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Abstract: Graphene, an atomically thin material, has unique electrical, mechanical, and optical
properties that can enhance the performance of thin film-based flexible and transparent devices,
including gas sensors. Graphene synthesized on a metallic catalyst must first be transferred onto a
target substrate using wet or dry transfer processes; however, the graphene surface is susceptible
to chemical modification and mechanical damage during the transfer. Defects on the graphene
surface deteriorate its excellent intrinsic properties, thus reducing device performance. In this
study, the surface properties of transferred graphene were investigated according to the transfer
method (wet vs. dry) and characterized using atomic force microscopy, Raman spectroscopy, and
contact angle measurements. After the wet transfer process, the surface properties of graphene
exhibited tendencies similar to the poly(methyl methacrylate) residue remaining after solvent etching.
The dry-transferred graphene revealed a surface closer to that of pristine graphene, regardless of
substrates. These results provide insight into the utilization of wet and dry transfer processes for
various graphene applications.

Keywords: surface properties; contact angles; CVD-grown graphene; wet transfer method; dry
transfer method

1. Introduction

Most gas sensors operate in a resistive mode with a simple mechanism, in which
the electrical resistance of the sensing material changes after a chemical reaction with
an analyte [1]. The actual sensing materials thus play a key role in determining sensor
performance. Gas sensors mainly utilize metal oxide films as the sensing material to
precisely detect gas leakage at temperatures above a few hundred degrees Celsius [2,3]. The
sensor’s problems are that the high operating temperature of gas sensors with metal oxide
films can trigger an explosion of gases, such as hydrogen and oxygen. The limited flexibility
of the sensors due to metal oxide films makes curved attachments on gas pipes and vessels
unsuitable [4]. For this reason, graphene and graphene composites have been suggested as
a sensing material for gas sensors due to their excellent electrical and mechanical properties,
as well as their flexibility [5–8].

Chemical vapor deposition (CVD)-grown graphene has advantages for fabricating
large-area and high-performance gas sensors rather than mechanical and liquid exfoliation
graphene [9]. CVD graphene is generally synthesized on a metallic catalyst; thus, the
graphene should be transferred onto a target substrate to fabricate gas sensors [10,11].
Although various transfer processes of graphene, such as wet, dry, mechanical, electro-
chemical, and polymer-free transfer, have been suggested, wet and dry transfer methods
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have been widely utilized because the methods can be simply performed using polymeric
films as a medium in the transfer process and produce high-quality graphene [12–14].
Despite their common use, chemical modification and mechanical damages are still caused
to graphene surfaces during wet and dry transfer processes [5,15–18]. Interestingly, it has
been reported that the damages to transferred graphene rather improve the sensitivity of
gas sensors because linear wrinkles and cracks in graphene restrict the path of electrons,
thus increasing the electrical resistance of graphene [5]. In addition, polymeric residue on
the graphene surface of gas sensors acts as a high-sensitivity functionalization layer for
analyte adsorption [15]. However, this type of damage reduces the charge carrier mobil-
ity of graphene, thereby degrading the performance of the gas sensor; also, the residue
increases the binding energy with gas molecules, resulting in gas sensor recovery issues.
Recently, it has been reported that the charge carrier mobility and reversibility of graphene
sensors can be enhanced by screening for unintentional substrate-induced p-doping of the
graphene using a hydrophobic polymer brush layer on a target substrate [19]; it was also
suggested that the gas adsorption rate of graphene depends on underlying substrates due
to differences in the surface energy of the substrates. The surface energy of CVD-grown
graphene on copper foil immediately after synthesis is about 10~30% higher than that
of graphene after 24 h of air exposure because airborne hydrocarbon is adsorbed onto
graphene [20,21]. Moreover, the surface energy of single-layer graphene is changed by
underlying substrates [22]. Thus, high-performance graphene gas sensors require graphene
with low and stable surface energy regardless of underlying substrates, as well as minimal
surface damage to the graphene during the transfer process.

The wet transfer process of graphene is performed by scooping a floating graphene/
polymer film onto a target substrate [23]. After scooping, the polymer film supporting
the graphene is removed with a solvent to prevent mechanical damage. The dry transfer
process is performed based on the differences in adhesion between the interfaces of the
graphene/polymer film and graphene/substrate. A transfer film with a pressure-sensitive
adhesive (PSA) layer is used to support the graphene during the dry transfer process [14].
Once the graphene has adhered to the target substrate, the transfer film is peeled away
from the graphene. Since the two transfer methods have distinct differences in transfer
environment and mechanism, the surface properties of graphene can vary due to the
chemical modification and mechanical damages in graphene regarding the transfer methods.
Therefore, to produce high-performance graphene-based gas sensors, the surface properties
of the transferred graphene depending on the transfer methods should be understood.

Here, we investigated the surface and electrical properties of graphene transferred
onto a target substrate using wet and dry transfer processes. The wet-transferred graphene
showed a lower sheet resistance of 207 Ω/Sq and less damage compared with the graphene
transferred using the dry transfer process; however, the wet-transferred graphene was
covered by a 1.5-nm-thick poly(methyl methacrylate) (PMMA) residue. Moreover, the
water contact angle (WCA) of the wet-transferred graphene was comparable to that of
PMMA, whereas the WCA of dry-transferred graphene was close to that of graphite
(HOPG). In addition, the wet-transferred graphene exhibited a higher surface energy than
that of dry-transferred graphene due to the PMMA residue, and the surface energy of the
wet-transferred graphene differed according to the substrate. In contrast, the surface energy
of dry-transferred graphene was analogous to that of HOPG, regardless of the substrate.
Taken together, these results indicate that the surface and electrical properties of graphene,
especially the surface energy, depend on the transfer method. Finally, we propose that the
dry transfer process has many advantages for producing high-quality graphene-based gas
sensors in an industrial aspect.

2. Materials and Methods
2.1. Sample Preparation

Monolayer graphene (Gr) was synthesized on 35 µm-thick Cu foil (JX Nippon Mining
and Metals Corp., Tokyo, Japan) using a thermal CVD process [24]. Polydimethylsiloxane
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(PDMS, Sylgard 184; Dow Corning, Midland, MI, USA) and polyethylene terephthalate
(PET) film were used as the compliant layer and supporting film in the transfer film (TF),
respectively. To enhance the adhesion between PDMS and PET, plasma surface treatment
(CUTE Plasma System; Femto Science, Gyeonggi-do, South Korea) was performed on PET
before applying the PDMS coating. The PDMS was prepared by mixing a liquid prepolymer
(Sylgard 184A; Dow Corning) and curing agent (Sylgard 184B; Dow Corning). The mixture
was spin-coated as 100-µm-thick layers onto the PET film and baked for 12 h at 60 ◦C [14].

2.2. Dry Transfer Process

Figure 1a shows a schematic diagram of the dry transfer process for monolayer CVD-
grown Gr on Cu foil. The TF was laminated onto Gr grown on Cu foil using a home-built
roll-to-plate (R2P) transfer machine [25,26]. The Cu foil was etched with 0.1 M ammonium
persulfate solution (APS; Sigma-Aldrich, St. Louis, MO, USA) [24]. After etching, the
TF/Gr film was laminated onto the target substrate under a contact load of 2 N/mm and
lamination speed of 0.5 mm/s using the R2P transfer machine. For the roll-based large-area
dry transfer, the TF was peeled off with the R2P system under precise active load control,
using a contact load and peeling-off velocity of 0.2 N/mm and 0.1 mm/s, respectively. The
radius of the roller in the R2P system was 75 mm. (Figure S1 in Supplementary Materials).
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Figure 1. Schematic diagram of the transfer processes of chemical vapor deposition-grown graphene
(Gr) on copper foil (Cu): (a) dry transfer and (b) wet transfer. PDMS: polydimethylsiloxane; PMMA:
poly(methyl methacrylate); DI water: deionized water.

2.3. Wet Transfer Process

Figure 1b shows a schematic diagram of the wet transfer process for monolayer
CVD-grown Gr on Cu foil. PMMA (Microchem Laboratory, Round Rock, TX, USA) was
spin-coated onto Gr grown on Cu foil and baked for 1 min at 80 ◦C [23]. The PMMA/Gr/Cu
foil sample was then floated on a 0.1 M APS solution to etch away the Cu foil. After etching,
the PMMA/Gr was floated on deionized (DI) water to remove any etchant impurities and
then scooped onto the target substrate. Then, the PMMA on Gr was removed by placing
the PMMA/Gr/substrate in an acetone bath for 30 min.
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2.4. Characterizations

Raman spectra were obtained using a Raman spectrometer with a 514-nm laser as the
excitation source (inVia Raman Microscope; Renishaw, Wotton-Under-Edge, UK). The beam
size of the laser was 2 µm and a 50× objective lens was used. Images of the transferred
Gr were obtained using field emission scanning electron microscopy (FE-SEM; JSM-7610
FPlus; JEOL, Ltd., Tokyo, Japan) operating at less than 1 kV to suppress charging. The
topography of the samples was examined using atomic force microscopy (AFM; 5300E;
Hitachi, Ltd., Tokyo, Japan). An Si probe (SI-DF3; Hitachi, Ltd.) with a stiffness of 1.6 N/m
and resonance frequency of 27 kHz was used to measure the topography over an area
of 5 × 5 µm2 at a scan rate of 0.5 Hz. The sheet resistance of the Gr transferred onto the
SiO2/Si substrate was measured using a four-point probe nanovoltmeter (Model 6221;
Keithley Instruments, Cleveland, OH, USA). The contact angle was measured using a drop
shape analyzer (DAS 100; Krüss GmbH, Hamburg, Germany). As polar and dispersive
solutions, 3 µL droplets of DI water, formamide, and diiodomethane were dropped onto
different areas of the substrate at least three times. All contact angle data were obtained
within 5 h after the transfer process.

3. Results and Discussion

The surface of CVD-grown Gr transferred onto an SiO2 substrate was observed using
an optical microscope and SEM, as shown in Figure 2a,b. After the Gr transfer, we observed
little mechanical damage; specifically, few cracks and wrinkles were present, regardless
of the transfer method (Figure 2a). However, the wet-transferred Gr showed a residue
(Figure 2b). Raman spectroscopy was used to examine the chemical modifications of the
transferred Gr onto SiO2 (Figure 2c). The Raman spectra displayed G and 2D peaks of
intrinsic Gr, regardless of the transfer method. The 2D-band/G-band ratio, I2D/IG, of
dry-transferred Gr was about 1.9, which is close to the value of 2 for pristine monolayer
Gr. The Raman spectra of wet-transferred Gr, I2D/IG was 1.1, and the G and 2D peaks had
shifted slightly toωG ~ 1596 cm−1 andω2D ~ 2694 cm−1 from its intrinsic G- and 2D-bands
(ωG ~ 1580 cm−1 andω2D ~ 2680 cm−1) [27–29]. The Raman spectra of dry-transferred Gr
on SiO2 appeared to be pristine Gr; however, the wet-transferred Gr showed a chemically
modified surface (Figure S2 in Supplementary Materials). The chemical modifications were
likely due to the PMMA residue on the surface of Gr. If PMMA is not removed completely
from the Gr surface, the residue effectively acts as a p-type dopant, which degrades the
charge carrier mobility of graphene [19].
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The sheet resistance of Gr was measured after wet (Figure 2d) and dry (Figure 2e)
transfer. The sheet resistance of wet-transferred Gr was uniform in the area where it was
measured, and the average sheet resistance was 450 ± 106 Ω/Sq (Figure 2d). Compared
with the wet transfer process, the dry-transferred Gr showed poor uniformity in terms of its
sheet resistance; the average sheet resistance was 657 ± 130 Ω/Sq, which is about 1.5-fold
that of the wet-transferred Gr (Figure 2e). In the dry transfer process, Gr was adhered to
the TF by van der Waals (vdW) interactions (a relatively weak interaction force). Thus,
fine cracks of Gr on the TF were easily generated during the etching process of Cu and
the roll-based lamination process [14]. On the contrary, PMMA prevented tear and crack
formation in Gr due to the strong chemical bonds formed with PMMA; however, this strong
bonding is also responsible for the difficulty in removing PMMA from the Gr surface.

AFM was used to further examine the surface properties of Gr transferred onto SiO2,
as shown in Figure 3. Figure 3a shows a schematic diagram of the scanning procedure for
analyzing the surface morphology of the transferred Gr, which might include polymeric
residue, cracks, and wrinkles. First, the surface morphology of samples was obtained over
scanning areas of 5 × 5 µm2 (Figure 3b,d) and 3 × 3 µm2 (Figure 3c) in non-contact mode.
Second, to confirm the presence of a polymeric residue on the Gr surface, the surfaces of
samples were scanned using a cantilever under a 2-nN load in contact mode, thus effectively
scraping over the samples, as shown by the 2 × 2 µm2 black dotted area in Figure 3b–d and
the 1 × 1 µm2 area in Figure 3c. Finally, the scanned area in the first step was rescanned
to verify the changes in surface morphology in non-contact mode. Figure 3b–d shows
topography images of the surfaces of Gr/Cu and the wet- and dry-transferred Gr/SiO2
obtained in the final step of our AFM analysis. The topography images of Gr synthesized on
Cu show step patterns with a root-mean-square (RMS) roughness of 7.74 nm, which were
formed by reconstructing the surface of Cu during the synthesis of Gr at high temperatures
(Figure 3b). The surface of Gr/Cu was not significantly changed after the scraping step and
application of the AFM probe in contact mode. After the wet transfer process, however,
the surface of Gr/SiO2 had an RMS roughness of 6.4 nm, and there was visible residue
accumulation at the edges of the scraped area on Gr/SiO2 (Figure 3c). Compared with
the surface of wet-transferred Gr/SiO2 covered with the residue, the surface of the dry-
transferred Gr/SiO2 was slightly flattened, with an RMS roughness of 5.13 nm, although
trapped bubbles between Gr and SiO2 were observed; in addition, there was no evidence
of residue on the edge of the scraped area (Figure 3d). To measure the thickness of the
polymeric residue on Gr/SiO2, we examined the line profiles of the topography images
(white dotted lines in Figure 3e–g). Figure 3e shows similar surface profiles of Gr/Cu
between scraped and non-scraped areas. However, the line profile of wet-transferred
Gr/SiO2 displayed a distinct step of 1.5 nm thickness at the edge of the scraped area,
corresponding to the thickness of the PMMA residue on the surface of Gr after the wet
transfer process (Figure 3f). In contrast, in the line profiles of dry-transferred Gr/SiO2, the
scraped and non-scraped areas could not be distinguished (Figure 3g). Thus, the results
shown in Figure 3 confirm that the PMMA residue in the Gr after the wet transfer process
was not locally present but instead covered the entire area, whereas there was no polymeric
residue on dry-transferred Gr.

To investigate the effects of the transfer methods and substrates on the wettability of Gr,
the contact angles of three solutions, i.e., DI water (polar), formamide (polar and dispersive),
and diiodomethane (dispersive), were measured on the surfaces of a bare substrate (black
bar), wet-transferred Gr/substrates (red bar), and dry-transferred Gr/substrates (blue bar)
(Figure 4). In our case, all contact angles (CAs) of samples were measured after 48 h of
graphene synthesis, and CAs were not significantly changed in each sample for 30 min of
the measurement. Therefore, we considered that airborne hydrocarbons were adsorbed
onto the surface of graphene before CA measurement [20,21]. Figure 4a shows the water
contact angle (WCA) of the samples. The WCAs of bare SiO2, p-PET, and h-PET were
44◦, 72◦, and 42◦, respectively. The WCAs of SiO2 and h-PET were 28–30◦ lower than
that of p-PET, because the oxide layer on the substrates formed hydrogen bonds with the
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water molecules. After the wet transfer process, the WCAs of the Gr/substrate were 64.2◦

(SiO2), 76.4◦ (p-PET), and 79.8◦ (h-PET). Thus, the average contact angle of wet-transferred
Gr on the substrates was 73.5 ± 8◦ compared with 76◦ for PMMA. The WCAs of the
dry-transferred Gr/substrate increased to 86.2◦ (SiO2), 90.6◦ (p-PET), and 88.4◦ (h-PET),
with an average contact angle of 88.4 ± 2◦; this was comparable with 96◦ for HOPG. The
formamide contact angles (FCAs) of the bare substrates were 14◦ (SiO2), 55.8◦ (p-PET),
and 41◦ (h-PET) (Figure 4b). Because formamide has both dispersive and polar energy
properties, it has a stronger interaction with SiO2 and h-PET compared to p-PET [30].
The FCAs of the wet-transferred Gr/substrate were 57.2◦ (SiO2), 62.5◦ (p-PET), and 63.8◦

(h-PET), and the average contact angle was 61.2 ± 3◦, similar to the value of 61◦ observed
for PMMA. Dry-transferred Gr on SiO2, p-PET, and h-PET exhibited FCAs of 59.7◦, 68.7◦,
and 68.9◦, respectively. The average FCA value of Gr/substrate was 65.8 ± 5◦, which was
close to the 69◦ of HOPG. The diiodomethane contact angles (DCAs) of the bare substrates
were 50.5◦ (SiO2), 27.3◦ (p-PET), and 41◦ (h-PET) (Figure 4c). The DCA results showed that
the DCA of p-PET was about 13.7~23.2◦ lower than that of SiO2 and h-PET. Because the
surface of p-PET is dispersive, diiodomethane tends to interact strongly with p-PET. Thus,
the DCA of the dry-transferred Gr/substrate, which had no residue on its surface, was
expected to be lower than that of the wet-transferred Gr/substrate. However, DCA on the
Gr/substrate was nearly constant at 43 ± 2◦, regardless of the transfer method or substrate.
In addition, the DCA of the Gr/substrate was about 8◦ higher than that of HOPG and 4◦

lower than that of PMMA.
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Sensors 2022, 22, 3944 7 of 11

Sensors 2022, 22, x FOR PEER REVIEW 7 of 11 
 

 

[30]. The FCAs of the wet-transferred Gr/substrate were 57.2° (SiO2), 62.5° (p-PET), and 
63.8° (h-PET), and the average contact angle was 61.2 ± 3°, similar to the value of 61° ob-
served for PMMA. Dry-transferred Gr on SiO2, p-PET, and h-PET exhibited FCAs of 59.7°, 
68.7°, and 68.9°, respectively. The average FCA value of Gr/substrate was 65.8 ± 5°, which 
was close to the 69° of HOPG. The diiodomethane contact angles (DCAs) of the bare sub-
strates were 50.5° (SiO2), 27.3° (p-PET), and 41° (h-PET) (Figure 4c). The DCA results 
showed that the DCA of p-PET was about 13.7~23.2° lower than that of SiO2 and h-PET. 
Because the surface of p-PET is dispersive, diiodomethane tends to interact strongly with 
p-PET. Thus, the DCA of the dry-transferred Gr/substrate, which had no residue on its 
surface, was expected to be lower than that of the wet-transferred Gr/substrate. However, 
DCA on the Gr/substrate was nearly constant at 43 ± 2°, regardless of the transfer method 
or substrate. In addition, the DCA of the Gr/substrate was about 8° higher than that of 
HOPG and 4° lower than that of PMMA.  

 
Figure 4. Contact angles of (a) deionized (DI) water, (b) formamide, and (c) diiodomethane on bare 
substrates, and wet- and dry-transferred Gr/substrate. The black and red dotted lines represent the 
contact angles of graphite (HOPG) and PMMA, respectively. 

Figure 4. Contact angles of (a) deionized (DI) water, (b) formamide, and (c) diiodomethane on bare
substrates, and wet- and dry-transferred Gr/substrate. The black and red dotted lines represent the
contact angles of graphite (HOPG) and PMMA, respectively.

The surface energy of the Gr/substrate was calculated using the Young–Dupre [31] and
Owen–Wendt [32] theories (Figure 5), based on the contact angle measurements obtained
for DI water, formamide, and diiodomethane of the transferred Gr/substrate. Figure 5a
shows the surface energies of Gr transferred onto the substrates. The surface energy of the
wet-transferred Gr/substrate varied from 35.2 to 42.3 mJ/m2, depending on the substrate,
which was 10–25% lower than that of the bare substrates. Regardless of the substrates,
the surface energies of the dry-transferred Gr/substrate varied slightly, between 35.5 and
37.2 mJ/m2, which was 10–35% lower than that of the bare substrates. Figure 5b shows
dispersive and polar energy terms in the surface energy equation of wet-transferred Gr on
the substrates. The dispersive energy of the wet-transferred Gr/substrate was constant
over the range of 27.6–30.5 mJ/m2; however, the polar energy of wet-transferred Gr/SiO2
was 14.8 mJ/m2, about two-fold that of wet-transferred Gr on p-PET and h-PET. The
average energy values, regardless of the substrate, were 29 ± 1.4 mJ/m2 (dispersive) and
9.8 ± 4.4 mJ/m2 (polar), which were comparable to PMMA (30.5 mJ/m2 for the dispersive
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energy and 7.9 mJ/m2 for the polar energy). In contrast, the energy terms of the dry-
transferred Gr/substrate did not change significantly by substrate (Figure 5c). The average
dispersive energy of the dry-transferred Gr/substrate was 33.1 ± 1.1 mJ/m2, which was
11.4 times higher than its average polar energy, and the averaged energies were analogous
to those of HOPG. These results were due to the bubbles that existed in the interface of the
dry-transferred Gr/substrate, making a relatively large gap between the dry-transferred
Gr and underlying substrates. Taken together, the results shown in Figures 2–5 indicate
that the PMMA residue on the wet-transferred Gr surface clearly modified the surface
properties of Gr; however, the dry-transferred Gr remained relatively pristine. It has been
reported that contamination and ambient pollution, such as CO2, O2, and H2O, act as
interference factors that degrade the performance of Gr [19,33,34], leading to a decline
in sensor performance or even impaired development. In addition, the contact angles of
Gr can increase as the exposure time of Gr to the atmosphere increases the adsorption of
airborne hydrocarbons [20,33]. Thus, the aging effect on the surface energy of Gr should be
considered in the design process of gas sensors. The results of our study demonstrate the
many advantages of using the dry transfer process for Gr transfer to minimize polymeric
residue, low doping, low surface energy, and productivity issues, compared with the wet
transfer process for Gr.
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4. Conclusions

In this study, we investigated the surface and electrical properties of both wet- and dry-
transferred Gr on various substrates. Wet- and dry-transferred Gr showed fewer mechanical
damages such as cracks and wrinkles, but PMMA residues and bubbles were observed,
respectively. Gr and the PMMA layer form strong bonds in the wet transfer process, which
make it difficult to remove PMMA from the Gr surface, as evidenced by the remaining
PMMA residue. Raman spectra of wet-transferred Gr on SiO2 showed a reduction in the
I2D/IG ratio to 1.1, and the G and 2D peaks were shifted slightly from the intrinsic G and
2D bands. Based on the Raman spectra, the dry-transferred Gr on SiO2 appeared to be
pristine Gr; however, the wet-transferred Gr showed chemical modification. The sheet
resistance of the wet-transferred Gr/substrate was 450 Ω/Sq, which was 30% lower than
that of the dry-transferred Gr/substrate. We found that the wet-transferred Gr/substrate
was covered with a 1.5 nm-thick PMMA layer, and the residue on Gr behaved as a chemical
doping layer, which would degrade the carrier mobility of Gr. No polymeric residue was
found on the dry-transferred Gr/substrate; however, trapped bubbles between Gr and
the substrate were observed in the topography of AFM images. The surface energy of the
Gr/substrate, regardless of the transfer method, was reduced by 10–25% compared to the
surface energy on bare substrates. The dispersive and polar energy of the wet-transferred
Gr/substrate showed a PMMA-like tendency, but that of the dry-transferred Gr/substrate
was comparable to that of HOPG. Therefore, we suggest that the dry transfer process
for Gr could be appropriate for graphene-based applications including gas sensors since
dry-transferred Gr has advantages in the aspects of fewer contaminants and productivity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22103944/s1, Figure S1. (a) A home built roll-to-plate (R2P)
transfer machine for the roll-based dry transfer process of graphene. (b) Schematic diagram of the
side of the TF in contact with graphene in the roll-based dry transfer process. Figure S2. Raman
spectra of 5 samples of (a) wet- and (b) dry-transferred graphene on SiO2. The dotted line with
gray color represents averaged G and 2D peaks of the samples, respectively. The G and 2D peaks of
wet-transferred graphene shifted slightly to ωG ~ 1596 cm−1 and ω2D ~ 2694 cm−1 from its intrinsic
G- and 2D-bands (ωG ~ 1580 cm−1 andω2D ~ 2680 cm−1). Dry-transferred graphene had exhibited
similar G and 2D peaks with that of the intrinsic G- and 2D-bands.
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