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Surface pressure-sensors have been used to measure the second-mode boundary layer

instability on a 7
◦ half-angle sharp cone at zero angle of attack in the quiet Mach-6 wind

tunnel at Purdue and in the conventional Mach-6 wind tunnel in Braunschweig. The

measurements were made using a stream-wise array of high-frequency sensors. They show

the second-mode waves in quiet and noisy flow at different unit Reynolds numbers. The

quiet flow data is compared to results in noisy flow. The signal quality allows for the

calculation of amplification rates, which are compared to the results of linear stability

computations.

Nomenclature

Latin symbols

a sonic speed
A flow area
f frequency
l tube length
M Mach number
P tube pressure
p̂(f) pressure fluctuation amplitude
R mass specific gas constant
Re Reynolds number
s arc length along surface
t time
T temperature
u flow velocity in tube

U flow velocity in test section
x axial position

Greek symbols

−αi log. growth rate per arc length
γ ratio of specific heats
ρ fluid density

Indices

0 initial quantity
∞ free-stream quantity
e edge quantity
t tube, stagnation quantity
∗ sonic condition
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I. Introduction

Much of the uncertainty in the aerothermodynamic design of hypersonic flight vehicles is due to the poor
understanding and uncertain prediction of laminar to turbulent boundary layer transition. The transition
process is associated with the growth and final breakdown of disturbances in the boundary layer flow. Sev-
eral instability modes are known. The disturbances they generate have been detected by a multitude of
experimental techniques and predicted in numerical investigations. Schlichting and Gersten1 and Schnei-
der2 provide comprehensive lists of literature on the subject. However, the mechanism-based prediction of
transition in hypersonic flow is an outstanding and demanding task.2 In particular, it is difficult to obtain
experimental data at well-controlled conditions. Among the multitude of unspecified influences on hyper-
sonic transition, the most well known is the acoustic noise that is radiated from the turbulent boundary
layer on the nozzle wall in conventional hypersonic wind tunnels.3,4 Therefore the comparison of instability
measurements in noisy and quiet hypersonic flow is of particular interest. In symmetric flow at hypersonic
speeds the dominant instability is the second mode.5 Some measurements of second mode waves have been
carried out in the past with hot wires in both noisy and quiet flow.2 However, these measurements are
very difficult due to the limited mechanical strength of small hot wires with sufficiently high frequency re-
sponse. Moreover, the downstream influence of the hot wire’s support precludes simultaneous amplitude
measurements at several stream-wise positions. Hence, an appropriate non-intrusive measurement technique
is desirable. Recently Fujii6 has shown that fast surface pressure sensors can measure the second mode on a
cone in noisy hypersonic flow. In the present work this technique is used to measure the second mode under
quiet flow conditions in the Boeing/AFOSR Mach-6 quiet tunnel of Purdue University. Those measurements
are compared to measurements under noisy conditions in the Purdue tunnel and in the Mach-6 hypersonic
facility at Technical University Braunschweig.

II. Experimental Setup

II.A. The Boeing/AFOSR Mach-6 Quiet Tunnel

Figure 1. Schematic of the Boeing/AFOSR Mach-6 Quiet Tunnel

The Boeing/AFOSR Mach-6 quiet tunnel at Purdue University is a blowdown facility designed as a
Ludwieg tube as sketched in Fig. 1. The 37.4 m long heated driver tube on the left serves as a pressurized
air reservoir which discharges through the converging-diverging nozzle into the vacuum tank. Before each
run the pressurized assembly is separated from the vacuum tank by a pair of diaphragms placed downstream
of the test section. When the diaphragms burst, an expansion wave travels upstream through the test section
into the driver tube. There it reflects forth and back and changes the state of the air each time it passes. This
causes the flow condition in the test section to change approximately every 200ms when the wave reaches
the nozzle. Fig. 2 shows the stepwise change of pressure as measured at the contraction wall7 . Fig. 2 also
shows measurements from a Pitot probe in the test section. The Pitot pressure shows the sudden change
from noisy to quiet flow condition when the contraction pressure falls below a certain pressure limit (here
≈145 psia). The quiet flow is achieved only by extensive care in design and construction including a large
driver tube and a highly polished nozzle with bleed slots for the contraction wall boundary layer.8 Although
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Figure 2. Sample of contraction pressure and Pitot pressure in Boeing/AFOSR Mach-6 Quiet Tunnel

the quiet performance degraded in late spring 2007,9 it was restored in the late summer by repolishing the
throat.10 When the measurements presented in this paper were made, the tunnel was running quiet up
to stagnation pressures of 145 psia. By closing the bleeds for boundary layer suction at the nozzle throat
the tunnel can be operated in noisy mode with turbulent nozzle-wall boundary layers. The tunnel can be
operated at any pressure up to 270 psia.

II.B. The Hypersonic Ludwieg Tube Braunschweig

A schematic of the hypersonic Ludwieg tube Braunschweig (HLB) is given in Fig. 3. In this facility the
driver tube is separated from the low pressure section by a fast-acting valve. Only the first 3m long section
of the driver tube is heated which suits the amount of gas that escapes during one run. The valve consists
of a streamlined body on the tube axis with a pneumatically driven piston that plugs into the nozzle throat.
The valve opens within 20ms and closes after the expansion wave has passed back and forth within the
tube; that is, about 80ms after full opening. A detailed numerical analysis has been made for the onset of
flow and the establishment of steady flow conditions in the test section.11 The nozzle maintains an opening
half angle of 3◦ which results in slightly expanding flow in the test section with Mach numbers between 5.8
and 5.95 depending on the axial position and on the unit Reynolds number. The latter can be chosen by
the initial driver tube pressure between 3 × 106

/m and 20 × 106
/m. More details on the HLB were reported

earlier.12,13

Figure 3. Schematic of the hypersonic Ludwieg tube Braunschweig

II.C. Model and Instrumentation

Measurements in both facilities were made on the same 7◦ sharp cone of 495mm length. The model was made
from Plexiglas to allow future infrared heat transfer measurements on the same cone. The apex was made
from steel in order to provide better mechanical strength. The accuracy of the tip was visually checked under
a microscope. The nose radius was measured with a stage micrometer as about 0.01± 0.003mm. The model
was instrumented with a stream-wise array of high-frequency pressure sensors of type PCB M131A32. The
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sensors were flush mounted in the model surface at three axial positions (x = 340mm, 365mm, 0.390mm) for
the experiments in Purdue and at four positions (x = 315mm, 340mm, 365mm, 390mm) for the experiments
in Braunschweig. The diameter of the sensing area of those sensors is 3.18 mm. Power was supplied to the
pressure sensors using an instrument supplied by the manufacturer (PCB 482A22), which at the same time
also performed signal conditioning. According to the manufacturer’s specification the resonance frequency of
the pressure sensors is larger than 1MHz and the output signal is high-pass filtered at 10 kHz. The sensors
are calibrated in a shock tube by the manufacturer and have sensitivities between 150 and 167 mV/psi. For
details on the the measurement technology the reader is referred to the manufacturer’s website.14

II.D. Data Acquisition

The data acquisition in Purdue was performed with an oscilloscope (Tektronix DPO 7054) at a sampling rate
of 4 MS/s. The voltage range was chosen as ±5mV for runs with quiet conditions and ±25mV for noisy runs.
The oscilloscope was operated in a ”High-Res” mode where it samples the data internally at the maximum
sampling rate and averages the data on the fly into memory. According to the manufacturer this mode gives
an effective resolution of 11 bits at 4 MS/s (compared to 8 bits without averaging) and at the same time filters
high frequency noise. In this mode the oscilloscope writes the data in a 16-bit format (2 bytes). According
to the sensor calibration this gives an output resolution of 10−6 psi using the quiet mode settings. The scope
has 50 megabytes per channel of memory.

In Braunschweig a 16 bit transient recorder PCI-express card (Spectrum M2i.4652) was used for data
acquisition with a PC. The card allowed a maximum sampling rate of 3 MS/s. The amplification of the card
was set to measure a voltage range of ±50mV.

II.E. Model Installation

In the Purdue quiet tunnel the base of the cone was installed 71mm upstream from the end of the nozzle
on the axis of the tunnel. Due to the tight fabrication tolerances of the sting support section and the snug
sliding fit of the sting itself, the cone was assumed to be well aligned with the nozzle axis. Hence, the angle
of attack was not checked before the experiments. After the test series a single measurement was taken with
the cone model turned by 180◦ around its base support plate. The flow condition in that run was noisy
and evaluation showed later that the boundary layer was already transitional at the sensors. However, the
maximum 2nd mode frequency in that run was about 10 kHz smaller than in a run at identical conditions
with the model turned by 180◦ (not shown in this paper). This is likely due to a small angle of attack with
the sensor array being slightly windward in all measurements presented in this paper at quiet conditions.

For the Braunschweig measurements the cone was installed with its apex 50mm upstream from the
beginning of the test section. The cone axis was positioned 50mm above the axis of the tunnel in order to
avoid a conical compression wave that is known to focus on the axis within the test section.15 The cone was
aligned to the flow by measuring the line of transition with an infrared camera. The alignment was improved
in subsequent tunnel runs until the transition line was found to be straight on the cone to within ±10mm
from two perpendicular view angles.

III. Determination of flow conditions

III.A. Purdue experiments

The driver-tube pressure was measured at the entrance of the contraction during all tunnel runs. A temper-
ature measurement was taken with a thermocouple at the end of the driver tube before every run. However,
the temperature within the tube is stratified and there are also local differences in the tube temperature due
to nonuniform heating and insulation.16 To improve the estimate of the mean temperature in the tube the
trace of the pressure was used to find the temperature-dependent velocity of sound that corresponds to the
frequency of the expansion-wave reflections within the tube. For this the flow of the air out of the tube was
modeled by two characteristic lines corresponding to the head and the tail of the expansion wave as shown
in Fig. 4. The details of the calculation are given in the appendix. A formula for the temperature at X = 0
after n reflections of the wave is given there as Eq. (7). The traveling times of the head and tail of the wave
are given in Eqs. (10) and (11), respectively, as functions of the tube Mach number Mt.

Applying the isentropic relation P/P0 = (T/T0)
γ/γ−1

to Eq. (7) shows that the pressure ratio between
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Figure 4. Illustration of driver tube gas condition modeling for Purdue quiet tunnel

subsequent wave reflections is only a function of the tube Mach number. Hence, with the measured pressure
trace the tube Mach number can be estimated to fit the height of the pressure steps. Finally, the length of
the steps can be fitted to the measured trace by adjusting the estimate of the initial mean temperature in
the tube. These two estimates have been performed for all tunnel runs.

Figure 4b shows a pressure trace recorded during a quiet run with initial pressure of 149.8 psia and the
corresponding calculations for the pressure and the temperature. The tube Mach number was Mt = 0.0046
during the first 2.7 s and changed to Mt = 0.0044 after that period. The initial temperature of the gas
assumed for the calculations was T0 = 434K which agrees with the temperature measured before the run.
However, if the temperature for the calculation is changed by 1K there is already an offset of about 0.007 s
between the calculated and the measured trace after 6 seconds of the tunnel run, which is about twice the
accuracy of the fit. This indicates that the procedure described above is a reasonable check for the measured
temperature. In fact the temperatures found by this procedure varied between T0 = 434K and T0 = 440K
while the thermocouple did not show this variation.

The calculation of pressure and temperature allows for an accurate Reynolds number determination
throughout the whole run. A linear viscosity law was assumed17 with the viscosity taken as µ = 7.66±0.005×
10−6 Ns

m2 at 110.4K. The uncertainty of the air temperature is estimated to ±0.8% and the uncertainty of
the determined pressure is about ±0.2%. The Mach number in the test section is known from previous Pitot
measurements to be M = 5.8 in noisy operation and M = 6.0 in quiet flow with an estimated uncertainty of
±2%. This enables calculating the Reynolds number in the test section with an uncertainty of about ±4%.

When operated quietly, the nozzle-wall boundary layer remains laminar producing free-stream noise
levelsa on the order of 0.05%. When operated conventionally, the nozzle-wall boundary layer is turbulent
and the noise level increases to about 3%.

III.B. Braunschweig experiments

In Braunschweig the driver tube pressure is measured before each run with an accuracy of ±1%. The ratio
of initial pressure, P0, to the total pressure after the expansion, P1t, is well known from a large number of
previous measurements (P0/P1t = 0.9327±0.0007). The driver-tube temperature is measured during each run
by two fast thermocouples. These penetrate into the flow on the upper and lower side of the valve section
and enable calculating the mean temperature of the gas during a run. However, the temperature difference
between the upper and lower measurement position is as high as 30K and the mean of those temperatures
is not proven to be the total temperature at the height of the model in the test section. This results in
an estimated uncertainty of ±1% in the total temperature. The Mach number in the test section has been

aNoise levels are defined here as normalized rms of Pitot pressures:

q

(ppit−ppit)
2

ppit
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determined by extensive Pitot measurements and by RANS calculations of the nozzle flow.12 In the range
of unit Reynolds numbers between 4–8 × 106 it is M = 5.85 ± 0.03 at the position of the pressure sensors.
This enables calculation of the Reynolds number in the test section with an uncertainty of about ±2%.

The nozzle-wall boundary layer in the tunnel is always turbulent. The noise level is between 1% and
1.5% depending on the unit Reynolds number, based on preliminary measurements.

IV. Data processing

For each tunnel run in Purdue, the oscilloscope recorded 4.5 seconds of pressure signal during the run and
0.5 seconds of reference data before the start of the tunnel. From the calculated pressure and temperature
the corresponding trace of the Reynolds number was calculated throughout the run. For certain Reynolds
numbers at different times during each run a period of 0.4 s (1600000 samples) was extracted. This period
was divided into overlapping windows with 2000 samples each. The offset between the windows was 200
samples giving about 8000 windows. These were multiplied with a normalized Blackman window and Fourier
transformed. The absolute values of the complex-conjugate amplitudes were added and averaged over all
8000 windows. In the same way an 0.35-s period of the data measured directly before the start of the
tunnel was processed, giving only 7000 windows. The power spectra of both transforms were subtracted.
Thereby the uncorrelated electronic background noise and the permanent spectrum of disturbances from
the ambient electromagnetic environment was subtracted from the measured signals. For some low-noise
experimental data the power spectral subtraction of background noise yielded negative amplitude values at
some frequencies. These values were set to zero. It is not clear whether this preliminary method of correcting
the noise is the best or most appropriate one.

The data processing for the experiments in Braunschweig was essentially the same but due to the short
run time of the tunnel only a period of 60ms (180000 samples) was evaluated from each run. The window
size for the FFTs was chosen as 1500 samples each.

The second-mode amplification rates −αi were calculated from

− αi =
ln
(

p̂2

p̂1

)

s2 − s1

if p̂1 > 0 and p̂2 > 0

−αi = 0 else

with p̂1 and p̂2 being the pressure amplitudes after noise subtraction at two consecutive sensors and s2 − s1

being the surface distance between those sensors (25.2 mm).

V. Stability Computations

Stability computations using linear stability theory (LST) were made in order to compare the resulting
local amplification rates to the measured results. The computations were based on both full Navier-Stokes
solutions of the boundary layer flow and on similarity solutions for the compressible boundary layer. The
computation methods are described here briefly.

V.A. Computations based on Navier-Stokes solutions

Laminar mean flows for the test cases were generated using an optimized 2D/axisymmetric mean flow solver
based on the implicit Data-Parallel Line Relaxation (DPLR) method18 which is provided with the stability
code STABL.19 The solver produces second-order accurate laminar flow solutions with low dissipation and
shock capturing. For each of the simulations, 360×360 point structured grids were generated with clustering
both at the body surface and at the nose.

The flow for these cases was considered to be a non-reacting mixture of 76.7% N2 and 23.3% O2 by
mass. Free-stream conditions were obtained by applying the isentropic flow relations from the stagnation
conditions to the specified free-stream Mach numbers. Mack’s viscosity model was used for the gas mixture.5

The LST analysis of the cases was performed using the PSE-Chem code which is distributed as a part of
the STABL suite.19 For the LST analysis, a parallel flow assumption was made by neglecting derivatives of
mean flow quantities in the direction of the computational coordinate along the body. Spatial amplification
rates of disturbances were found for given disturbance frequencies and surface locations.
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V.B. Computations based on similarity solutions

Alternatively, a simplified approach has been used to compute the basic flow; this neglects the transverse
curvature of the cone and the interaction of the boundary layer with the shock wave.20 Based on these
assumptions the boundary layer on a sharp cone at zero angle of attack in supersonic flow can be obtained
from a flat–plate boundary layer at the same edge Mach number and temperature using the transformation
of Mangler and Stepanov.21 The flat–plate boundary layer was calculated from self–similar zero pressure–
gradient planar compressible boundary–layer equations for a calorically perfect gas. For the temperature
dependence of the dynamic viscosity a modified version of the Sutherland law according to Mack5 was used.
The Prandtl number was assumed to be constant and set to Pr = 0.72. An isothermal wall temperature of
315 K was chosen. The boundary–layer edge conditions were derived from the free-stream conditions of the
experiment using the shock relations and the inviscid solution for axisymmetric supersonic conical flow.22

For the instability analysis of this self–similar boundary–layer flow the linear version of the NOLOT/PSE
code23 was used. The NOLOT/PSE code was developed in cooperation between DLR and FOI and solves
compressible parabolized stability equations (PSE) formulated in curvilinear orthogonal coordinates for a
thermally ideal gas. Alternatively, the code can also be used as a classical local stability analysis tool. In
the latter case an eighth–order system of ordinary differential equations is solved assuming a locally parallel
flow. A more detailed description of the NOLOT/PSE code was reported in [24].

V.C. Computations

Two reference cases were defined for the computations as listed in Table 1. The table also gives edge
quantities that have been used to plot normalized results. For the calculations, the wall temperature was

Table 1. Conditions chosen for stability analysis of 7◦ cone boundary layer and values for normalization

M Pt[psia] Tt[K] Twall[K] Ree/s[1/m] Ue[m/s]

case1 6.0 110.6 418 315 10.45 × 106 846

case2 5.8 89.3 415 315 9.17 × 106 839

chosen to be slightly more than ambient temperature. Successive tunnel runs over the course of a day may
have heated the model more, but temperature measurements have not been taken. A comparative stability
calculation of case1 but with 325K model temperature resulted in only small deviations from the results
shown here. Only 2D waves have been considered for the stability calculations. As a representative result
Fig. 5 shows the amplification rates calculated from the similarity solutions of case1. The normalized plot
in Fig. 5b shows that the frequency of the second mode scales well with Ue

√
Ree/s. This will be used for

comparison of the experimental results at different unit Reynolds numbers in the following section.

(a) Stability diagram (b) Stability diagram non-dimensional

Figure 5. LST results based on similarity solution with appropriate non-dimensionalization (case1)
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VI. Results

VI.A. Pressure-Fluctuation Spectra

Figure 6 shows samples of pressure-fluctuation spectra at three consecutive sensors. The data in Figure 6a
was collected at Purdue under quiet flow at a 89.3 psia driver-tube pressure. This was the lower limit of the
pressure range where the second mode could be detected under quiet flow. Note that the amplitude of the
fluctuations at that pressure is close to the limit of the available resolution (10−6 psi at 16 bit). Therefore
the signal-to-noise ratio is very small and only the large number of averaged FFTs (8000 windows) brings
out the 2nd mode peaks. Also note that the resolution of the pressure sensors is specified as 10−3 psi in
the manufacturer’s datasheet. Moreover the diameter of the sensing surface (3.18 mm) is larger than half
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Figure 6. Spectra of pressure fluctuations measured in quiet Mach-6 flow
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Figure 7. Spectra of pressure fluctuations measured in noisy Mach-5.8 flow

the wavelength of the second-mode waves, where half the wavelength can be approximated by the boundary
layer thickness of ≃ 2mm. For these reasons, the absolute amplitudes given in the figure are questionable
and have to be understood as some uncertain nonlinear function of the actual fluctuation amplitude at a
certain frequency. However, the measured amplitude is assumed to be linearly proportional to the mean
amplitude of the fluctuations when amplification rates are calculated in this paper. The spectrum shown
in Fig. 6b was measured at 110.6 psia driver-tube pressure and shows a second-mode amplitude that is an
order of magnitude higher. The figure also shows integrated amplification rates from the linear stability
calculation of case1 based on the similarity solution. The calculated amplitudes are scaled to match the
amplitude at the second sensor position. The measured amplification seems to be somewhat higher than the
calculation. The calculated frequencies are lower than those measured, by about 8 kHz. This frequency shift
may be due to the suspected angle of attack discussed in section II.E. However, the bandwidth of amplified
frequencies is almost the same in the measurement and the calculation.
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Figure 7 shows spectra in noisy flow measured at the same Reynolds number as in Fig. 6a, at similar
stagnation conditions. In noisy flow the measured pressure amplitudes are about 450 times higher. The
second-mode peaks in noisy flow are much broader and first harmonics can be detected. The small peak at
about 310 kHz is thought to be an effect of the sensors although this is far below the resonant frequency
claimed by the manufacturer. At this Reynolds number in noisy flow the boundary layer appears to be
transitional, since the second mode amplitude growth stagnates and reverses between the second and third
stream-wise sensor. Note that the results in the Braunschweig tunnel show the same behavior at nearly the
same Reynolds number and wave amplitude (Fig. 7b). Since no data was collected at Purdue at lower unit
Reynolds numbers than shown in Fig. 7, we can compare data at the noisy condition only, as described with
the Braunschweig experiments in the following section.
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Figure 8. Spectra of pressure fluctuations measured in noisy and quiet flow at same Reynolds numbers

Figure 8 plots the data of Figs. 6a and 7a together using a logarithmic scale. The logarithmic plot shows
that in the transitional boundary layer both the lower and higher frequency portions of the spectrum are
starting to fill in. However, it is not yet possible to determine how much of the difference in spectra is due to
nonlinear amplification and breakdown of the waves, and how much is due to the difference in the spectrum
of the free-stream noise.

Since under quiet flow at this pressure the second mode is just becoming detectable, the measurement
technique does not permit comparing linear amplification rates at the same Reynolds number in quiet and
noisy hypersonic flow. It will be necessary to use controlled perturbations in the quiet-flow boundary layer
to make such a comparison.
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Figure 9 shows normalized pressure spectra measured at the cone surface at two different Reynolds
numbers compared to a measured Pitot pressure spectrum. The surface pressure spectrum at the higher
Reynolds number is the one from Figure 7b at x = 340mm which is just before stagnation of the second-
mode growth. Note, that the Pitot spectrum was measured with an absolute pressure sensor providing the
actual mean pressure for normalization. Whereas the surface pressure spectra were normalized with the
edge pressure calculated from inviscid conical flow solution at M = 5.8 for the measured stagnation pressure.
Therefore the normalization of the surface pressure spectra is somewhat uncertain. However, the normalized
surface pressure fluctuations are by almost a factor 2 higher than the Pitot fluctuations already at low
frequencies. The reason for that difference is not clear. An effect of receptivity or an early amplification of
disturbances within the cone boundary-layer can be suspected.

Often rms values of pressure measurements are used to compare noise levels, although this quantity does
not give any information on the spectral distribution of the fluctuations. However, in order to give some
idea of how much the rms of the fluctuations rises before transition occurs it may be of interest to provide
the rms values for the three measurements shown in Figure 9: rms(△) = 1.4%; rms(©) = 6.7%; rms(3) =
13%.

VI.B. Amplification rates
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(b) noisy condition Braunschweig

Figure 10. Amplification rates as calculated from measured pressure amplitudes compared to LST values
based on Navier-Stokes solution and on similarity solution

Fig. 10 shows the logarithmic ratio of the amplitudes normalized by the unit edge Reynolds number vs.
the reduced frequency, in both quiet flow (a) and noisy flow (b). The results shown for the quiet cases are
averages over two to four datasets from different runs at the same Reynolds number, whereas the results
shown for noisy data are from single tunnel runs. The scattering of the data in quiet flow at the low frequency
edge of the amplified spectrum is caused by taking a ratio of weak signals with very low signal-to-noise ratio.
Nevertheless, the trend of that data shows that the measured quiet-flow bandwidth for the amplified waves is
narrower than predicted by the calculations. Moreover, the amplification rates of the quiet cases are smaller
than predicted by linear stability theory. However, both shortcomings may be due to the suspected angle of
attack (see section II.E), or possibly to the relatively large sensor size.

The measured maximum amplification rates in noisy flow agree well with calculations at the lower
Reynolds numbers. However, even at the smallest Reynolds numbers measured, the measurements show
amplification at lower frequencies than the computations. For edge Reynolds numbers higher than 2.2× 106

the maximum amplification rates rapidly decrease. This is in accordance with Stetson’s observations25 who
reported this behaviour at Mach 8 for

√
Ree > 1400. Stetson also reported a growth of harmonics of the

second mode at higher Reynolds numbers which he suspected was due to nonlinear effects. But, looking at
the amplification rates of higher frequencies in Fig. 11 shows that for all Reynolds numbers measured in noisy
flow the amplification rate of the harmonics is the same as the fundamental amplification. Hence, it seems
that this is not necessarily an indicator for nonlinear growth, but just a result of the pressure signature on a
sensor’s surface being more complex than a pure sine wave. Nevertheless, comparing the amplification rates
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Figure 11. Amplification rates as calculated from measured pressure amplitudes, extended spectrum from Fig. 10b

measured in noisy flow to those measured in quiet flow there is a significant difference in the bandwidth of
amplified frequencies which may be due to nonlinear effects even at the lowest measured Reynolds numbers.
For the given cone, the lowest feasible Reynolds number was limited by the operational range of the facility
in Braunschweig. At those conditions in noisy flow the second mode signal was still 50 times larger than the
weakest second-mode wave that was detectable under quiet flow. In Stetson’s26 experiments with hot wires
at Mach 8, the second-mode was first detectable at Ree ≈ 1.2× 106, which is close to the smallest Reynolds
number analyzed here in noisy flow.

VII. Conclusion

The use of high frequency surface-pressure sensors for measuring pressure fluctuations caused by second-
mode boundary layer instabilities has been proven to be very effective even in quiet hypersonic flow. The
advantages of this technique over hot-wire measurements for determining stream-wise amplification rates
are:

1. No downstream influence of the sensors is apparent and therefore stream-wise arrays of sensors can be
used to easily access spatial amplification rates for instabilities.

2. This is an easy-to-use off-the-shelf measurement technology at comparatively low cost.

3. The sensors used are very resistant to the harsh environment typical of hypersonic facilities.

4. The high frequency response of the sensors allows for measurements up to the 1MHz range.

5. The sensitivity for detecting the second mode in terms of signal-to-noise ratio may be an order of
magnitude better than in the hot-wire experiments by Stetson et al., although Stetson et al. used
completely different data acquisition systems.

These very promising preliminary results suggest that the limited spatial resolution of the surface-pressure
sensors might be alleviated through careful comparison to spatial averages of the computational results.

The second-mode amplitudes under noisy conditions were 450 times higher than under quiet flow at the
same Reynolds number. This ratio of the second-mode amplitude seems to be much larger than the ratio
of the broadband Pitot fluctuations, which was about 50-100, perhaps due to the spectral content of the
free-stream noise and also to receptivity effects.

Under noisy conditions, the second-mode amplitudes began to decrease at about the same Reynolds
number in both the Purdue and Braunschweig tunnels, which suggests that results in the two tunnels can
be compared to enable the study of nonlinear effects. Under quiet flow, at this same Reynolds number, the
instability amplitudes just began to rise from the measurement noise. Therefore it was not possible to make
a direct comparison of second mode amplification rates in noisy and quiet flow.

Measured maximum amplification rates were in good agreement with those calculated using linear stabil-
ity codes. In addition, the bandwidth of amplified frequencies was in good agreement under quiet flow. The
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remaining differences are thought to be due to a slight angle of attack in the quiet experiments. However,
under noisy conditions the computed bandwith of amplified frequencies was more broad than the measure-
ments, for all Reynolds numbers down to Ree = 1.5× 106. The measured noisy-flow maximum amplification
rates were in good agreement with calculations below Ree = 2.2×106, as in Stetson’s observations at Mach 8.

Future measurements should check the angle of attack more carefully by comparing the frequencies of the
most-unstable wave on opposite sides of the cone. It would also be very interesting to compare measurements
of the instability waves using surface-pressure sensors to measurements using a hot wire or laser differential
interferometer. A series of measurements with the surface pressure sensors under different conditions might
be combined with computations and measurements using other instrumentation, in order to determine the
effect of the size of the pressure sensor. The pressure sensors can then be used in several tunnels to compare
2nd-mode wave growth under conditions where hot wires will not survive.

A. Appendix

Figure 4a shows an idealized characteristic diagram of the flow in the tube shortly after the start of
the tunnel. The expansion wave starting at the nozzle at t = 0 is modeled by two characteristic lines
corresponding to the head and the tail of the waveb. The wave is reflected at the boundaries after each pass
through the tube. The boundary conditions at the ends of the tube are found as follows: At the throat an
unknown and time dependent critical mass flux per area a∗ρ∗ can be assumed with a∗ being the velocity of
sound at critical condition and ρ∗ being the critical density. When A∗ is the combined throat area for the
main flow and the bleed slot, the corresponding mass flux per area at the tube diameter At is ρ u = ρ∗ a∗ A∗

At
,

with ρ and u being the area-averaged density and velocity at diameter At. The ratio of the mass fluxes
per area is related to the flow Mach number Mt by the equation for a one-dimensional stationary isentropic
expansion:

ρ u

ρ∗ a∗
= Mt

(

2 + (γ − 1)M2
t

γ + 1

)− γ+1
2(γ−1)

=
A∗

At
. (1)

Therefore the Mach number in the tube is a function only of the area ratio and independent of the state of
the fluid in the tube. Hence, the boundary conditions of the characteristics for t > 0 become: u = Mt · a at
the right end of the tube, which is at x = 0, assuming the contraction length is small compared to the tube
length, and u = 0 at the upstream end where x = −l, with l being the tube length. With these assumptions
the state of the gas in areas I to III (and after all subsequent passes of the expansion wave) can be calculated
as a function of the tube Mach number by the following procedure. However, the exact tube Mach number
is not known in advance due to the unknown effect of the boundary layer’s displacement thickness on the
effective tube diameter. Therefore the Mach number has to be determined from the measured pressure drop
after each reflection of the expansion wave.

The head of the expansion wave travels with the velocity of sound a0 into the gas. So the slope of the
characteristic line in the diagram is dx

dt = −a0 before its reflection at A1 (Fig. 4a). At point B1 the head
of the reflected expansion wave intersects the tail of the incident expansion wave. Between A1 and B1 its
slope changes to aI(1 + Mt), according to the state of the gas in area I, fulfilling the downstream boundary
condition. The conditions in area I can be calculated by integrating the compatibility equation for the C+

characteristic from A1 to B1

−
∫ aIMt

0

du =

√
γR

γ − 1

∫ I

0

dT√
T

(2)

which gives

− aIMt =
2a0

γ − 1

[

(

TI

T0

)
1
2

− 1

]

. (3)

and rearranging with aI

a0
=
(

TI

T0

)
1
2

gives27

TI

T0

=

(

1 +
γ − 1

2
Mt

)−2

. (4)

bUsing more than two characteristic lines would complicate the calculation. However, the very low Mach number in the
driver tube results in weak waves that are well captured with only two characteristic lines.
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The pressure and density ratios can be calculated from Eq. (4) using isentropic relations.22,27 The initial
slope of the tail of the expansion wave is aI(Mt − 1) before its reflection in C1 and aII thereafter. The state
of the gas in area II is calculated by integrating the compatibility equation for the C− characteristic from
B1 to C1

∫ 0

aIMt

du =

√
γR

γ − 1

∫ II

I

dT√
T

. (5)

Performing the integration and using Eqs. (3) and (4) gives after rearrangement

TII

T0

=

[

2 − (γ − 1)Mt

2 + (γ − 1)Mt

]2

. (6)

The state in area III can be found by integrating from B2 to C2. Since the fluid in area II is at rest its
condition can be regarded as the new initial state (TII = T0′). Then the integration from B2 to C2 is similar
to that from A1 to A2 and the relations for all subsequent reflections are given by Eqs.(4) and (6). So finally
the static temperature at the contraction after time tC2n

with n = 1, 2, 3 . . . changes to

T2n+1 = T0

(

1 +
γ − 1

2
Mt

)−2 [
2 − (γ − 1)Mt

2 + (γ − 1)Mt

]2n

. (7)

The time needed for the head of the wave to travel forth and back in the tube can be calculated from the
slope of the characteristic lines

tA2
=

l

a0

+
l

a1(1 + Mt)
=

l

a0

(

2 + γ+1

2
Mt

1 + Mt

)

. (8)

The time between the arrival of the head and tail at x = 0 is

tB2
− tA2

=
l

a0

[

2 + (γ − 1)Mt

2 − (γ − 1)Mt
− 1

]

. (9)

Adding the traveling times of the head for subsequent reflections using Eq. (6) gives

tA2n
=

l

a0

(

2 + γ+1

2
Mt

1 + Mt

)[

1 +

n−1
∑

k=1

[

2 + (γ − 1)Mt

2 − (γ − 1)Mt

]k
]

. (10)

Accordingly, the time lag between the head and the tail of the wave after several reflections becomes

tC2n
− tA2n

=
l

a0

[

2 + (γ − 1)Mt

2 − (γ − 1)Mt
+ Mt

2 + (γ − 1)Mt

1 − Mt
2

− 1

]

·
[

1 +
n−1
∑

k=1

[

2 + (γ − 1)Mt

2 − (γ − 1)Mt

]k
]

. (11)

Note that for the calculation of these times, due to the modeling by only two characteristic lines, a step change
of the traveling speed was assumed at the boundaries rather than a continuous change within the overlapping
areas ABC. So the above formulas will underestimate the travel time for the head and overestimate that
for the tail of the wave. Therefore the exact path of the expansion wave will be somewhere between the
calculated characteristics. Hence, the uncertainty of the path is given by somewhat less than half of the
distance between head and tail. For the given tube with a length of 125.5 feetc and a Mach number
Mt = 0.0046 at temperature T0 = 433K the time lag between head and tail can be calculated for n=15 from
Eq. (10). It is tC30

− tA30
= 0.015s which is about 0.5 % of the overall traveling time at that point.
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