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ABSTRACT: Atlantic hurricane seasons have a long history of causing significant financial impacts, 
with Harvey, Irma, Maria, Florence, and Michael combining to incur more than 345 billion USD 
in direct economic damage during 2017–2018. While Michael’s damage was primarily wind and 
storm surge-driven, Florence’s and Harvey’s damage was predominantly rainfall and inland flood-
driven. Several revised scales have been proposed to replace the Saffir–Simpson Hurricane Wind 
Scale (SSHWS), which currently only categorizes the hurricane wind threat, while not explicitly 
handling the totality of storm impacts including storm surge and rainfall. However, most of these 
newly-proposed scales are not easily calculated in real-time, nor can they be reliably calculated 
historically. In particular, they depend on storm wind radii, which remain very uncertain. Herein, 
we analyze the relationship between normalized historical damage caused by continental United 
States (CONUS) landfalling hurricanes from 1900–2018 with both maximum sustained wind speed 
(Vmax) and minimum sea level pressure (MSLP). We show that MSLP is a more skillful predictor of 
normalized damage than Vmax, with a significantly higher rank correlation between normalized 
damage and MSLP (rrank = 0.77) than between normalized damage and Vmax (rrank = 0.66) for all 
CONUS landfalling hurricanes. MSLP has served as a much better predictor of hurricane damage 
in recent years than Vmax, with large hurricanes such as Ike (2008) and Sandy (2012) causing much 
more damage than anticipated from their SSHWS ranking. MSLP is also a more accurately-measured 
quantity than is Vmax, making it an ideal quantity for evaluating a hurricane’s potential damage. 
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T
ropical cyclones (TCs) are the leading driver of natural disaster-caused damage for the United 

States (Smith and Katz 2013, Klotzbach et al. 2018) as well as many other parts of the globe. 

More than 345 billion USD in damage to the United States and Caribbean were incurred by 

the Atlantic hurricanes of 2017 and 2018 (Aon 2019). All references to damage throughout the 

remainder of the manuscript are provided in USD. Hurricanes Harvey, Irma, Maria, Florence and 

Michael all caused significant damage to residential and commercial property, infrastructure, 

and agriculture, but the primary drivers of the damage have varied significantly for each 

individual storm—from predominantly freshwater-driven impacts for Harvey and Florence 

to predominantly surge- and wind-driven effects for Irma and Michael. While no singular 

geophysical quantity can perfectly explain the damage that a storm will cause, here we compare 

how maximum sustained wind speed (Vmax) and minimum sea level pressure (MSLP) perform 

at predicting hurricane-caused damage in the continental United States (CONUS).

The Saffir–Simpson Hurricane Scale was originally designed by Herb Saffir to reflect wind 

damage caused by hurricanes. The scale was first presented in 1969, and it ranked wind 

damage associated with hurricanes on a scale from 1 to 5, with 5 being hurricanes with the 

strongest winds and the highest levels of associated damage (Saffir 1973). Robert Simpson 

added MSLP and typical storm surge values associated with each hurricane category (Simpson 

1974). The Saffir–Simpson Hurricane Scale was used by the National Hurricane Center (NHC) 

to convey the multiple threats from hurricanes for more than 30 years. However, costly and 

large-sized hurricanes like Katrina (2005) and Ike (2008) brought more storm surge than 

would have been expected given their Saffir–Simpson categories at the time of landfall. In 

response, the NHC removed the storm surge and MSLP components from the scale, resulting 

in the Saffir–Simpson Hurricane Wind Scale (SSHWS) which is currently used operationally 

by the NHC when providing public warning on hurricanes (Schott et al. 2012).

During the past 15 years, several different scales have been proposed to either augment or 

replace the Saffir–Simpson Hurricane Scale. These include Kantha et al. (2006), who recom-

mended a scale based on a combination of Vmax, the radius of maximum wind and the translation 

speed. Powell and Reinhold (2007) proposed a ranking for wind destruction potential based on 

the integrated kinetic energy (IKE) of the hurricane. Hebert et al. (2008) developed a Hurricane 

Severity Index that was based on both the size and the intensity of the wind field. More recently, 

Pilkington and Mahmoud (2016) used an artificial neural network model to forecast the economic 

impact from hurricanes using several inputs including population affected, location of landfall, 

Vmax, MSLP, precipitation and storm surge. Walker et al. (2018) proposed the Kuykendall scale 

which related the Advanced Three Dimensional Circulation Model (ADCIRC)-modeled storm 

surge height and velocity from four hurricanes to several different fiscal loss approaches. While 

all of these proposed scales are useful for specific applications, several of these scales cannot be 

calculated in real time, or the inputs of these scales have not been reliably measured in the past. 

For example, several of them rely on storm wind radii. These are only available for the North 

Atlantic (hereafter Atlantic) since 1988 as operational values in the extended best track (Demuth 

et al. 2006) and are only best-tracked in the definitive Atlantic hurricane database (HURDAT2; 

Landsea and Franklin 2013) since 2004. These records also have large uncertainties: ~20% for 

34 kt wind radii for CONUS landfalling hurricanes (Landsea and Franklin 2013). Consequently, 

they cannot be used to evaluate drivers of damage across long periods of record (e.g., >=20 years).
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One quantity that is recorded consistently in HURDAT2 for all Atlantic named storms 

since 1979 and is available for all continental US (CONUS) landfalling hurricanes since 1851 

is MSLP. The relationship between MSLP and Vmax has been discussed in many prior studies 

(e.g., Dvorak 1975, Atkinson and Holliday 1977, Koba 1990, Knaff and Zehr, 2007). If MSLP 

were used as the primary intensity metric, it would reduce some of the challenges that arise 

when analyzing trends in TC intensity on a global or a regional scale (e.g., Knapp et al. 2013, 

Klotzbach and Landsea 2015).

MSLP is much more easily identified than Vmax. According to the NHC definition listed in 

their FAQ page at: https://www.aoml.noaa.gov/hrd/tcfaq/D4.html, Vmax is defined as:

a 1 min averaging time for reporting the sustained (i.e. relatively long-lasting) winds. The maxi-

mum sustained wind mentioned in the advisories that NHC issues for tropical storms and hur-

ricanes are the highest 1 min surface winds occurring within the circulation of the system. These 

"surface" winds are those observed (or, more often, estimated) to occur at the standard meteoro-

logical height of 10 m (33 ft) in an unobstructed exposure (i.e., not blocked by buildings or trees).

Clearly, this quantity is nearly impossible to measure directly, especially over land areas where 

frictional effects act as a negative influence in often finding a measurement equaling the max 

overwater TC wind speeds as cited in NHC advisories at landfall. The reference winds are at 10 m 

with an open exposure, which happens at sea. However, there are fewer observations at sea. The 

definition includes a maximum amount anywhere in the circulation system, which is likewise 

difficult to ascertain even with a dense observational network (Nolan et al, 2014). Conversely, 

the definition of MSLP is so clear that it does not even warrant a definition in the NHC FAQ.

MSLP occurs at the center of the storm and is part of the large-scale structure of the vortex. 

It is therefore relatively easy to locate the MSLP (vortex center), and the gradient of pressure 

naturally flattens near this center. In fact, one of the primary goals of every aircraft recon-

naissance mission is to find the storm center. With aircraft reconnaissance, MSLP can be 

reliably calculated using hydrostatic balance from the flight-level pressure depression, even 

without using a dropsonde. Landsea and Franklin (2013) also note qualitatively that MSLP is 

already very accurately measured with aircraft reconnaissance.

Estimating Vmax from flight-level winds depends on parameterizing the boundary layer 

turbulence (Franklin et al. 2003). The advent of the Stepped Frequency Microwave Radiom-

eter (SFMR) in recent years has greatly improved our ability to estimate surface winds, but 

these still remain estimates based on microwave emission from the ocean surface (Uhlhorn 

and Black 2003). In addition, Vmax is much more sensitive to small-scale asymmetries like 

meso-vortices in the eyewall (Hendricks et al. 2014). While eyewall penetrations also aim to 

measure these maximum winds, the actual maximum wind speeds are much more likely to 

be missed given the limited number of passes flown by an aircraft through the hurricane.

When it comes to assessing hurricane intensity at the time of landfall, Nolan et al. (2014) 

used an observing system simulation experiment and noted that even a perfectly-positioned 

anemometer in the right-front quadrant of a hurricane underestimated the actual intensity 

of the hurricane by 10–20%, on average. This study also noted that a barometer that passes 

through the eye of a hurricane is likely to overestimate MSLP by only 1–3 hPa.

MSLP is much easier to measure at landfall than is Vmax. Barometers are among the simplest 

meteorological instruments and will usually operate in a wide range of conditions (Pike and 

Bargen 1976). Anemometers, on the other hand, are prone to mechanical failure at wind speeds 

above 50 kt (Howden et al. 2008), precisely when they matter most to estimating Vmax. Landsea 

and Franklin (2013) state that the intensity uncertainty of major hurricanes at landfall is about 

9.8 kt (for Vmax) and 3.6 hPa (for MSLP). Converting pressure to wind using the Knaff and 

Zehr (2007) wind-pressure relationship allows an easier comparison of these uncertainties: 
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the 3.6 hPa MSLP uncertainty is ~4 kt of Vmax uncertainty for a 935 hPa Category 4 hurricane 

(using the original Saffir–Simpson scale) increasing to 6 kt of Vmax uncertainty for a 990 hPa 

Category 1 hurricane (see Supplemental Material for details on how this calculation is made 

using Hurricane Michael’s landfalling MSLP of 919 hPa as an example).

Chavas et al. (2017) documented that central pressure deficit (the difference between the 

pressure of the surrounding large-scale environment and the MSLP) and Vmax are directly 

physically related through gradient wind balance using a variety of different models. They 

also noted that the central pressure deficit increases not only with Vmax but also with storm size 

and background rotation rate. While acknowledging that changes in both the environmental 

pressure and the Coriolis parameter are not negligible (e.g., Knaff and Zehr 2007), here we 

focus on MSLP as our primary intensity metric to compare with Vmax. Please refer to the sidebar 

for discussion on how MSLP is being used by the insurance industry to assess hurricane risk.

Chavas et al. (2017) find that MSLP is effectively an integrated metric of the entire wind 

field, which makes it more akin to the IKE metric proposed by Powell and Reinhold (2007). 

However, unlike IKE, only one simple measurement is needed to assess MSLP, while knowledge 

of the entire wind field is necessary to estimate IKE. The Sea, Lake, and Overland Surges from 

Hurricanes (SLOSH) parametric wind model, uses the storm track, the radius of maximum 

winds and the pressure deficit (e.g., the environmental pressure minus the MSLP) as its inputs 

Relevance to the insurance industry

The financial consequences of hurricanes can be substantial for both private citizens, commercial 
interests, and governments. One of the important players in both the risk mitigation and recovery phases 
surrounding these events is the insurance industry. Insurers use various methods of data collection, actu-
arial analysis, and modeling to determine hurricane risk based on current levels of vulnerable exposure, 
population, and the historical tracks and costs of past events.

Among these methods is catastrophe modeling, which in its simplest form is a simulation of a poten-
tial event scenario that includes an insurance portfolio (a combined listing of the location and value of 
insured assets such as buildings or automobiles) to determine the event’s financial implications. Within 
these wind- and/or storm surge–modeled scenarios are mathematical formulations that seek to interpret 
surface wind and pressure relationships and their overland degradation patterns. To determine actual 
losses, these models further incorporate MSLP/Vmax with other hazard parameters—such as the duration 
of wind, storm surge, and/or inland flood—and vulnerability parameters that capture physical assets 
with considerations such as type of construction, year built, and location. Wind–pressure profile relation-
ship techniques are implemented into both stochastic (hypothetical) and historical event scenarios as 
one way to calibrate model performance to more accurately match incurred economic and insured losses. 
Further adjustments to the vulnerability functions/curves within the model are very important in helping 
to better align loss results. An insured loss is the portion of a resultant economic loss cost that is covered 
by insurance. It is worth noting that Vmax and its speed of decay while over land, plus the type of terrain 
over which a storm crosses, remain very important components in loss modeling. Many studies, such as 
Willoughby et al. (2006), Knaff and Zehr (2007), Holland (2008), and Chavas et al. (2017), have more fully 
analyzed hurricane wind–pressure relationships that prove critical in model development.

Beyond catastrophe modeling, the insurance industry further uses MSLP as a potential trigger for 
specifically placed policies or catastrophe bonds. A catastrophe bond is used by reinsurers or governments 
to diversify and transfer risk to a variety of bond investors. This provides these groups a means of financial 
protection in the advent of a major natural catastrophe. For example, if a storm reaches a certain MSLP or 
Vmax threshold, this could trigger an insurance payout regardless of how much (or little) incurred damage 
occurs. These types of contracts are increasingly common for all types of natural and man-made perils. 
MSLP is not the only parameter utilized as a trigger for weather-based events. Other parameters may in-
clude Vmax, temperature, rainfall, the timing/location of “official agency” declared watches and warnings, 
and the geographic location of an event. These policies are a unique way to bring insurance availability 
into nontraditional, disaster-prone markets that are currently underserved or faced with high underinsur-
ance. Many high-stakes financial implications are based on weather-based information, with MSLP being 
one of many important parameters for the insurance industry.
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(Houston et al. 1999). The National Hurricane Center then uses this parametric wind field to 

force the SLOSH model to forecast storm surge. Likewise, Irish et al. (2008) showed that the 

effect of storm surge increased with storm size, especially for major hurricanes with mildly 

sloping coastal shelves—such as areas along the Gulf of Mexico. Larger hurricanes also have 

larger wind and rainfall footprints (Lonfat et al. 2007). Zhai and Jiang (2014) showed that 

economic losses from CONUS landfalling hurricanes were better correlated with Vmax and 

storm size than either Vmax or storm size individually.

Consequently, as a single metric, MSLP provides more information about potential hurri-

cane damageability than Vmax. Bakkensen and Mendelsohn (2016) examined global damage 

from TCs from 1960–2010 and found that MSLP was a better predictor of damage than Vmax. 

Their finding has major practical significance that warrants much greater attention within 

the mainstream atmospheric science and hazard risk communities. Thus, here we examine 

this result in greater depth.

In this study, we examine a long historical record (1900-2018) of normalized continental 

United States (CONUS) hurricane damage with the goal to evaluate if Vmax or MSLP has histori-

cally provided a better estimate of the damage that these storms have caused. The following 

section discusses the data sources and briefly outlines the methodology used for the analysis, 

and then we present the main findings of our study. The final section examines the potential 

implications of these results.

Data and Methodology

Normalized CONUS hurricane damage was taken from Weinkle et al. (2018), which provides 

an update to Pielke et al. (2008). Normalization provides an estimate of how much damage 

an historical hurricane would hypothetically cause if it were to make landfall today given cur-

rent levels of exposure and wealth. We use the Pielke-Landsea (PL18) normalization method 

discussed in Weinkle et al. (2018) which adjusts for population, inflation and wealth per 

capita. This dataset is available from 1900–2017. Damage estimates for the CONUS landfalling 

hurricanes of 2018 (Florence and Michael) were taken from the National Hurricane Center 

Tropical Cyclone Reports for these two storms (Stewart and Berg 2019; Beven et al. 2019). 

These estimates are similar to those calculated by a private-sector assessment (Aon 2019). 

The normalized damage dataset initially included seven hurricane events that brushed the 

North Carolina coastline despite the center of the system not officially making landfall. Given 

that these storms were typically tracking northward or northeastward when they approached 

the coast, the right front quadrant (which typically generates the strongest winds) did not 

hit the state, and consequently, damage from these hurricanes was minor. These hurricanes 

are excluded from this analysis.

Multiple landfalls from the same hurricane were included whenever the normalized 

hurricane damage dataset (Weinkle et al. 2018) had a separate damage estimate for an 

additional landfall. There were a total of nine hurricanes where damage from a second 

landfall was provided. There were also nine hurricanes where separate landfalls were 

identified by Klotzbach et al. (2018), who used a 100 mile threshold between landfalls to 

identify multiple distinct landfalls by the same hurricane, but did not include a separate 

normalized damage estimate. In these cases, we selected the first landfall as its landfall-

ing Vmax and MSLP, assuming that the two separate landfalls were of approximately equal 

intensity. In cases where one landfall was clearly the primary driver of the damage (e.g., 

Charley-2004’s landfall in FL versus its landfall in SC), we selected the higher intensity Vmax 

landfall. If these nine landfalling hurricanes were removed from the dataset, our results 

do not change significantly.

While Hurricane Sandy had officially become post-tropical several hours before landfall, we 

do include it in this analysis given the widespread swath of damage which resulted from the 
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event. While the maximum winds estimated to impact the CONUS from Sandy were 65 kt (e.g., 

Category 1), its MSLP of 942 hPa at the time of these maximum wind impacts would equate to 

a Category 4 hurricane using the MSLP values in the original Saffir–Simpson scale (Simpson 

1974). We note that these values are slightly different from the 70 kt Vmax and 945 hPa MSLP 

listed as Sandy’s post-tropical landfall intensity in New Jersey in Blake et al. (2012). The 65 kt 

Vmax and 942 hPa MSLP intensity for Sandy are what is listed in the AOML dataset discussed 

in the following paragraph. The final dataset that we employ consists of 165 CONUS hurricane 

landfall events from 156 hurricanes during the seasons from 1900–2018.

Both Vmax and MSLP for hurricanes at the time that they made landfall in the CONUS are 

taken from the Atlantic Oceanographic and Meteorology Laboratory (AOML) website (https://

www.aoml.noaa.gov/hrd/hurdat/UShurrs_detailed.html) which is based on HURDAT2 (Landsea and 

Franklin 2013). The data available at the AOML link above is currently available from 1851–1960 

and 1983-2018 and will be available for the entire length of the hurricane database once the 

Atlantic Hurricane Database Reanalysis Project is complete. For the period from 1961–1982, 

we used the CONUS hurricane impacts database from AOML: https://www.aoml.noaa.gov/hrd 

/hurdat/All_U.S._Hurricanes.html. This dataset is very similar to the one just discussed. The 

only difference is that this dataset only provides the Vmax and MSLP intensity at the time of 

a hurricane’s strongest landfall, as opposed to the former dataset which provides intensity 

information for all hurricane landfalls. The blend of these two AOML landfalling hurricane 

datasets was also recently employed in Klotzbach et al. (2018). We note that nine hurricanes 

in our landfalling hurricane dataset had MSLP calculated from a Vmax/MSLP relationship as 

opposed to a direct measurement of MSLP. Removing these nine hurricanes from our analysis 

does not significantly change our results.

There are 32 CONUS hurricane landfalls (29 prior to 1950) where no damage was listed in 

Weinkle et al. (2018). These storms are not counted in this analysis. Throughout the remain-

der of this manuscript, we use the Weinkle et al. (2018) list of landfalling hurricanes unless 

otherwise noted.

For measurements of the 50-kt wind radii, we use the extended best track dataset from 

1988–2003 (Demuth et al. 2006) and HURDAT2 from 2004–2018. The extended best track 

provides additional information than what is stored in HURDAT2 including the radius of the 

outermost closed isobar, the radius of maximum winds, eye diameter, and other size char-

acteristics. The 50-kt wind radii have been best-tracked in HURDAT2 since 2004. Since wind 

radii at the time of CONUS hurricane landfall are not always provided in HURDAT2 and are 

unavailable in the extended best track dataset, we use the wind radii at six-hourly resolution 

(e.g., 0, 6, 12, and 18 UTC), and take the six-hour time-step immediately prior to landfall for the 

hurricane landfall’s 50-kt wind radii. We take the arithmetic average of the four 50-kt wind 

radii quadrants provided (e.g., NW, NE, SW, SE) as our 50-kt wind radii size metric.

The statistical significance of correlations was assessed using a two-tailed Student’s 

t-test, while the statistical significance of the difference in correlations was computed using 

the Fisher r-to-z transformation and accounting for the shared correlation between Vmax and 

MSLP (Lee and Preacher 2013). We note statistical significance at two different levels in this 

manuscript: 5% and 1%, respectively.

Results

Normalized damage relationship with Vmax and MSLP: 1900–2018. We begin by examin-

ing the relationship between normalized hurricane damage and Vmax and MSLP for the full 

period of record: 1900-2018 (Fig. 1a and 1b). The normalized hurricane damage dataset has 

some very large outliers in damage. For example, the Great Miami Hurricane of 1926 would 

be hypothetically expected to cause $236 billion if it occurred today. Furthermore, the top ten 

costliest hurricane landfalls are equal to 52% of the aggregated normalized damage of all 165 
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hurricane landfalls in our dataset. Due to these large outliers, we use rank correlations as our 

primary agreement metric, as opposed to the Pearson correlation coefficient. Figure 1a displays 

the relationship between normalized damage and Vmax, while Fig. 1b displays the relationship 

between normalized damage and MSLP. While both quantities correlate significantly with dam-

age at the 1% level, the rank correlation between MSLP and normalized damage (r
rank

 = 0.77) 

Fig. 1. Normalized hurricane damage relationship with Vmax and MSLP. (a) For CONUS normalized damage vs 

Vmax (1900–2018), (b) for CONUS normalized damage vs MSLP (1900–2018), (c) for CONUS normalized damage 

vs Vmax (2007–18), (d) for CONUS normalized damage vs MSLP (2007–18), (e) for Georgia to Maine normalized 

damage vs Vmax (1900–2018), and (f) for Georgia to Maine normalized damage vs MSLP (1900–2018). Individual 

CONUS hurricane landfalls are labeled in (c) and (d).
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is significantly greater at the 1% level than the rank correlation between Vmax and normalized 

damage (r
rank

 = 0.66). MSLP explains ~60% of the variance in normalized damage, without 

even accounting for the large spatial differences in exposure along the US coastline (Chavas 

et al. 2012, Weinkle et al. 2018). For these plots, higher ranks indicate greater Vmax (or lower 

MSLP) and increased levels of normalized damage. One might argue that the lower correla-

tion for Vmax is caused by the larger uncertainty of its value (e.g., Landsea and Franklin, 2013). 

However, that simply suggests that communicating potential damage and humanitarian risk 

to the public is even more appropriate based on MSLP since it is more accurately measured 

and more correlated with dangerous direct impact implications (with both damage and with 

fatalities, as shown later in this manuscript).

While both quantities correlate significantly with normalized damage, we do note that 

damage is more than a function of the intensity of the TC. Damage is also driven by the size 

of the exposed population that is impacted, with increasing damage typically associated with 

hurricanes making landfall in major metropolitan areas (Chavas et al. 2012, Weinkle et al. 

2018). In addition, TC-generated rainfall can be a large driver of damage for many TCs, with 

recent examples like Hurricane Harvey (2017) and Hurricane Florence (2018) demonstrating 

this point. While area-averaged rainfall is positively correlated with TC intensity (Cerveney 

and Newman 2000) and with TC size (Lonfat et al. 2007), the relationship is relatively weak on 

an individual TC basis. TC rainfall is also negatively correlated with storm translation speed, 

with slower TCs typically producing more rainfall (Emanuel 2017, Kossin 2018). Furthermore, 

higher intensity rainfall events can also enhance greater wind loss potential since a lesser wind 

can knock down trees when the soil is overly saturated. This was true during recent storms 

such as Matthew (2016), Harvey (2017), Florence (2018) and Michael (2018). Consequently, we 

cannot expect one TC intensity metric to correlate perfectly with damage.

Normalized damage relationship with Vmax and MSLP: 2007–2018. We note that in recent 

years, MSLP has shown much improved skill at predicting normalized damage when compared 

with Vmax for landfalling CONUS hurricanes. As shown in Fig. 1c, Vmax has not worked well 

as a predictor for landfalling CONUS hurricane damage from 2007–2018 (e.g., rank correla-

tion between Vmax and normalized damage has decreased to 0.29), while the rank correlation 

between MSLP and normalized damage has increased to 0.89 for the 15 CONUS landfalling 

hurricanes from 2007-2018 (Fig. 1d). The correlation difference is significant at the 1% level. 

This inability of Vmax to predict hurricane damage is one of the primary reasons why less 

emphasis has been given to the SSHWS by NHC in recent years.

Two notable recent failures of Vmax at predicting normalized damage are Hurricane Ike 

(2008) and Hurricane Sandy (2012). Both of these storms had much lower MSLP than would 

be expected for their SSHWS category at the time of landfall. Hurricane Sandy’s MSLP of 

942 hPa was the lowest for a Category 1 CONUS landfalling hurricane (officially post-tropical, 

but considered a Category 1 for this analysis) since 1900. Hurricane Ike’s MSLP of 950 hPa was 

tied with Hurricane Edna (1954) for the third lowest for a Category 2 CONUS landfalling hur-

ricane since 1900—trailing only the Great Atlantic Hurricane of 1944 (940 hPa) and Hurricane 

Gloria in 1985 (942 hPa).

Given the extremely large size and energy associated with each of these two TCs, both Ike 

and Sandy generated large and impactful storm surges. While the Bolivar Peninsula was 

completely inundated by Ike, and consequently exact measurements are not available, ground 

assessment teams estimated 15–20’ of storm surge on the Bolivar Peninsula (Berg 2009). 

Hurricane Sandy brought more than 14’ of storm tide (the combination of storm surge and 

the astronomical tide) to portions of New York City, with The Battery (where records extend 

back to 1920) well-surpassing its previous storm tide record (set in December 1992) by more 

than 4’ (Blake et al. 2013). While Sandy’s extremely high level of damage was also due to its 
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directly impacting the largest metropolitan area in the United States (i.e., New York City) and 

several surrounding states, its large size was the dominant factor in why the system brought 

such devastating storm surge, as was noted in Blake et al. (2013).

Vmax/MSLP relationship with normalized damage: Texas to Florida vs. Georgia to Maine. 

In order to investigate the spatial relationship between landfalling Vmax/MSLP and normal-

ized damage, we divide CONUS hurricane landfalls into those making landfall between Texas 

and Florida and those making landfall from Georgia to Maine. Kimball and Mulekar (2004), 

Knaff et al. (2014) and Chavas et al. (2016) have all noted that hurricanes tend to grow as they 

move poleward (northward), and we hypothesize that this may result in a weakening of the 

relationship between Vmax and normalized damage for storms making landfall from Georgia 

to Maine. The relationship between Vmax and MSLP with storm size is investigated in more 

detail in the next section. The correlation is slightly greater between normalized damage and 

MSLP (r
rank

 = 0.77) than for normalized damage and Vmax (rrank = 0.74) for hurricanes making 

landfall from Texas to Florida, but the difference is not significant (Fig. S1). While the corre-

lation between MSLP and normalized damage remains significant and strong for Georgia to 

Maine landfalls (r
rank

 = 0.81), the correlation is much weaker for Georgia to Maine hurricane 

landfalls for Vmax (rrank = 0.42) (Figs. 1e and 1f). The difference in the rank correlations between 

Vmax and MSLP with Georgia to Maine normalized hurricane damage is significant at the 1% 

level. Historically, Vmax has served as a poor predictor of damage (relative to MSLP) from hur-

ricanes making landfall along the East Coast of the U.S. north of Florida.

CONUS landfalling hurricane size relationship with Vmax and MSLP. We next investigate the 

relationship between CONUS landfalling hurricane size and Vmax/MSLP since 1988 (when the 

extended best track dataset became available). In this analysis, we use 50-kt wind radii as 

our primary size metric, as this has been shown in prior research to improve the skill in storm 

surge forecasting (Takagi and Wu 2016). We find that the size of CONUS landfalling hurricanes 

is significantly correlated at the 1% level with Vmax (rrank = 0.41), although this correlation value 

implies that only ~17% of the variance in storm size is explained by Vmax, similar to what was 

found by Merrill (1984), Chavas and Emanuel (2010) and Chavas et al. (2016). The correlation 

between MSLP and storm size is much stronger (r
rank

 = 0.60), explaining 36% of the variance 

in storm size (Fig. 2). The difference in correlations between Vmax and MSLP with storm size 

is significant at the 1% level. Since storm surge is related to hurricane size (Irish et al. 2008, 

Takagi and Wu 2016), this helps explain why MSLP is a better overall predictor of damage.

Fig. 2. 50-kt wind radii at the time of CONUS hurricane landfall vs (a) Vmax and (b) MSLP for all CONUS land-

falling hurricanes from 1988 to 2018.
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MSLP-based definition of major hurricanes—normalized damage implications. We next 

examine using a MSLP-based definition for major (e.g., Category 3+ on the Saffir-Simpson 

Wind Scale Scale) hurricanes (Landsea 1993). Since 1979 (when MSLP began being recorded 

for all Atlantic TCs in HURDAT2), 21% of all named storms in the Atlantic have had a lifetime 

maximum intensity >= 96 kt (>= 49 ms–1). If we do a similar analysis for MSLP, 22% of all Atlantic 

named storms have had a lifetime maximum intensity <=960 hPa. We note that in the Saffir–

Simpson Hurricane Scale used by the NHC for more than 30 years (Simpson 1974), Category 

3 hurricanes were listed as typically having an MSLP between 945-964 hPa. Table 1 displays 

our proposed MSLP-based ad-

dition to the Saffir–Simpson 

Scale, attempting to fit similar 

frequency of TC lifetime maxi-

mum intensity values to the 

MSLP criteria (and also setting 

all MSLP thresholds to values 

divisible by 5).

There would generally be 

more confidence in the land-

falling Saffir–Simpson category 

using MSLP than in using Vmax. 

This can be shown by doing a 

simple signal to noise analysis. The width of the SSHWS categories varies between 13-24 kt 

(Table 1). Given the average Vmax uncertainty of 9.8 kt for CONUS landfalling major hurricanes 

listed in Landsea and Franklin (2013), that leaves a signal to noise ratio of ~1.3-2.5. The width 

of the revised MSLP boundaries in Table 1 is 15-20 hPa. Consequently, given the 3.6 hPa 

uncertainty estimate in MSLP given in Landsea and Franklin (2013), the signal to noise ratio 

ranges from ~4.2–5.6. We can therefore say with much greater certainty the exact category 

of a system when using MSLP. We also note that NHC rounds Vmax values to the nearest 5 kt, 

while MSLP are rounded to the nearest 1 hPa value, adding additional uncertainty to the 

Vmax estimate relative to the MSLP estimate.

In the normalized hurricane dataset since 1900, there have been a total of 67 CONUS 

major hurricane landfalls. If we use the MSLP-based definition of major hurricane landfalls 

(<=960 hPa), there would have been a total of 80 CONUS MSLP-based major hurricanes. 

Using the Vmax-based definition of major hurricanes, these 67 hurricanes generated 81% of 

the 1900–2018 normalized hurricane damage. Major hurricanes defined using MSLP yielded 

92% of the normalized hurricane damage from 1900-2018. Table S1 displays the CONUS hur-

ricane landfalls that would be upgraded and downgraded using the MSLP-based definition of 

major hurricane. A total of 15 hurricanes would be upgraded using the MSLP threshold. Eight 

of these major hurricane upgrades have occurred in the past 20 years: Floyd (1999), Isabel 

(2003), Frances (2004), Gustav (2008), Ike (2008), Irene (2011), Sandy (2012), and Florence 

(2018). All eight of these hurricanes caused at least $5 billion in normalized damage, with 

four of these hurricanes generating more than $15 billion in normalized damage: Frances, Ike, 

Sandy, and Florence. Four hurricanes received a two category upgrade [Gloria (1985), Katrina 

(2005), Irene (2011), and Florence (2018)], while Hurricane Sandy would have been considered 

a Category 4 hurricane had our MSLP-based definition been used (a three category upgrade 

from its operational classification).

Only two hurricanes would be downgraded using the MSLP-based definition: Storm 5 

(1945) and Alicia (1983). We note that Alicia did cause considerable damage in the Houston-

Galveston region (National Research Council 1984) despite its small size as it tracked directly 

through the metropolitan area. Alicia caused ~$2 billion in actual damage (1983), but if it 

Table 1. Saffir–Simpson hurricane scale with current V
max

 criteria, 
proposed MSLP criteria and original MSLP criteria from Simpson (1974). 
Also provided in parentheses are the percentage of Atlantic storms from 
1979 to 2018 whose lifetime maximum intensity exceeded the weakest 
intensity criteria for each category threshold.

Category Vmax (kt) Revised MSLP (hPa) Original MSLP (hPa)

1 64–82 (52%) 976–990 (55%) >980 (n/a)

2 83–95 (31%) 961–975 (32%) 965–979 (38%)

3 96–112 (21%) 946–960 (20%) 945–964 (24%)

4 113–136 (13%) 926–945 (12%) 920–944 (12%)

5 ≥137 (4%) ≤925 (4%) ≤919 (3%) 
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occurred given today’s population and exposure growth, the cost would likely be ~$13.6 

billion (Weinkle et al. 2018).

The median damage of all CONUS major hurricane landfalls since 1900 is $10.8 billion using 

the canonical Vmax definition, while the median damage of CONUS major hurricane landfalls 

only decreases slightly ($10.4 billion) if the MSLP-based major hurricane threshold is used 

instead. In the normalized hurricane damage dataset, 6 out of 67 (9%) major hurricanes using 

the Vmax definition have made landfall north of Florida along the US East Coast from 1900–2018 

(e.g., Georgia to Maine). If the MSLP-based definition were used, the percentage of all CONUS 

landfalling major hurricanes from Georgia to Maine would increase to 20% (16 out of 80).

If we focus on the past twenty years (1999-2018), there have been 11 major hurricane land-

falls using the Vmax definition, with none making landfall from Georgia to Maine (Fig. 3). If 

the MSLP definition were used, 19 major hurricane landfalls would have occurred, with five 

making landfall from Georgia to Maine. All five of the major hurricanes using the MSLP defini-

tion making landfall from Georgia to Maine caused at least $5 billion in normalized damage, 

with four of the five causing at least $10 billion in normalized damage.

If the 960 hPa threshold were used to classify hurricanes as major, we also would not 

have had the frequently-discussed CONUS major hurricane landfall drought that existed 

from 2006–2016 (Hall and Hereid 2015). Hart et al. (2016) also noted the absence of a major 

hurricane landfall drought when using a 960 hPa threshold. Figure 4a displays the trend in 

CONUS major hurricane landfalls (Vmax >= 96 kt) since 1900 using the Klotzbach et al. (2018) 

dataset updated with 2018’s CONUS hurricane landfalls, while Fig. 4b displays a similar trend 

in CONUS hurricane landfalls using the 960 hPa threshold. Neither of these trends are statis-

tically significant, as was previously noted for the Vmax threshold in Klotzbach et al. (2018).

An additional way that the Vmax vs. MSLP threshold can be examined is by evaluating 

how often hurricanes with normalized damage exceeding specific thresholds are classified 

as major hurricanes. Figure 5 displays the results for three different thresholds: $5 billion, 

$10 billion and $20 billion. Of the 61 hurricanes making landfall that caused >= $5 bil-

lion in damage, 69% of all hurricanes are classified as major hurricanes using Vmax, while 

84% are classified as major hurricanes using MSLP. MSLP also correctly identified more 

hurricanes causing $10 billion and $20 billion in damage. All 25 hurricanes generating >= 

$20 billion in damage had MSLP <=960 hPa, while 3 hurricanes generating >= $20 billion 

had Vmax <96 kt (Ike in 2008, Sandy in 2012 and Florence in 2018). While more hurricanes 

Fig. 3. Landfall location of CONUS major hurricane landfalls from 1999 to 2018 using the (a) Vmax definition (≥96 kt) and 
the (b) MSLP definition (≤960 hPa). Larger hurricane symbols represent more normalized hurricane damage.
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are classified as major using our MSLP threshold than using the Vmax threshold, we argue 

that these additional storms have caused similar levels of damage to the median major 

hurricane using the Vmax threshold and warrant being classified as major hurricanes given 

their overall intensity (as measured by MSLP). In addition, 48% (80 out of 165) of CONUS 

landfalling hurricanes would be classified as major hurricanes using the MSLP threshold, 

and consequently, we argue that this new classification technique would not simply involve 

Saffir–Simpson Scale inflation.

CONUS landfalling hurricane fatality relationship with Vmax and MSLP. While there are many 

different causes for fatalities from hurricanes (Rappaport 2014), ~50% of all fatalities during 

the period from 1963-2012 were caused by storm surge, while ~25% were caused by freshwater 

floods and mudslides. This again reinforces the importance of highlighting waterborne physi-

cal damage and humanitarian impact risks from TCs. Here we examine direct fatalities from 

CONUS landfalling hurricanes from 1988-2018, using the fatality numbers that are provided 

in the National Hurricane Center Tropical Cyclone Reports available online at (http://www 

.nhc.noaa.gov/data/tcr/) from 1995–2018 

and via the storm wallet archive from 

1988–1994 (https://www.nhc.noaa.gov 

/archive/storm_wallets/atlantic/) and cor-

relate them with both Vmax and MSLP. 

We only examine direct fatalities during 

the recent period, where both hurricane 

forecast track skill and intensity skill 

has significantly improved relative to 

earlier in the 20th century (Rappaport 

et al. 2009). As has been done through 

the remainder of this analysis, we 

use rank correlations to eliminate 

the impacts of large outliers, such as 

Hurricane Katrina which was respon-

sible for ~75% of all of the direct fatali-

ties from CONUS hurricanes during the 

31-year period examined. The correla-

tion between Vmax and direct fatalities is 

relatively weak (r
rank

 = 0.33, significant 

Fig. 5. Percentage of landfalling hurricanes where the major hur-

ricane threshold was met using the Vmax and MSLP definitions 

when normalized damage exceeded $5 billion, $10 billion, and 

$20 billion, respectively.

Fig. 4. CONUS major hurricane landfalls by year since 1900 using the (a) Vmax definition (≥96 kt) 
and the (b) MSLP definition (≤960 hPa).
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at the 5% level), while the correlation between MSLP and direct fatalities is much stronger 

(r
rank

 = 0.61, significant at the 1% level) (Fig. 6). The difference between the two correlations 

is significant at the 1% level. Given the improved relationship between MSLP and storm size 

(as measured by 50-kt wind radii) relative to Vmax, the improved relationship between MSLP 

and direct fatalities makes physical sense.

 We next examine three groups of fatality rankings during the 31-year period from 1988–

2018 and compare it with Saffir–Simpson Scale rankings using Vmax and our newly-proposed 

MSLP scale (Table 1). These three groups of fatalities are as follows: 0–5 fatalities (19 hurri-

cane landfalls), 6–14 fatalities (15 hurricane landfalls) and 15 or more fatalities (15 hurricane 

landfalls). These equate to approximately tercile distributions given that several hurricanes 

had the same number of fatalities. During the period from 1988-2018, two landfalling TCs 

classified as hurricanes using Vmax would not have been classified as hurricanes using MSLP 

(e.g., MSLP > 990 hPa): Charley’s landfall in South Carolina in 2004 and Cindy’s landfall in 

Louisiana in 2005 (plotted as Category 0 in Fig. S2). While the lower tercile (0-5 fatalities) and 

middle tercile (6–14 fatalities) have similar storm categorizations whether using Vmax or MSLP 

(Fig. S2), the upper tercile (>= 15 fatalities) has many more hurricanes classified as major hur-

ricanes using MSLP than using Vmax (Fig. 7). For example, 8 out of the 15 hurricanes causing 

>=15 fatalities were classi-

fied as Category 1–2 hur-

ricanes using Vmax, while 

only two were classified 

as Category 1–2 hurricanes 

using MSLP.

We also note that using 

our MSLP-based classifi-

cation, Hurricane Katrina 

was a Category 5 at landfall, 

joining Michael (2018) 

and Andrew (1992) as Cat-

egory 5 hurricanes that 

have made CONUS landfall 

since 1988. Michael and 

Andrew were Category 5 

hurricanes using either 

the Vmax- or MSLP-based 

classifications, although 

Fig. 7. Histogram displaying the number of hurricanes receiving each Saffir–

Simpson scale classification using Vmax and MSLP definitions for the upper tercile 

of fatalities (≥15) from 1988 to 2018.

Fig. 6. As in Fig. 2, but for CONUS hurricane-caused direct fatalities from 1988 to 2018.
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both Andrew (Landsea et al. 

2004) and Michael (Beven 

et al. 2019) were not upgrad-

ed operationally to Category 

5 based on the Vmax crite-

ria. In the case of Andrew, 

the upgrade to Category 5 

for MSLP (from 932 hPa to 

922 hPa) did not take place 

until after the season was 

over in the post-storm analy-

sis (Rappaport 1993), while 

the upgrade to Category 5 for 

Vmax did not occur until ten 

years later when a reanalysis 

was conducted (Landsea 

et al. 2004). In the next sub-

section, we explore the rela-

tive uncertainty that exists in 

assigning hurricane intensity 

categories by Vmax and MSLP, 

using Hurricane Michael’s 

upgrade as an example.

Hurricane Michael’s upgrade 

to Category 5—a case study 

in V
max

 and MSLP uncertainty. 

Figs. 8a and 8b display the 

probability density function 

(PDF) for Vmax for both the 

lifetime maximum intensity 

of Hurricane Michael (2018) 

at its operational analysis 

of 135 kt and the reanalyzed 

Vmax of 140 kt (the uncertain-

ty of the latter distribution 

matches that from Landsea 

and Franklin (2013) assuming 

their uncertainties are 95% 

confidence intervals). The initial operational analysis implied that there remained a 39% chance 

that Hurricane Michael was a Category 5. Even after the official upgrade to 140 kt, the confidence 

that Hurricane Michael was a Category 5 given the uncertainty is only 72%. Conversely, the PDF 

for the landfall pressure of 919 hPa is given in Fig. 8c. The Vmax uncertainty is slightly less for an 

MSLP of 919 hPa than for the 935 hPa Category 4 hurricane example given in the introduction 

based on the Knaff and Zehr (2007) equations (3.7 kt instead of 4 kt). The supplemental informa-

tion provides additional details on how the calculation of 3.7 kt of Vmax uncertainty is obtained 

for a 919 hPa Category 5 hurricane. The probability that Hurricane Michael is a Category 5 using 

the revised MSLP-based scale is >99.9%. Consequently, Michael would have been classified as 

a Category 5 hurricane both operationally and in the best track with high confidence using our 

proposed MSLP-based Saffir–Simpson Scale definition.

Fig. 8. Probability density functions (PDF) for (a) an operational intensity of 

135 kt, (b) a reanalyzed intensity of 140 kt, and (c) an MSLP of 919 hPa. For 

(c), MSLP values were converted to winds using the Knaff and Zehr (2007) 

wind–pressure relationship. PDF widths are from the Landsea and Franklin 

(2013) NHC forecaster survey, assuming their uncertainty estimates cor-

respond to 95% confidence intervals. The black vertical lines represent the 

category 5 threshold using Vmax in (a) and (b) and the category 5 threshold 

using MSLP in (c). The pressure-derived winds using the Knaff and Zehr 

(2007) equation are labeled below (c).
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We note that 919 hPa is barely a Category 5 category using the original MSLP (<=920 hPa) 

on the Saffir–Simpson Scale (Simpson 1974) but is well within the Category 5 using our re-

vised MSLP scale (<=925 hPa). There would obviously be more uncertainty in category if the 

MSLP were closer to a threshold value. However, given the Vmax and MSLP uncertainty noted 

in Landsea and Franklin (2013), and the associated conversion of MSLP uncertainty to Vmax 

uncertainty discussed in the introduction using equations from Knaff and Zehr (2007), MSLP 

should lead to a more confident Saffir–Simpson Scale categorization of real-time CONUS hur-

ricane landfall intensity than using Vmax.

Summary and Implications

Here we have shown that when examining CONUS landfalling hurricanes since 1900, MSLP 

explains ~60% of the variance in normalized damage, even without accounting for exposure 

differences (Chavas et al. 2012, Weinkle et al. 2018). This difference in skill has become more 

notable in recent years, likely due to larger-sized hurricanes such as Ike (2008) and Sandy 

(2012) which did much more damage than would be typically associated with hurricanes 

making landfall at Category 2 and Category 1 intensity, respectively. This improvement in 

skill may also be somewhat due to better independent estimates of Vmax and MSLP in recent 

years. We also have shown that Vmax and MSLP have similar correlations with normalized 

damage for Texas to Florida hurricanes, while MSLP is a much better predictor of normal-

ized damage than is Vmax for hurricanes making landfall from Georgia to Maine. MSLP is 

also considerably easier to measure with aircraft reconnaissance and has less uncertainty 

with it than does Vmax.

We argue that while Vmax partially describes the overall wind threat, it provides less in-

formation on the overall storm risk to life and property than does MSLP. MSLP, on the other 

hand, is a useful metric in that it is strongly correlated with both Vmax and storm size, which 

is directly related to storm surge (Irish et al. 2008) as well as a larger wind and rain footprint 

(Lonfat et al. 2007). The risk to human life is also more directly correlated to MSLP than to 

Vmax, given the better relationship of MSLP with storm size. MSLP was a more skillful predictor 

of fatalities caused by CONUS landfalling hurricanes from 1988-2018 than was Vmax.

Consequently, we recommend that more emphasis be placed on MSLP when assessing the 

potential risks from future landfalling hurricanes. Given that the Saffir–Simpson scale was 

developed to characterize the risk of hurricanes to the public, we propose classifying hurri-

canes in the future using MSLP as opposed to Vmax. While no scale will ever perfectly account 

for the totality of storm risk to life and property (e.g., inland flooding), any improvements to 

better explain and warn the potential hurricane impacts to an increasingly vulnerable coastal 

and inland population is, in our view, a worthwhile endeavor.
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