical with respect to i and j

Z'(r, 6, ¢)=2"(r, 6, ¢) (20)

because S in (10) is invariant by interchanging i and j [see
(13)-(18)]. Hence the number of independent ZY reduces to
six. Furthermore, intrinsic symmetry within the fault
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geometry indicates that the components Z'' and Z>' can be
easily calculated by applying rotational transformation about
the polar axis to Z>* and Z>*

Z'r, 6, ¢)=222(r, 0, ¢+§) @1)

Z2(r, 0, &) = Z32(r, 0,6+ g) . (22)

Consequently, the number of independent Z” is 4. In the
following, we choose (Z'?, Z*?, Z*, Z*) for the four
independent solutions. They are excited by a vertical
strike-slip, a wvertical dip-slip, a horizontal tensile
fracturing, and a vertical tensile fracturing.

2.3 Reciprocity theorem

The basic eq. (10) is inhomogeneous because it includes the
S term which represents a jump at the point source. We
must solve the singular inhomogeneous equations with free
boundary conditions

yy(a;n, m) =y (a;n, m) = ys(a;n, my=0. (23)

Smylie & Mansinha (1971) and Takeuchi & Saito (1972)
discussed the methods of solving the problem. From a new
way here, we solve the problem by introducing Okubo’s
(1993) reciprocity theorem.

Okubo (1933) found that the deformation on the surface
r = a raised by dislocations at r =r, is expressed simply by
that of the tide, load and shear solutions at r=r,. Let
superscripts ‘Tide’, ‘Load’, and ‘Shear’ indicate the tide, the
load, and the shear solutions respectively (Saito 1978). They

are governed by the homogeneous differential equation
dy
—=AY (24)
dr

under appropriate boundary conditions (Table 1). Okubo
gave the surface values of the radial functions {y7,
I=1,3, 5} raised by a slip An = e¢; on an infinitesimal plane
normal to e; as follows.

Vertical strike—slip:

3w,
Payn,m)=—- —
I g
X [y50ran) = y3rs n)] * 8, (25)
12/ . _ M5 Sheary . .
y3 (a’n’ m)_Sn_apogZy} (rx’ n) : 5[m[2 (26)
Ggols ride
y¥(ain, m) ==y (r n) « 8,0 27)

2ar.

K

Table 1. Boundary conditions for tide, load and shear
deformations.

y2(ain,m)  valain,m) ys(asn, m)
Tide 0 0 Eix o
Load —L——Zﬂ”":lc'. 2 0 2ntl
rGa a
(2n+1)g(a)
Shear 0 4xGan(n+1) 0
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Vertical dip—slip:

3
Pasn, m)=—
yi(a;n, m) 87ta2p0§
X [yg®(rsn) =y (ram)] - 8y (28)
3
ygz(am,m)=m Y (rn) * 8y (29)
2 Gg i e
ys(@s n, m) =222y 1) - B (30)

Horizontal tensile fracturing:

A,
¥¥as m, m) =~ ~—[—[ Load(r ) — y (7 )
dna’pt Lo
k ,‘LY a ide
{2[ 2y =y (rsin))
—n(n + D[y r;n) — y3%(r,; n)]}}
X 8,0+ yi’(a;n, m) (31)
A, 3K, 1
224 .. Shear +_~‘_5
yitanmy=—5-— pof{ Y2 Hrin) P
X 2y m) ~ nln + 1y )
X 8,00t y5'(arn, m) (32)

G 3K, 1y
ygz(a;n,m)=‘§9{ e T Rt
a lo

s s s

X (25T m) — o + YT ()}

X 8,0+ ys(a;n, m). (33)

Vertical tensile fracturing:

3
330 . -
yl (a9 n) m) 4ﬂa2p0§
X [y5(r,; n) ~ yT(r )] * 8,m0 (34)
@, m) = ey ) B (35)
G )
yP(a; n, m)="82 Ty ) 5, (36)

Here g, denotes the gravity on the earth’s surface,
§=8olva, v= 377600) S =), we=p(r), o= A+ 20,
and K, = A, + 2u,. Notice that y ¢, y,LOdd and yShedr are
degenerated with respect to the spheroidal order m.

In practice, therefore, we have only to calculate three sets
of basic solutions (tide, load and shear) at the point source
r =r, because the coseismic solutions at the earth’s surface
are given by the above reciprocity theorem. The integration
of (10) is thus transformed to the integration of (24).
Takeuchi & Saito (1972) and Saito (1974) described in detail
how to get the three sets of basic solutions (tide, load and
shear).

2.4 Dislocation Love numbers

Love and Shida numbers (we shall collectively call them
Love numbers) express the elastic deformation of the earth
due to external forces. For example, the tidal Love number
triplet (h,,l,, k,) describes the displacement and the
gravitational potential change at the surface of the earth.
Since a surface mass load also deforms the elastic earth, one
can define load Love numbers (#,, ., k,) (Longman 1962,
1963; Farrell 1972). Saito (1978) defined the shear Love
numbers (4, [, k) which specify the elastic response of the
earth to a shear force acting on the earth’s surface.

In the same way, we define new Love number triplets
(k7,19 k%], so that the spheroidal deformation of the

earth raised by a point dislocation is described as

u(a, 6, ¢)=—

-

X 2 [hL, R0, &)+ 15,.87(6, &)] - vin,UdS

n.m

(37)
U@ 6, 8)="8 3 ki, Y76, ¢) - vin,UdS. (38)

We call [n¥_, 14 k% ] dislocation Love numbers. Compar-

ing eqgs (3) (5) with (37) (38), we may derive the relation

between the dislocation Love numbers and

{ysi=1,2,...,6}as

hl. = yi(a;n, m)a® (39)

U= y¥(a; n, m)a® (40)
L. L. a2

ki =ysasn, m) —. (41)

O

We should notice that the dislocation Love numbers are
independent of the magnitude of dislocation UdS. We show
the relations between them in Table 2. B B

When n =0, the dislocation Love numbers /¢, and kg, are
zero because ki, is proportional to the change in the earth’s
mass which should be conserved during deformation, and
because the spheroidal deformation of degree 0 is free from
tangential displacement.

For the special case n =1, Ben-Menahem & Singh (1968)
found that the divergence of the term of the degree 1 is due
to the fact that a sphere of finite radius cannot remain in
static equilibrium under the action of an unbalanced force
system. In a load problem, the degree 1 mode of
deformation has the similar situation. Farrell (1972) and

Table 2. Relations between dislocation Love numbers and source
functions yY in this Table satisfies the source condition
yiriY—y¥(r;)=s, and free boundary conditions on the earth’s

surface.
Type | Order | Source Functions Dislocation Love Numbers
Y m s (k=1,2--,6) | WW(ain,m)a? | y¥(a;n, m)a y;’(a;n,m)%
L — FaTaitir oue kad Y ki
YTl mﬁw&s k31 [ k7
%?T An;&“

< 31737 ir;z 84z 82 22 k23
y22 ﬁ_g(:’ktze ™

I v A N
Ys 0 =3 l6 (34 3 £33
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Okubo & Endo (1986) studied the problem. They found that
the degree 1 mode shifts the centre of the earth, while the
centre of mass of the earth plus loading mass should remain
fixed with respect to space. In the dislocation problem, there
exists the common situation. Computationally, we proceed
in the following way.

(1) Obtain two independent solutions to (10): y7'(r; 1, m)
and y¥?3(r; 1, m).

(2) Choose the rigid translation y,(r;1, m) as the trivial
solution to (10):

Fi(ri1, my=ys(r;1,m) = ys(r;1, m)/g(r) = 1
YZ("; 1) m) =)74(r; lr m) :yé(r; 1, m)/g(r) = 0

(3) Assume a solution: yi(a;1,m)=c,yi(a;1, m)+
e yi(a; 1, m) + ¢ yela; 1, m).

(4) Find the constants c¢,, ¢, and c; by using any two of
the boundary conditions (23) and a condition ys(a; 1, m) =0,
which is equivalent to choosing the centre of mass of the
deformed earth as the origin. Notice that only two are
independent in the boundary condition (23) because there
automatically holds a consistency relation in the case of
n =1 (Farrell 1972; Okubo & Endo 1986):

y(ri1, m)y+2y,(r; 1, m) + g(r)yes(r; 1, m)/4nG = 0.

(5) Obtain the degree 1 dislocation Love numbers as

hY,.=y¥a;1, m)a® (42)
1, =yi(a;1, m)a* (43)
ki =0. (44)

3 THEORY OF POTENTIAL AND GRAVITY
CHANGES

In this section, we focus our attention on potential and
gravity changes raised by point dislocations buried in a
radially heterogeneous earth model. We first discuss the
general theory of potential and gravity changes in Section
3.1. In Sections 3.2-3.5, we show in detail the potential and
gravity changes due to vertical strike—slip, vertical dip-slip,
horizontal and vertical tensile fracturings. We derive
expressions for an arbitrary geometry for practical
applications in Sections 3.6-3.7.

3.1 Potential and gravity changes

A dislocation within the earth causes a density change and a
displacement of interfaces, perturbing the gravitational
potential. The gravitational potential change ¢ may be
expressed as

¥(r, 8, &) = ¢(r, 0, &)v,n,UdS (45)

where /7 is the potential change due to a dislocation Au = e,
on a plane of infinitesimal area dS with a normal n = ¢, [see
also (19)].

We may expand ¢ in spherical harmonics as

i g i "
V(e 6,6)== 2 kY70, $) (46)
where k7 can be calculated from (10). Once all the k7, for

different n and m are given, we have ¢* and ¢ from (46) and
(45).
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The pgravity change at a space-fixed point can be
calculated from ¢ as
Y
Ag(r, 6, ¢)=——. (47)
ar
The gravity change on the earth’s surface r =g deserves
special attention because we must consider the surface mass
distribution 47Gpu,. Across this single layer, the gravity is
not continuous. The gravity change (positive downward) just
inside this thin layer is

dyi(r, G,
Ag_(a, 8, ¢)= —i(#ﬂ
r=g—1{
= d
== vdyﬁ Y76, d)v,n,UdS. (48)
n.m rly=a-0

Since yg(a) =0, we may substitute

dys
dr

n+1
=4nGpy,(a) — TYS(G) (49)

r=a—_0

in eq. (48) to obtain

8¢.(0.6,8)= 503 (n+ DKLYI(6, 6)
4nGp &

- a2 .'gnhz‘mynm(el ¢):lv,'n/UdS

g S i ”m
=3 2 (1 + DRLYIO, $)vin UdS

—4nGpu,(a, 6, $) (50)

where u, is the radial displacement

ur(av 9! ¢) = ui"j(a: 9: ¢)VinjUdS (51)
. 1 -

u(a, 6, $)= = X hi. Y6, §) (52)

The gravity change Ag_ (a, 6, ¢) just outside the single layer
is derived from potential theory (Fig. 3) as

Ag. =Ag_ +4nGpu,. (53)

From now on, we will briefly use Ag(a, 6,¢) for
Ag.(a+u, 6, ) because the gravity surveying is usually
carried out on the earth’s surface.

Substituting (50) into (53), we obtain

Agla, 8, &)= fg S (n + DKL, Y76, $)vn,UdS. (54)

Agla) = Agy(a+u,)

o

Figure 3. Gravity step on the earth’s surface.
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The gravity change at a point fixed on the free surface
becomes

og(a, 6, ¢) = Ag(a, 0, d)
or
8g(a, 6, ¢) = Ag,(a, 6, d’) - (B - 47'[Gp)u,(ll, 9: ¢) (56)

where B is the free-air gravity gradient which can be
expressed as

dg(r)| _ \ 2g(a)
dar a |

- Bur(ar 9) d’) (55)

B= ‘ (57)

32 Z' vertical strike—slip on the polar axis

From this section we are going to derive u,, ¥, Ag and &g
for the four dislocation models assuming dislocation
magnitude UdS = 1.

We begin with the vertical strike—slip by taking v=e, and
n=e,. Substituting v, = §,, and n; =§;, into (13)-(18), we
obtain the source functions

Cn+u

2 .
S} (n,' m)'_ 871 (n+1) 3 /4( m2

6m, —2) (58)

where the superscript 12 denotes a vertical strike—slip.
Hence we obtain the radial displacement u > as

ul’(r, 6, $)=— 2, iv\’(r;n,2)

X (P2(cos 8)e*® — P, *(cos 8)e *'?)

=2 2 yi2%(r; n, 2)P%(cos 8) sin 2¢ (59)

where {y,- (r;n,2); j=1,2,...,6} is the excited deforma-
tion field with

Cn+u

v 2) =y iy, 2) = a1y O (60)
In the same way, we obtain potential change '?
Y1, 6, ¢) =2 2 y(rin, 2)P (cos 8) sin 2¢. (61)

We may further simplify «'? and ¢'? as
w,(r, 6, $)=a,(r, 6) sin 2¢ (62)
Y'*(r, 8, ®) = §'*(r, 6) sin 2¢ (63)
by defining

) =
@2, 0)= 5 2 hiP;(cos 0) (64)
3%r, 0)= 29 S K12p2(cos 6), (65)
n=2

From (54) and (55) we have gravity changes
Ag'(a, 6, &) = Ag"(a, 9)sin2¢ (66)
8g'%(a, 6, ) = 8¢'*(a, 6) sin 24 (67)
where

£12 _280 < 12 p2
Ag'*(a, 0)==F 3 (n + 1)k, 3P5(cos 6) (68)

a p=2

86"(a, 6) = Ag'*(a, 8) — Bii}(a, 6). (69)

Equations (62)-(69) are the fundamental formulae which
give the radial displacement, potential and gravity changes
at any point (8, ¢) at the earth’s surface. We present the
numerical result of 72, §'2, Ag'? and 63'2 in Appendix A.

The factor sin 2¢ in eqs (62), (63), (66) and (67) reveals a
quadrant deformation pattern. If u, (or ¢, Ag, 8g) is positive
in the quadrants 1 and 3, it becomes negative in the
quadrants 2 and 4.

As special cases, let us evaluate the radial displacement,
potential and gravity changes for 8 =0 and 6 = &. Since

lim Y76, ) = ¢"43,,, = {é ":;8 (70)
and -

1, m=0,n=o0dd
giirir Y78, ¢) = (—1)'e""?8,,, =1 —1; m=0,n=even

0; m#=0,

(71)

it follows that
ua,0, ¢)=ul*(a, 7, $)=0 (72)
$'%(a,0, ¢)=y'*(a, m, $) =0 (73)
Ag'*(a,0, ¢) = Ag'(a, m, $) =0 (74)
8g'%(a, 0, ¢)=6g"%(a, m, ) =0. 75)

3.3 Z*: vertical dip-slip on the polar axis

In this section, we derive the potential and gravity changes
caused by a vertical dip—slip by assuming v =e;, n=e, and
uds =1

Substituting v, =8,; and n; =8, into (13)-(18), the
source functions become

2n+1
2 5]36fm|1 (76)

32 _
S m) =+ 1)

where the superscript 32 denotes a vertical dip—slip. We
obtain the radial displacement 122 as

u}*(a, 6, $)

== > iyi%(a;n, 1)[PL(cos 8)e'® + P} }(cos B)e '?)

=2 > y3¥(a;n, 1)P!(cos 6) sin ¢ a7
where {y/*(r;n, 1); j=1,2,..., 6} is a real-valued solution
defined by

_ 2n+1
yPm ) =R ) = e b o
We may simplify (77) as
u(a, 6, ¢) = ;(a, 8)sin ¢ (79)
) =

iP(a, 0) = = 2 B33 Pl(cos 8). (80)

Similarly, we obtain the potential and gravity changes on
the earth’s surface r = a due to a vertical dip-slip dislocation
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as
¥%(a, 6, &) = §7%(a, 6) sin ¢ (81)
Ag*(a, 8, ) =Ag**(a, 6) sin ¢ (82)
8¢%%(a, 6, ¢) = 85**(a, 6) sin ¢, (83)
where
(a, 0) =2 20 Z k32 Pl (cos 6) (84)
AF%(a, 0) = 50 2 (n + k22 Pl(cos 6) (85)
a
887*(a, 6) = Ag**(a. 6) ~ Bit}’(a, 0). (86)

The factor sin ¢ in (79)—(83) reveals that the deformation
pattern is anti-symmetric with respect to the fault line

definedby ¢ =0 and ¢ = 1.
%, §*, Ag*? and 8¢ vanish on the two poles (8 =0, x)
because P} in egs (80)—(86) is proportional to sin 6.

3.4 Z*2: tensile fracturing on a vertical plane

Now we study the potential and gravity changes raised by a
tensile dislocation Au=e, on a vertical plane normal to
n = e, assuming UdS = 1.

Substituting v, =n;=8,, into (13)-(18), the source
functions are non-zero only when m =0 and |m|{=2. It
follows that

u?(a, 0, ) =u"(a, 6, ) + u;>*(a, 6, ¢) (87)
¥*(a, 6, &)= 4*>"(a, 6, ¢) + ¥**%(a, 6, &) (88)
Ag*(a, 6, ¢) = Ag%(a, 6, ¢) + Ag™?(a, 6, ¢) (89)
8g%(a, 0, ) =082 (a, 6, ¢) + 887 %(a, 6, ¢). (90)

When m =0, the source functions are

sy gy 211 A 2+ 1p(3r +2u)
57 0)= am? A+2p 7 2m A+2u 7
2n + 1 p(3A +2u)
—a By, (C8)

Anrt A+ 2u

Since the excited field of order m =0 is independent of ¢,
we have

e

1
a;7%a, 0) = 2,

n=0

u%a, 6, ¢) = h25P,(cos 6) (92)

¥, 8, $) = §7%a, 8) =5 E KZ2P, (cos 6) (93)

887, 6, 4) = Ag™a, 0)

_& 2 (n + 1)kZP, (cos 6) (94)

rv()

88(a, 6, ) = 887"(a, 0)

=Ag22'(’(a 8) — paz*“(a, 6) (95)
where h%3, 1?2 and k72 are the dislocation Love numbers.

Since (92)-(95) are independent of longitude ¢, the earth’s
surface deforms with a pattern of concentric circles about
the north pole.
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When |m| =2, the source functions are
1
22 _ (2n M
‘Sj (n: m) —Sﬂn(n + 1) 3 146[m|2 (96)

Comparing them with (58) for the vertical strike-slip model
leads to the following relationship

s7%(n, £2) = Fis|*(n, £2). 97)
(97) implies u2>? excited by the 57%(n, £2) can be written as

Zy (a:n,2)

X [Pi(cos 8)e*™® + P, (cos B)e ~¢] (98)

ur*?(a, 6, ) =

or equivalently as

u??(a, 0, )= —1%(a, 6) cos 2¢ (99)
where i )? is already given in Section 3.2.
Similarly we have

v**%(a, 6, d) =~ '(a, 6) cos 2¢ (100)
Ag™%a, 8, )= —Ag"%(a, 0) cos2¢ (101)
8¢7>%(a, 6, ¢) = —88"%(a, 8) cos 2¢. (102)
In summary, we have

u’*(a, 6, ¢)=0a2>%a, 6) — a2 (a, 0) cos 2¢ (103)
¥*(a, 6, &) =§**%a, 6) — §r'*(a, 6) cos 26 (104)
Ag%(a, 8, d) =A% "(a, 0) — Ag'%(a, 8) cos 2¢ (105)
8g°%(a, 6, $) = 568">"a, 0) — 68'*(a, H) cos 2¢. (106)

3.5 Z* tensile fracturing on a horizontal plane

We consider tensile fracturing on a horizontal plane by
taking v=e;, n=e, and UdS = 1. Substituting v, = §;; and
n; = &5 into (13)~(18), we obtain the source functions as
2n+1
4nr?

3

o

19 (107)

m0-

33 -
57 (n,m) =

The deformation caused by the tensile dislocation of unit
magnitude (UdS = 1) is obtained as

|-

ul(a, 6, §) = a(a, 0) == D, hjoP,(cos 6) (108)
a4 n=0

¥(a, 6, ) = §7(a, 0) =52 3 k3P, (cos 0) (109)
a ,=0

A¢7(@ 0,8)=887(0, 0) =52 S (n-+ DR (c0s )
(110)

8g7(a, 6, ¢) = 88(a, 0) = A¥(a, 6) — Ba’(a, )  (111)
where £33, 3 and k% are the dislocation Love numbers
excited by (107).

Equations (108)—(111) indicate that the earth’s surface
deforms with a pattern of concentric circles about the north
pole because they are independent of longitude ¢.

Numerical results of 729, ¥, AgY and 87 are given in
Appendix A.
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3.6 Inclined dislocation on the polar axis

We consider an inclined dislocation on the polar axis.
Furthermore, we assume the fault line is in the direction of
¢ = 0 (Greenwich meridian).

3.6.1 Shear dislocation

A dislocation vector v and its normal n can be expressed in
terms of dip-angle 8, and slip-angle A of the fault (Fig. 1) as

n=e;cos6 —e,sind (112)
v=e,sindsin A +e; cos A +e,cos §sin A. (113)

If the dislocation vector v runs parallel to the fault plane, we
have a shear dislocation problem.

Let Z® denote {u,, ¢, Ag, 8g} excited by a shear
dislocation of unit magnitude UdS = 1. From (19)-(22), we
have

Z(S)(ay 9; ¢) = Zij(a; 0) ¢)thj
=cos A[—Z"7sin 8§ + Z" cos 8]
+sin A[3(Z% — Z%)sin 26 + Z? cos 28]  (114)

where

13 _ 32 I
7%a, 6, 4)=Z (a, e,¢+2). (115)

3.6.2 Tensile dislocation
We consider a tensile dislocation problem by taking
v=n=e;c08 8 —e,sind. (116)

Let Z denote {u,, 4, Ag, 6g} excited by a tensile
dislocation of UdS = 1. It follows from (19)~(22)

Z%a, 6, ¢)=Z%a, 6, d)v;n;
=7%a, 6, ¢)cos’ 8 + Z*(a, 6, $) sin” &
—Z%(a, 0, ¢)sin 28. (117)

3.7 Point dislocation at an arbitrary point

In practice, the dislocation is not necessarily on the polar
axis nor the fault line is along the Greenwich meridian. In
the following, we derive formulae for an inclined dislocation
at an arbitrary point.

Let the point dislocation and the observation station be at
D(6,, ¢,) and P(6,, ¢,) (Fig. 4). The angular distance
between D(6,, ¢,) and P(6,, ¢,) is denoted by ¢. The fault
plane is defined by its strike azimuth z; on the earth’s
surface, measured here clockwise from north. The azimuth
of P with respect to the point D(6,, ¢,) is denoted as z,
(clockwise from north). We define z as the azimuth of the
calculating point with respect to the fault line

Z:Z]—Zz (118)

¢ and z, are derived from spherical trigonometric formulae
as

cos ¢ = cos 6, cos 8, + sin 8, sin 6, cos (p, — ¢,) (119)

1
sin z, = ——sin 6, sin (¢, — &) (120)
sin ¢

S

Figure 4. Geometry of a dislocation D and the observation point P.

COS 2, = (cos 8, —cos 8, cos ¢). (121)

sin @, sin ¢
Therefore, we have the following formulae.

Shear dislocation with arbitrary dip and slip angles 8, A
[from (114)]

u(a, ¢, z) =cos A[—7*(a, ¢) sin & sin 27

+a;%(a, ¢) cos 8 cos z] + sin A
X {4 sin 28[@P(a, ¢) — 27 %(a, ¢)
+1,%(a, ¢) cos2z) +a7%(a, ¢) cos 28 sin z}
(122)
¥Na, ¢, 7) =cos A|—¢/'*(a, @) sin & sin 2z
+ §**(a, @) cos & cos z] + sin A
X {4 5in 28 (a, ) — $7*(a, ¢)
+ §%(a, ¢) cos 2z] + ¥>*(a, @) cos 28 sin z}
(123)
Ag®N(a, ¢, z) =cos A\[—Ag'?(a, ¢) sin & sin 2z
+ Ag*%(a, ¢) cos 8 cos z] +sin A
X {1 sin 28[Ag**(a, @) — AP (a, ¢)
+Ag"(a, p) cos 2z] + Ag¥(a, ¢)
X cos 28 sin z} (124)
88" (a, ¢, 7) = cos A[—88'(a, ¢) sin & sin 2z
+ 887*(a, @) cos b cos z] +sin A
X {5sin 28687 (a, ¢) — 687> %a, ¢)
+88'%(a, ) cos 2z] + 88°%(a, @)
X cos 28 sin z}. (125)
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Tensile dislocation with an arbitrary dip-angle & [from
117)1:

ul(a, ¢, 2) = @}%(a, @) cos’ &
+ [u?%a, ¢) — @2%(a, ¢) cos2z]sin® &
—0%%(a, ¢)sin 28 sin z (126)

v a, ¢, z) = §*(a, ¢) cos® &
+[§7*%a, ¢) — §**(a, ¢) cos 2] sin? §
- §*%(a, ¢)sin 28 sin z (127)
Ag'(a, ¢, z) = Ag(a, ¢) cos®
+ [Agzz’o(ﬂ @) — Ag'*(a, @) cos 2] sin” &
&>%(a, ¢)sin 26 sin z (128)
88a, @, 2) = 88%(a, ¢) cos?
+[88°%a, ¢) — 88"%(a, @) cos 2z]sin’ &
— 88(a, ¢) sin 28 sin z. (129)

In summary, we may obtain the deformation on the
surface by taking the following procedure.

(1) Compute epicentral distance ¢ and azimuth z of the
observation point P(6,, ¢,) from the dislocation at
D(6,, ¢,) after (119)-(121).

(2) Compute #¥(a, ¢), ¥%(a, ¢), Ag%(a, ¢) and 5¢7(a, ¢)
as described in Sections (3.2)-(3.5) (or from the Tables
A.1-A.16).

(3) Use formulae (122) through (129) to compute
ul(a, ¢,2), ¥7(a,¢,2), Ag'(a,¢,2) and 887 (a, ¢, 2).
These deformation fields are due to a point dislocation of
unit magnitude UdS = 1.

(4) Reverse the results of (3) back to get their actual units
(since we have made some normalizations in Tables
A1-A16). With considering UdS, the final results are

wla, 0.2 =ul(a, 6,2) 5 (130)
W@ ¢, 2) =47 ¢,2) g"LidS (131)
Ag(@ ¢, )= Ag" (@ ¢, 1) 52 (132)
52(a, @, 2) = 37 (4, 9, 2) Uds. (133)

4 COMPUTATIONAL TECHNIQUES
4.1 Truncation of the infinite series

Since it is impossible to calculate the dislocation Love
numbers to infinite degrees, we must truncate the series such
as

1 &
PEh‘,{,,,P,,(cos@) E 2 hY P.(cos 8) (134)

n m=-2
where N is the truncation order. In the following, we discuss
the appropriate choice of N.

Okubo’s (1988) asymptotic solutions imply that all the
Love numbers are proportional to (r,/a)™:

(R, Ly K)o (%)n (135)
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where r, =a — d, is the radial distance of the point source.
Eq. (135) indicates that the deeper the point source, the
faster the series (134) converges with n.

Since

(e o)

the truncated series X, _, k" P (cos @) gives a sufficiently
accurate result if

e N Wl or N »di . (137)
We take
a
N~10— 138
P (138)

5

since (r,/a)™ ~ e~ '° guarantees the accuracy of 10”°. Notice
that N becomes very large (N =50 000) when d, <1km.

4.2 Disc factor
To accelerate the convergence of the infinite series as
2 =
a,(r, 0) == >, hizP%(cos 6), (139)
n=2

we multiply the summand by a disc factor D,

D, - - 1+ COS.a P (cos oz)~ (140)
n(n+1)sina da
Since
2J
lim D,,—>~1—(L“)—>1 for n>1, (141)
a—0 na

we may rewrite (139) as

a2, 9)—— lim Z h2D, P%(cos 6). (142)

a—0,=2

@,> is accurately evaluated by 2/a>37_,h'2D, P> when

0/ >10. The disc factor has a physical meaning of a disc
load (Farrell 1972). Let y be a unit mass distributed
uniformly over a disc of radius «,

1
Y(8,a)=—,; forb8=a (143)
na

=0; for 8> a. (144)

Expanding v in a Legendre series gives

%

2n+1
y(8;a0)= > ——5D

P .
2 ama .(cos 8) (145)

4.3 Euler transformation

The Euler transformation is a method for evaluating an
alternating series. The theory of the Euler transformation
states that, if an alternating series 2, _o(—1)"x,(x,=0)
converges, it can be transformed to

“1y'x, =3 > (

n=0

M

—3)"A"x, (146)

3
I
O
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where A" Is nth order difference of x,. The Euler
transformation accelerates the convergence of many series.

We must transform an original series into an alternating
one in advance before applying the Euler transformation.
For example, consider a radial displacement with including
the disc factor

1 =
u,= 7 Z IIINDNP (COS 9) (147)

The Euler transformation cannot be immediately applied to
(148) since it is not an alternating series.
We have to transform (148) to partial series

"

1
== E RimD.P, + E hi,.D,P,
\ ) \ n= Vl]f s
r[,:() ;<0
1 n3—
o 2 XN AR (148)
X320
or
u, = > (1Y x),

j-Q

so that the Euler transformation may be applied to (149).

4.4 Interpolation

The dislocation Love numbers [kY 19 k7 ] must be

known over a large range of spheroidal degree n. It is not
necessary to integrate numerically the equations of

Table 3. Dislocation Love numbers of a homogeneous earth
model. Vertical strike-slip fault. § =90°, A =0°, m =2. Source
depth =32 km.

n hna In2 kn2
2 .1316E — 2 1368E — 1 .2352FE -2
3 | —.2030E -2 BT64F -2 .6586F — 3
41 —2270E -2 3228E -2 .2876E - 3
5| —.2100E - 2 2065E — 2 1558E - 3
6| —.1877TE -2 1432E -2 .9632E - 4
8| —.1491F -2 .8003E -3 .4700E - 4
10 | —.1207F - 2 S07T1E -3 .2808E - 4
15 | —.7760E - 3 .2180E -3 1225E - 4
20 [ —.5409E - 3 1180F -3 7391E -5
30 | ~.2969E -3 A4826FE — 4 3965E - 5
40 | —.1747TE -3 2487F - 4 .2648E - 5
50 | ~.1035E -3 1454F — 4 1952E -5
70 | —.2780F — 4 6146E — 5 1226E -5
100 .1915E — 4 2230E -5 T278E - 6
200 4234F - 4 .1540E - 6 .2180E - 6
300 3185E ~ 4 ~.7950F - 8 B7TTE -7
500 1348E - 4 —.1403E -7 1924E - 7
700 5212E -5 —.5038F - 38 5022E -8
1000 1199FE - 5 —.9384FE -9 T765E - 9
1200 4449E - 6 —.3046F -9 2364F - 9
1400 1643F — 6 | —.9963F — 10 | 7405E - 10
1600 .6054FE — 7 | —.3286E — 10 | .2368E — 10
1300 2225E -7 | —.1093E - 10 | .7690E - 11
2000 B172E -8 | —.3662F — 11 | 2529F - 11

Table 4. Transformed dislocation Love numbers. Homoge-
neous earth model with a vertical strike-slip fault. § = 90°,
A =0° m =2. Source depth = 32 km.

n ] R | Tn(E) | kmn(E)”

2 A1329F -2 2763F —1 | 4751F -2

3| —2061E -2 A1755E -1 | .2006E -2

4 | -.2316E -2 A317E -1 | 1174E -2

5] —-2154FE -2 J1059E —1 | T990E -3

6 | —.1935E -2 B856E —2 | 5957E -3

3 | —.1552E -2 6666 F —2 | 3915E -3

10 | -=.1270F -2 5333E -2 | 2953E -3
15 | —.8369E -3 3527E — 2 | 1982FE -3
20 | —.5982F -3 2610F -2 | 1635FK -3
30 | —3453E -3 1684FE -2 | 1384FE -3
40 | ~.2137E -3 A217F -2 | (1296E -3
50 | —1331E -3 9350F —3 | 1255E -3
70 | —.3955F — 4 6120E -3 | 1221E -3
100 3168F — 4 3689F —3 | 1204E -3
200 A159E -3 8431F — 4 | 1194E -3
300 1443F -3 | —.1080E -4 | .1193E -3
500 1671E -3 | —8701E -4 | .1193E -3
700 A769F -3 | —.1197E -3 | .1193E -3
1000 1844E — 3 | —1443E -3 | 1194E -3
1200 A873E -3 | —.1539E -3 | 1194E -3
1400 1894E —3 | —.1607E -3 | 1195E -3
1600 J1910F -3 | ~.1659E —3 | .1195E -3
1300 1922E-3 | -1699E -3 | 1195E -3
2000 1932F -3 | —1731E -3 | 1196E -3

equilibrium for each » if interpolation on a sparser table
could give accurate dislocation Love numbers. A naive
interpolation method, however, will bring large error
because dislocation Love numbers vary rapidly with » (e g.
Table 3). For example, the /13 in Table 3 varies from 10" to
1077 over 2 = n =2000.

It is known from Okubo’s asymptotic solutions that all
Love numbers are appropriately scaled by a factor (a/r,)".
Hence, we multiply the dislocation Love numbers by (a/r,)"
to make them vary gently with n as

h},, = hl,n"" 2<f> (150)

= IZmn'"“(f)” (151)
r,

ki, = k! '"-I(f)n (152)
nr Il"l r

5

where m =2 corresponds to the strike—slip, m =1 to the
dip-slip, and m =0 to the horizontal and vertical tensile
fracturings. Table 4 shows that even a linear interpolation of
the transformed Love numbers gives accurate results.

4.5 Asymptotic solutions

We saw in Section 4.1 that the truncation degree N becomes
too large for the infinite series to be accurately evaluated
when d, <1km. We introduce here the asymptotic solution
technique to overcome the difficulty.

Okubo (1988) presented six independent sets of the
asymptoic solutions for the spheroidal deformations of the
earth. Recently he (Okubo 1993) also derived the
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expressions of dislocation solutions, expressed simply by
that of the tide, load and shear solutions. For convenience in
our present study, we transform the asymptotic solutions
into asymptotic dislocation Love numbers, 7%, , I4, and k7,
defined by (39)-(41). Using the Okubo’s asymptotic
solutions (or asymptotic dislocation Love numbers), we may
speed up the convergence of the series.

For example, let us consider the radial displacement

caused by a vertical strike—slip dislocation (from 64)

a*i'¥a, 0) =2 E h!2P%(cos 6)
2 K'2P2(cos 6) +2 2 (h!2 )P (cos 6).
=2 n=2
(153)
Since
- r\" ! 1/r\" ! 1 /r\" !
R3=(5) v (5) e (B) w0 ase
a a n a

(Appendix B), we have

: n—1 1 rv n—1
a’i 12(‘1 9)=2 E [}’210( ) +y;§1;(;)

a

'ﬁ (%)nil]Pﬁ(cos 6)+2

x* rsnl 1 r, n—1
3 [nz-kl2) -t (2)
=2 a a

1 A%
(%) |Pitcoso)
n( a

n+1)

12
Ya32

(155)

The first series on the right-hand side is evaluated
analytically by substituting ¢ = (r,/a) into the formulae in

Appendix C. It follows
r\ .
3<—°> sin® @
a

T

1—(—) cos @
1 2 a

2 12(a 6)

+2)’£1'<755 sin’9 —[1 ) 2g+<r5)2]3/2
= —2¢os =
a a

2 cos 9[<5> —Cos 6]
a 1
+ 2 2)’232
r r,
sin” @ \/;— 2cos’ 9+ (—) (—)
a a

1 2cos 6

X - 2
\/ - 2(5> cos 6+ <Q> <ﬁ> sin® @
a a a
r, v r\’
X[l—(—)cose —2(—) cose+<~) ]
a a a
® r n—1 1 r n—1
+2 12 _ 12 (_v) —yl2 _ (_5)
Z [ n2 — Y230 a stln a

1 r\" !
v (5] [Picose)

(156)
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Notice that the infinite series on the right-hand side now

converges quickly because the summand is 0(1/r) - (r,/a)".
Similarly, we may obtain the expressions of other

dislocations by referring to Appendices B and C.

5 COMPUTATIONAL RESULTS

We compute the gravity and potential changes due to
dislocations in a homogeneous and a radially heterogeneous
earth models.

5.1 Results for a homogeneous earth model

We present results for a homogeneous earth model defined
by

po=2.183x10°kgm >
w=145x10""Nm~
A=1.90x10""Nm>
go=982ms?
a=6.371 X 10* km.

These parameters are taken from the top layer of the 1066A
earth model (Gilbert & Dziewonski 1975).

We have considered following source depths: 0, 2, 5, 10,
20, 32, 64, 100, 200, 300, 400 and 637 km. Numerical
integrations were carried out to obtain the dislocation Love
numbers by using the Runge—Kutta scheme.

Once we obtain the dislocation Love numbers, it is
straightforward to calculate u,, ¢, Ag and 8g as described in
Section 3. Figs 5(a) and 5(b) show the global gravity change
on the free surface caused by a vertical strike-slip
dislocation on the polar axis at depth of 32 km.

In these figures, the upper hemisphere is mapped onto a
tangent plane at the epicentre. Each point on the
hemisphere is moved to the tangent plane in such a way that
the epicentre distance is preserved. The lower hemisphere is
mapped similarly on the same plane. Note that the angle ¢
runs in a counter-clockwise direction on both upper and
lower hemisphere maps. This means that in both cases we
are looking at the sphere from a point above the upper
hemisphere.

We see in Fig. 5(a) that the gravity change shows a
quadrant pattern. Since the earth’s surface in the quadrants
1 and 3 rises, the gravity should decrease, and vice versa.

It is of special interest to compare our results with
solution for the half-space given by Okubo (1991). The
distance x on the free surface of the half-space is related to
its image on the sphere through the relation x = a6. The two
results agree very well with each other within the epicentral
distance 8#<1° or 111km (Figs 5c¢ and 6a). It verifies
simultaneously that our theory is consistent with Okubo’s
flat-earth theory.

The discrepancy between the two results is no larger than
10 per cent within the epicentral distance 6 =10° (Figs 6b
and 5a). The difference becomes evident when 6> 10°
because of the curvature of the earth. It is reasonable to use
the spherical theory for global calculation.

In Fig. 7, we present the gravity change caused by a
dip-slip dislocation buried at d,=32km. It shows a
different pattern from that of the strike-slip. The outer
circle in Fig. 7 is the line of epicentral distance 10°. The
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Figure 6. Gravity changes obtained from Okubo’s (1991) theory
due 1o a strike-slip dislocation in a flat-earth model. The depth of
the dislocation is 32km. The dislocation is UdS = 2.49 x 10'* m®.
The units are ‘p gal’. (a) x <111km. (b) x <ax km.

Figure 5. Gravity changes due to a strike-slip dislocation in a
homogeneous earth model. The epicentral distance is proportional
to the radial distance. The depth of the dislocation is 32km. The
seismic moment is M;» = 3.61 X 10 N - m, or UdS = 2.49x 10> m®.
The units are ‘pgal’. (a) The upper hemisphere (0°< 8 <90°). We
find the positive gravity change in 90°<¢ <180° and
270°< ¢ <<360°. A negative gravity change arises in 0°< ¢ <90°
and 180°< ¢ <270°. (b) The lower hemisphere (90°< 8 < 180°)
with positive gravity change in 0°< ¢ <90° and 180° < ¢ <270°,
and negative gravity change in 90° << ¢ < 180° and 270° < ¢ < 360°.
(c) The near field (0°< 8 <1°). It shows positive gravity change in
0°< ¢ <90° and 180° < ¢ < 270°. A negative gravity change arises
in 90° < ¢ < 180° and 270° < ¢ < 360°.
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¢ =270°

Figure 7. Gravity changes caused by a dip-slip dislocation in a
homogeneous earth model. The epicentral distance is proportional
to the radial distance. The solid line (with point shadow) denotes
the positive gravity change, and the broken line (with line shadow)
denotes the negative gravity change. The selsmic moment is
M;=361X10%N-m, or UdS=249x10”m’. The units are
‘w gal’. 0°< 8 <10° The depth of the dislocation is 637 km.

6 = 90°

““"“ﬁﬂﬁnmﬁi'
\ l i‘ ”,

¢ = 180°
¢ =0°

¢ = 210°

Figure 8. Gravity changes caused by a 45° dip-slip dislocation in a
homogeneous earth model. The epicentral distance is proportional
to the radial distance. The solid line (with point shadow) denotes
the positive gravity change, and the broken line (with line shadow)
denotes the negative gravity change. The seismic moment is
M;;=361X10°N-m, or UdS=249x10"m’. The units are
‘uogal’. 0°< @< 90° The depth of the dislocation is 32 km.

Figure 9. Gravity changes caused by a strike—slip dislocation in the
1066A earth model. The depth of the dislocation is 32 km. The solid
line (with dotted shadow) denotes the positive gravity change, and
the broken line (with line shadow) the negative gravity change. The
dislocation in u,1n,dS = 2.49 X 10'* m>. The units are ‘u gal’. (a) The
upper hemisphere (0°<@<90°). (b) The lower hemisphere
(90° < 8 < 180°). (c¢) The near field (0° < 6 <1°).
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gravity increases in the upper half part of the figure and
decreases in the lower half.

We show the gravity change raised by a 45° dip-slip
dislocation buried at d, =32 km in Fig. 8, where the outer
circle is the line of epicentral distance 90°. It shows a
quadrant pattern similar to that of the strike-slip
dislocation, apart from a 45° phase difference in longitude.

5.2 Results for a radially heterogeneous earth model

Let us now turn to a more realistic problem: spheroidal
deformation excited by a point dislocation in a radially
heterogeneous earth. Using the formulation and techniques
in Sections 3 and 4, we calculate u,, ¢, Ag and 8g caused by
dislocations buried in the 1066 A SNREI model (Gilbert &
Dziewonski 1975).

Table 5. Dislocation Love numbers of a vertical strike-slip
faulting at depth of 2 km. Earth model is the 1066A.

n hn [ Fns
2 3071E -3 3228E ~ 2 | B8550FE -3
31 —.2822E -3 2555E -2 | 2283FE -3
4| —.2489F -3 2157E -2 | 2107TE -3
51 —.1942E -3 ABSTE — 2 | 2182E -3
6 | —.1642E -3 .1636E — 2 | 2102E -3
8 | —.1408E -3 1335E -2 | .1785E -3
10 | —.1323E -3 A135E -2 | 1486FE -3
15 | —.1242E -3 .8380F -3 | .9494FE — 4
20 | —-.1204E -3 6T766FE — 3 | .6087F — 4
30 | —.1106E - 3 5071E ~ 3 | 2541E -4
40 | —.9828E — 4 4176F — 3 | .1106E - 4
50 | —.8642E — 4 3612E -3 | .5206E -5
70 | —6741F — 4 2931E -3 | 2278E -5
100 | —.4879F — 4 .2378E -3 | 3329E -5
200 | —.2196F — 4 .1613F -3 | .8800F - 5
300 | ~.1142F -4 JA1254E -3 | 1130F — 4
500 | —.2867E -5 8372E — 4 | 1334FE — 4
300 6922E ~ 6 S197FE -4 | 1177TE — 4
1000 .1478E -5 4028E — 4 | .1046FE - 4
1200 .2033F -5 3231E -4 | 9429E -5
1400 .2586F — 5 .2652FE — 4 | .8693E -5
1600 3180E ~ 5 .2207E -4 | 8205E -5
1300 3794E -5 A852FE -4 | .7T893E -5
2000 4397F -5 1561E — 4 | .T700E -5
2200 .49638F ~ 5 A317E -4 | .7583E -5
2400 5494E -5 A111E - 4 | .7512E -5
2600 5971E -5 9345E -5 | .T470FE - 5
2800 .6400E —~ 5 7814E — 5 | .T445E -5
3000 .6784F - 5 .6478E - 5 | .T430E -5
3500 ISTTE -5 3786E — 5 | .7414E -5
4000 B136E — 5 A756E -5 | T410E -5
4500 .8663F — 5 A737E -6 | .T410E -5
5000 9046E -5 | —.1093E -5 | .T410E -5
7000 .1003E —4 | —4351FE -5 | .7411E -5
10000 A077TE -4 | —6795E -5 | .7T412E -5
15000 1134E -4 | —8696E -5 | T413E -5
20000 1163E —4 | —.9647TE -5 | 7414E -5
25000 .1180E —4 | —1021E -4 | .T414E -5
30000 1192E -4 | —1059E — 4 | 7T414E -5
35000 1201F —4 | —1088E — 4 | .7T420E - 5

We first calculate dislocation Love numbers (see, as
examples, Tables 5-8). Final results on displacement u,,
potential ¢ and gravity changes Ag and 8g are tabulated in
Appendix A.

Fig. 9 shows the gravity changes raised by a strike-slip
dislocation at a depth of 32km. We observe a slight
difference between this result and that for the homogeneous
earth model (Fig. 5a), although the distribution patterns and
numerical order remain essentially the same.

Fig. 9(c) shows the gravity changes in the near field raised
by the same dislocation. The result for the 1066A model is
as a whole similar to that for a homogeneous sphere (Figs 9¢
and 5c). At some places, however, the difference between
the two becomes very large. For example, the locations of
the nodal lines of the gravity change differ significantly
between the two models. For more detailed comparison, we
show results of the homogeneous and 1066A models in Fig.
10. Fig. 10 clearly indicates that the vertical layering can
cause considerable effects on the deformation fields. The
distribution pattern and numerical order are, however,
basically the same within 0°< 8 < 0.5°. Since the top 11km
of the earth model 1066A is homogeneous adopted as our
homogeneous model (previous section), there should be no
large difference between the two models when epicentral

Table 6. Dislocation Love numbers of a vertical dip-slip
faulting at depth of 20 km. Earth model is the 1066A.

32 33 3T

n nl nl nl
1| —.5345F ~ 4 .6014E —1 | .0000E 40
2 J1097E - 3 J350FE -1 | 1621E -3
3 1224FE -3 2344E —1 | .1695E -3
4 1186E -3 A1807E -1 | .1617E -3
5 1146F - 3 1472F -1 | 1547TE -3
6 1131FE -3 1242E -1 | 1505E -3
3 1146E -3 .9470F — 2 | .1469FE -3
10 1182E - 3 T649F — 2 | .1460FE -3
15 1295FE -3 B5161E —2 | 1486E -3
20 1417E -3 3887E -2 | 1542E -3
30 1626FE - 3 .2588E -2 | .1661E -3
40 A772E -3 1926 -2 | (1750FE -3
50 J1871E -3 1523F -2 | .1809E -3
70 1992E - 3 1055E —2 | .1873E -3
100 2087E -3 .6942FE -3 | 1910E -3
200 2257E -3 2395E -3 | .1924E -3
300 .2387E -3 6409F -4 | 1911E -3
400 2510F —3 | —.3349E -4 | .1903E -3
500 2636E —3 | —.9637E ~4 | .1909E -3
300 3036E -3 | —.2017TE -3 | .2006E - 3
1000 3295E -3 | —.2440E -3 | .2106E -3
1200 3522FE -3 | —2762E -3 | .2206E -3
1400 3705E -3 | —3014E -3 | 2292E -3
1600 3843F -3 | —3210E -3 | 2358E -3
1800 3943E -3 | ~3361E -3 | 2407TE -3
2000 4013FE -3 | —3477TE -3 | 2441E -3
2200 4063F -3 | —.3568E —3 | .2464F -3
2400 4093F -3 | —3640E -3 | 24831E -3
2600 4124E -3 | —.3698FE -3 | .2492E -3
2300 4143E -3 | —3746E -3 | .2500E -3
3000 4159F -3 | —3787TE -3 | 2507E -3
3500 4198F -3 | —3877TE -3 | .2525E -3
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Table 7. Dislocation Love numbers of a horizontal tensile at
depth of 200 km. Earth model is the 1066A.

a2 27 7.22

n nd n0 knﬂ
0 5592F - 01 0000E + 0 0000E +0
1 1675E 400 | —.1550E 40 0000E +0
2 .1041E 400 | - .7161E -1 3139FE -1
3 .5916F — 01 | —.5626E -1 1225FE -1
4 .3311E - 01 | —4349E -1 3653FE -2
5 2757E - 01 | —.3502FE -1 357T3E -3
6 2163F —01 | ~.2941E -1 | —9092FE -3
3 1524E —01 | —2245E -1 | —.1643FE -2
10 J178E - 01 | —1817TE -1 | —.1802E - 2
15 7360E —02 | —.1210F -1 | —1319FE -2
20 5152E —-02 | —8365FE -2 | —1784E -2
25 B377T4E —02 | —6823E -2 | ~.1782FE -2
30 2305FE — 02 | —.5401E ~ 2 | —.1809FE -2
35 2075E ~02 | —4344FE -2 | —~1850FE —2
10 .1503E - 02 | —3521E -2 | —.1897F -2
45 1043E — 02 | —2860FE -2 | —.1942E -~ 2
50 .6647E —03 | —2315E -2 | —.1984E -2
60 8140F — 04 | —.1468E ~ 2 | —.2053F -2
70 | —.3449E - 03 | -~ 8365E -3 | —.2105F -2
80 | —6689E —03 | —3437TE -3 | —.2142E -2
90 | —.9231F£ -03 5360F —4 | —216%3E —2
100 | ~.1128E - 02 3827TE -3 | —2183E —2
110 | —1296E — 02 6613E -3 | —2202E -2
120 | —.1438E - 02 9014E -3 | —.2211E -2
130 | —.1560F — 02 A111E -2 | —2217E -2
140 | —.1665E — 02 1297E -2 | ~-2221E -2
150 | —.1758E — 02 1464E — 2 | —2224E -2
160 | —.1841F ~ 02 1614E — 2 | —.2225E -2
170 | —.1915E - 02 A751E -2 | —2225E -2
130 | ~.1982E - 02 A876E -2 | —2225E -2
200 | —.2100F - 02 2097E -2 | —.2222E -2
300 | —.2513E - 02 2851E -2 | —.2206E -2

distance is less than 1 km. The effect of the vertical layering
becomes more evident when 6 >0.1°.

We give some results for inclined dislocations in Figs
11-14. They show more complicated patterns, which
strongly depend on the dip angle § and slip angle A. (See
Sun (1992) for more complete results for u,,  and Ag).

6 CONCLUSIONS

We showed how to compute the potential and gravity
changes caused by point dislocations in spherically
symmetric earth.

Although our formulation is rather simple, we had to
overcome several difficulties to obtain numerical results: (1)
truncation of an infinite series, (2) accelerating the
convergence of the series, (3) the Euler transformation, (4)
interpolation on transformed Love numbers, and (5)
incorporation of Okubo’s (1988, 1991c) asymptotic
solutions.

We made calculations for both homogeneous and radially
heterogeneous earth models. Numerical integrations were
carried out by using Runge—Kutta method. For depths of 0,
2, 5, 10, 20, 32, 64, 100, 200, 300, 400, 637 kmm, we obtained
the dislocation Love numbers, which enable us to calculate
radial displacement, potential and gravity changes. Calcu-
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Table 8. Dislocation Love numbers of an opening tensile
crack at depth of 400km. Earth model is the 1066A.

FII 337 733

n hno Ina Kno
0| .8791FE -1 .0000E + 0 | .0000F + 0
1] .2689E+0 | —.2612E — 1 | .0000F + 0
21 .1235E4+0 | —.1438E -1 | .1045FE -1
3| 8104E -1 | —1373E -1 | .9993E -2
4 | 6190FE -1 | —.1344F -1 | 9975E -2
5| 5115E -1 | -.1335FE -1 | .1006E -1
6 | 4430E—-1 | —.1333E -1 | .1015F ~ 1
8| .3611F—-1 | —.1336E -1 | .1032E -1
10 | 3145E -1 | —.1343E -1 | .1049E -1
15 | .2569E -1 | —.1374E -1 | .1093E -1
20 | 2307E -1 | —.1410E —~1 | .1129E -1
25 | 2158E -1 | —~.1443E -1 | .1153F -1
30 | .2059FE -1 | —.1472E -1 | .1163E -1
35 | 1987E -1 | —.1495E -1 | .1176E - 1
40 { 1931F ~1 | —.1516E -1 | .1179E -1
45 { .1886E -1 | —.15635E -1 | .1180E -1
50 | .1850E —1 | —.1552FE ~1 | .1179E -1
60 | 1793E —1 | —.1584FE ~1 | .1174E - 1
70 | 1752E -1 | ~.1614E -1 | .1167TE -1
80 | 1721F -1 | —.1641F -1 | .1160E — 1
90 | 1697EF -1 | —1668E -1 | .1152E -1
100 | .1679E -1 | —.1694F -1 | .1146FE ~ 1
110 | .1665E -1 | —17T19F -1 | .1139E -1
120 | .1655F -1 | —.1745E -1 | .1133E - 1
130 | .1648E -1 | —1772E -1 | 1128E -1
140 | 1645E -1 | —.1806E -1 | .1124FE -1
150 | .1643F -1 | —.1852E -1 | .1119E -1
160 | .1598E -1 | —1791E -1 | .1087E - 1

lated gravity changes for a homogeneous sphere agree well
with previous results derived from the assumption of a
homogeneous flat earth, in particular in the near field within
1° or 111km. The agreement confirms that our theory is
consistent with the flat-earth theory (Okubo 1991).
Discrepancy between the two theories was found to be no
larger than 10 per cent within epicentral distance 6= 10°
The difference becomes larger in the area 8 > 10°, where the
effect of the curvature appears evident.

We proceeded to calculations for the radially heteroge-
neous 1066A earth model. The results are as a whole similar
to those for a homogeneous sphere. In some cases, however,
the difference between the two becomes very large. For
example, the locations of the nodal lines of the gravity
change differ significantly between the two models. It
indicates that the vertical layering has considerable effects
on the deformation fields.

The most important results of this study are the radial
displacement, potential and gravity changes tabulated in
Appendix A. These results enable us to compute potential
and gravity changes at any place on the surface due to an
arbitrary point dislocation in a SNREI earth.

If we integrate the contribution from point dislocations
distributed over a finite plane, we may estimate gravity
change caused by an earthquake more accurately. We will
show how this is achieved in the subsequent paper (Okubo
& Sun 1993).
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Figure 10. Comparison of gravity changes of the homogeneous and 1066 A models.
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Figure 11. Gravity changes 8g (with the free air correction) caused by a shear dislocation (8 = 60°, A = 30°, d, =32km) in the 1066A earth
model. The dislocation is located at the centre of the map. The epicentral distance is proportional to the radial distance. The dislocation is
UdS = 2.49x 10"> m”. The units are ‘u gal’. (a) The near field (0° < 8 < 1°). (b) The upper hemisphere (0° < 8 <90°). (c) The lower hemisphere
(90° < 6 < 180°).
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Figure 11. (Continued.)
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Figure 12. Gravity changes 8g (with the free air correction) caused by a shear dislocation (§ = 50°, A = 20° d, =400km) in the 1066A earth
model. The dislocation is located at the centre of the map. The epicentral distance is proportional to the radial distance. The dislocation is
UdS =2.49x 10 m>. The units are ‘u gal’. (a) The near field (0°<8<10°). (b) The upper hemisphere (0°<6<90°). (c) The lower
hemisphere (90° < 6 < 180°).
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Figure 13. Gravity changes &g (with the free air correction) caused by a shear dislocation (8 =75°, A =15°, d, =5km) in the 1066A earth
model. The dislocation is located at the centre of the map. The epicentral distance is proportional to the radial distance. The dislocation is
UdS = 2.49X 10" m’. The units are ‘u gal’. (a) The near field (0° < 8 < 1°). (b) The upper hemisphere (0° < 8 < 90°).
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Figure 14. Gravity changes 8g (with the free air correction) caused by a Tensile dislocation (8 = 90°, d; = 100 km) in the 1066A earth model.
The dislocation is located at the centre of the map. The epicentral distance is proportional to the radial distance. The dislocation is
UdS =2.49x 10" m’. The units are ‘u gal’. (a) The near field (0°<28<<10°). (b) The upper hemisphere (0°<8<90°). (c) The lower

hemisphere (90° < 6 < 180°).
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Figure 14. (Continued.)
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APPENDICES

A Tables of deformations caused by dislocations

In this Appendix we give the numerical results of the radial
displacement &7(a, 6), the potential change ¢“(a, ), the
gravity changes AgY(a, 8) and §8gY(a, 8) for practical

applications. (On microfiche GJI 114/1.)

B Asymptotic solutions

Okubo (1988) proposed the asymptotic solutions for the
whole six sets of independent solutions of the spheroidal
deformations of the earth. Recently he (Okubo 1993) found
that the deformation on the surface r=a raised by
dislocations is expressed simply by that of the tide, load and
shear solutions at the source depth 4. For convenience in
our present study, we transform the asymptotic solutions
into asymptotic dislocation Love numbers: A7, /% , and
k7 .. The superscripts “Tide’, ‘Load’, and ‘Shear’ indicate the
tide, the load, and the shear asymptotic solutions at the
point source.
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Horizontal tensile fracturing with m = 0:
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where

a = P-wave velocity

B = S-wave velocity

p, = density at the surface

A,, m, = Lamé’s constants at the source
d, = source depth

G = Newton’s gravitational constant
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C INFINITE SUMS OF LEGENDRE
FUNCTIONS

We begin with the generating function of Legendre’s
polynomials,

= 1
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Integrating (C1) with respect to r gives the desired
formulae.
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In the same way, we obtain the following formulae after
some manipulations.
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